腹外侧眶皮层参与抗伤害感受与情绪调节的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腹外侧眶皮层(ventrolateral orbital cortex,VLO)是眶皮层(或眶额皮层,orbital cortex或orbitofrontal cortex)的主要组成,占前额叶皮层(prefrontal cotex,PFC)的大部分区域。解剖学研究提示VLO可能参与中枢神经系统复杂的功能整合。因为VLO主要接受来自丘脑中央下核(thalamic nucleus submedius,Sm)的投射,并发出纤维投射到导水管周围灰质(periaqueductal gray,PAG),因此,VLO作为Sm-VLO-PAG通路中一个的高级中枢,不仅参与痛觉感受,也参与伤害感受性调制;又因为VLO与其它情绪调节相关脑区如下丘脑(hypothalamus)、杏仁核(amygdala)等之间的联系,因此也可能参与情绪调控。本课题研究了:(1)多巴胺及D1、D2样多巴胺受体在VLO参与的抗大鼠神经病理性疼痛中的作用以及可能的机制;(2)多巴胺及D1、D2样多巴胺受体在VLO参与的抗大鼠持续性炎性疼痛中的作用;(3)组蛋白脱乙酰基酶(histone deacetylases,HDACs)抑制剂VPA微量注射于VLO诱发的抗抑郁样行为。结果如下:
     1.VLO内微量注射非选择性多巴胺受体激动剂apomorphine(1.0,2.5,5.0μg)剂量依赖性的减轻大鼠坐骨神经分支损伤模型(spared nerve injury,SNI)引起的触诱发痛;D2样多巴胺受体拮抗剂raclopride(1.5μg)阻滞这一效果,D1样多巴胺受体拮抗剂SCH23390(5.0μg)则增强上述效果;而D2样多巴胺受体激动剂quinpirole(0.5,1.0,2.0μg)产生的效应与apomorphine相同;较大剂量(10,20μg)SCH23390也显著缓解上述触诱发痛。进一步研究发现:VLO内微量注射GABAA受体拮抗剂bicuculline和picrotoxi(n均为200,300 ng)同样缓解上述触诱发痛,而小剂量bicuculline和picrotoxin(100 ng)加强quinpirole(0.5μg)的效果;GABAA受体激动剂muscimol(250 ng)或THIP(1.0μg)阻滞quinpirole(2.0μg)的效果。这些结果说明多巴胺能神经系统参与调节VLO的抗痛觉超敏作用:激活D2样多巴胺受体,或者抑制D1样多巴胺受体均具有抗痛觉超敏作用;GABA能脱抑制作用可能参与D2样多巴胺受体在神经病理痛中的作用。
     2.VLO内微量注射非选择性多巴胺受体激动剂apomorphine(1.0,2.5,5.0μg)剂量依赖性的抑制大鼠福尔马林实验晚时相伤害感受行为;D2样多巴胺受体拮抗剂raclopride(3.0μg)阻滞上述效应,而D2样多巴胺受体激动剂quinpirole(1.0,2.0,5.0μg)完全模拟了apomorphine的效应;D1样多巴胺受体拮抗剂SCH23390(2.5, 5.0, 10μg)则剂量依赖的抑制福尔马林诱发的伤害感受行为。这些结果说明D1、D2样多巴胺受体在VLO参与的抗大鼠持续性炎性疼痛中的作用不同:D2样多巴胺受体参与多巴胺引起的抗伤害感受效应,而D1样多巴胺受体对伤害感受行为具有紧张性易化作用,因此阻滞D1样多巴胺受体产生抗伤害感受作用。
     3.大鼠双侧VLO内微量注射组蛋白脱乙酰基酶(histone deacetylases,HDACs)抑制剂丙戊酸钠(sodium valproate,VPA,300μg),显著减少大鼠在强迫游泳实验(forced swimming test,FST)中的不动(immobility)时间,但并不会对大鼠的自主活动(locomotor activity)行为产生明显的影响,其效应与慢性腹腔注射SSRIs类抗抑郁剂氟西汀(fluoxetine,10mg/kg,连续14d)相似。上述结果表明VLO在情绪调控中起一定作用。
The ventrolateral orbital cortex (VLO) in rat and cat is a major component of the orbital cortex, occupying a large region of the prefrontal cortex. Anatomical studies suggest that the VLO may be involved in regulation of various complex functions. Since the VLO receives a direct projection from thalamic nucleus submedius (Sm) and projects to periaqueductal gray (PAG), and the Sm has been demonstrated to be involved not only in nociception, but also in nociceptive modulation, it is reasonable to suspect that the VLO is involved as a higher center in nociceptive modulation of the Sm-VLO-PAG pathway. Furthermore, The complex connections between the orbitofrontal cortex and the amygdala, as well as other areas involved in emotion, suggest important implications for the role of the VLO in mood modulation. The present study examined : (1) The role of dopamine receptors in VLO-evoked anti-nociception in a rat model of neuropathic pain; (2) The roles of dopamine receptors in VLO-evoked antinociception in formalin test rats; (3) Effects of acute microinjection of histone deacetylases, sodium valproate (VPA), into the VLO in the rat forced swimming test. The results are as follows:
     1. Microinjection of apomorphine (1.0, 2.5, 5.0μg), a non-selective dopamine receptor agonist, into the VLO attenuated spared nerve injury (SNI)-induced mechanical allodynia in a dose-dependent manner. This effect was completely blocked by the D2- like dopamine receptor antagonist raclopride (1.5μg), but was enhanced by the D1-like dopamine receptor antagonist SCH23390 (5.0μg). The attenuating effect of apomorphine on mechanical allodynia was mimicked by application of the D2-like dopamine receptor agonist quinpirole (0.5, 1.0, and 2.0μg). In addition, microinjection of larger doses (10 and 20μg) of SCH23390 into the VLO significantly attenuated allodynia. Furthermore, microinjections of GABAA receptor antagonists, bicuculline and picrotoxin (200 and 300 ng for both drugs), into the VLO attenuated mechanical allodynia. A small dose of bicuculline or picrotoxin (100 ng) resulted in increased quinpirole (0.5μg)-induced anti-allodynia. In contrast, GABAA receptor agonists, muscimol hydrochloride (250 ng) or THIP (1.0μg), blocked quinpirole (2.0μg)-induced attenuation. These results suggest that the dopaminergic system is involved in mediating VLO-induced anti-hypersensitivity, activation of D2-like dopamine receptors, and inhibition of D1-like receptors resulting in anti-hypersensitivity. In addition, the mechanisms of GABAergic disinhibition might be involved in D2-like receptor mediating effects in neuropathic pain.
     2. Microinjection of a non-selective dopamine receptor agonist apomorphine (1.0, 2.5, 5.0μg) into the VLO depressed the later phase nociceptive behavior induced by formalin injected into the rat hindpaw, this effect was attenuated by D2-like dopamine receptor antagonist (3.0μg). The antinociception of apomorphine could be mimicked by microinjection of the D2-like dopamine receptor agonist quinpirole (1.0, 2.0 and 5.0μg) into the same VLO site. Furthermore, microinjection of the D1-like dopamine receptor antagonist SCH-23390 (2.5, 5.0, 10μg) into the VLO dose-dependently depressed the formalin-induced nociceptive behavior. These results suggest that the roles of D1-like and D2-like dopamine receptors in mediating the VLO-induced antinociception are different in the persistent inflammatory pain model, in which the D2-like receptors mediate the dopamine-induced antianociception, while the D1-like dopamine receptors have a tonic facilitatory action on the nociceptive behavior, thus block of the D1-like dopamine receptors produces antinociception.
     3. Acute microinjection of sodium valproate (VPA, 300μg) into the bilateral VLO decreased the immobility time of rats in the forced swimming test (FST), but did not influence the horizontal locomotion, which are similar to that typically seen in chronic intraperitoneal injection of standard antidepressant, fluoxetine (10mg/kg for 7 days). These results suggested that VPA may exert an antidepressant-like effect in rat FST through VLO-mediated functions in mood.
引文
[1] Paxinos G, Watson C. The rat brain in stereotaxic coordinates [M]. ED. 2nd, Academic Press, New York, 1986.
    [2] Van Eden CG, Uylings HB. Cytoarchitectonic development of the prefrontal cortex in the rat[J]. J Comp Neurol, 1985, 241 (3): 253-267.
    [3] Coffield JA, Bowen KK, Miletic V. Retrograde tracing of projections between the nucleus submedius, the ventrolateral orbital cortex, and the midbrain in the rat[J]. J Comp Neurol, 1992, 321 (3): 488-499.
    [4] Dado RJ, Giesler GJ, Jr. Afferent input to nucleus submedius in rats: retrograde labeling of neurons in the spinal cord and caudal medulla[J]. J Neurosci, 1990, 10 (8): 2672-2686.
    [5] Yoshida A, Dostrovsky JO, Chiang CY. The afferent and efferent connections of the nucleus submedius in the rat[J]. J Comp Neurol, 1992, 324 (1): 115-133.
    [6] Floyd NS, Price JL, Ferry AT, et al. Orbitomedial prefrontal cortical projections to distinct longitudinal columns of the periaqueductal gray in the rat[J]. J Comp Neurol, 2000, 422 (4): 556-578.
    [7] Floyd NS, Price JL, Ferry AT, et al. Orbitomedial prefrontal cortical projections to hypothalamus in the rat[J]. J Comp Neurol, 2001, 432 (3): 307-328.
    [8] Hardy SG, Leichnetz GR. Frontal cortical projections to the periaqueductal gray in the rat: a retrograde and orthograde horseradish peroxidase study[J]. Neurosci Lett, 1981, 23 (1): 13-17.
    [9] Reep RL, Corwin JV, King V. Neuronal connections of orbital cortex in rats: topography of cortical and thalamic afferents[J]. Exp Brain Res, 1996, 111 (2): 215-232.
    [10] Li YQ, Takada M, Matsuzaki S, et al. Identification of periaqueductal gray and dorsal raphe nucleus neurons projecting to both the trigeminal sensory complex and forebrain structures: a fluorescent retrograde double-labeling study in the rat[J]. Brain Res, 1993, 623 (2): 267-277.
    [11] Matsuzaki S, Takada M, Li YQ, et al. Serotoninergic projections from the dorsal raphe nucleus to the nucleus submedius in the rat and cat[J]. Neuroscience, 1993, 55 (2): 403-416.
    [12] Craig AD, Jr., Wiegand SJ, Price JL. The thalamo-cortical projection of the nucleus submedius in the cat[J]. J Comp Neurol, 1982, 206 (1): 28-48.
    [13] Corwin JV, Fussinger M, Meyer RC, et al. Bilateral destruction of the ventrolateral orbital cortex produces allocentric but not egocentric spatial deficits in rats[J]. Behav Brain Res, 1994, 61 (1): 79-86.
    [14] Ekstrand JJ, Domroese ME, Johnson DM, et al. A new subdivision of anterior piriform cortex and associated deep nucleus with novel features of interest for olfaction and epilepsy[J]. J Comp Neurol, 2001, 434 (3): 289-307.
    [15] Rempel-Clower NL. Role of orbitofrontal cortex connections in emotion[J]. Ann N Y Acad Sci, 2007, 1121: 72-86.
    [16] Michael W. Therapeutic AreasⅠ: Central nervous system, pain.英文版.科学出版社,北京:2007.
    [17] Harden N, Cohen M. Unmet needs in the management of neuropathic pain[J]. J Pain Symptom Manage, 2003, 25 (5 Suppl): S12-17.
    [18] Elliott AM, Smith BH, Penny KI, et al. The epidemiology of chronic pain in the community[J]. Lancet, 1999, 354 (9186): 1248-1252.
    [19] Millan MJ. The induction of pain: an integrative review[J]. Prog Neurobiol, 1999, 57 (1): 1-164.
    [20] Scholz J, Woolf CJ. Can we conquer pain?[J]. Nat Neurosci, 2002, 5 Suppl: 1062-1067.
    [21] Cervero F, Laird JM. Mechanisms of touch-evoked pain (allodynia): a new model[J]. Pain, 1996, 68 (1): 13-23.
    [22] Woolf CJ, Costigan M. Transcriptional and posttranslational plasticity and the generation of inflammatory pain[J]. Proc Natl Acad Sci U S A, 1999, 96 (14): 7723-7730.
    [23] Abbott JD, Moreland LW. Rheumatoid arthritis: developing pharmacological therapies[J]. Expert Opin Investig Drugs, 2004, 13 (8): 1007-1018.
    [24] Dworkin RH, Backonja M, Rowbotham MC, et al. Advances in neuropathic pain: diagnosis, mechanisms, and treatment recommendations[J]. Arch Neurol, 2003, 60 (11): 1524-1534.
    [25] Smith PA. Neuropathic pain: drug targets for current and future interventions[J]. Drug News Perspect, 2004, 17 (1): 5-17.
    [26] Woolf CJ, Mannion RJ. Neuropathic pain: aetiology, symptoms, mechanisms, and management[J]. Lancet, 1999, 353 (9168): 1959-1964.
    [27] Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain[J]. Science, 2000, 288 (5472): 1765-1769.
    [28] Urban MO, Gebhart GF. Supraspinal contributions to hyperalgesia[J]. Proc Natl Acad Sci U S A, 1999, 96 (14): 7687-7692.
    [29] Treede RD, Meyer RA, Raja SN, et al. Peripheral and central mechanisms of cutaneous hyperalgesia[J]. Prog Neurobiol, 1992, 38 (4): 397-421.
    [30] McMahon SB, Wall PD. Receptive fields of rat lamina 1 projection cells move to incorporate a nearby region of injury[J]. Pain, 1984, 19 (3): 235-247.
    [31] Woolf CJ. Evidence for a central component of post-injury pain hypersensitivity[J]. Nature, 1983, 306 (5944): 686-688.
    [32] Woolf CJ, Thompson SW. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states[J]. Pain, 1991, 44 (3): 293-299.
    [33] Tsuda M, Inoue K, Salter MW. Neuropathic pain and spinal microglia: a big problem from molecules in "small" glia[J]. Trends Neurosci, 2005, 28 (2): 101-107.
    [34] Watkins LR, Milligan ED, Maier SF. Spinal cord glia: new players in pain[J]. Pain, 2001, 93 (3): 201-205.
    [35] Honore P, Wade CL, Zhong C, et al. Interleukin-1alphabeta gene-deficient mice show reduced nociceptive sensitivity in models of inflammatory and neuropathic pain but not post-operative pain[J]. Behav Brain Res, 2006, 167 (2): 355-364.
    [36] Mogil JS, Yu L, Basbaum AI. Pain genes?: natural variation and transgenic mutants[J]. Annu Rev Neurosci, 2000, 23: 777-811.
    [37] Hargreaves K, Dubner R, Brown F, et al. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia[J]. Pain, 1988, 32 (1): 77-88.
    [38] Randall LO, Selitto JJ, Valdes J. Anti-inflammatory effects of xylopropamine[J]. Arch Int Pharmacodyn Ther, 1957, 113 (1-2): 233-249.
    [39] Chaplan SR, Bach FW, Pogrel JW, et al. Quantitative assessment of tactile allodynia in the rat paw[J]. J Neurosci Methods, 1994, 53 (1): 55-63.
    [40] Dubuisson D, Dennis SG. The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats[J]. Pain, 1977, 4 (2): 161-174.
    [41] Fernihough J, Gentry C, Malcangio M, et al. Pain related behaviour in two models of osteoarthritis in the rat knee[J]. Pain, 2004, 112 (1-2): 83-93.
    [42] Ueda H. Molecular mechanisms of neuropathic pain-phenotypic switch and initiationmechanisms[J]. Pharmacol Ther, 2006, 109 (1-2): 57-77.
    [43] Chacur M, Milligan ED, Gazda LS, et al. A new model of sciatic inflammatory neuritis (SIN): induction of unilateral and bilateral mechanical allodynia following acute unilateral peri-sciatic immune activation in rats[J]. Pain, 2001, 94 (3): 231-244.
    [44] Blomqvist A, Ericson AC, Broman J, et al. Electron microscopic identification of lamina I axon terminations in the nucleus submedius of the cat thalamus[J]. Brain Res, 1992, 585 (1-2): 425-430.
    [45] Craig AD, Jr., Burton H. Spinal and medullary lamina I projection to nucleus submedius in medial thalamus: a possible pain center[J]. J Neurophysiol, 1981, 45 (3): 443-466.
    [46] Ma W, Peschanski M, Ohara PT. Fine structure of the dorsal part of the nucleus submedius of the rat thalamus: an anatomical study with reference to possible pain pathways[J]. Neuroscience, 1988, 26 (1): 147-159.
    [47] Yoshida A, Dostrovsky JO, Sessle BJ, et al. Trigeminal projections to the nucleus submedius of the thalamus in the rat[J]. J Comp Neurol, 1991, 307 (4): 609-625.
    [48] Andrew D, Craig AD. Responses of spinothalamic lamina I neurons to maintained noxious mechanical stimulation in the cat[J]. J Neurophysiol, 2002, 87 (4): 1889-1901.
    [49] Christensen BN, Perl ER. Spinal neurons specifically excited by noxious or thermal stimuli: marginal zone of the dorsal horn[J]. J Neurophysiol, 1970, 33 (2): 293-307.
    [50] Craig AD. Pain mechanisms: labeled lines versus convergence in central processing[J]. Annu Rev Neurosci, 2003, 26: 1-30.
    [51] Craig AD, Krout K, Andrew D. Quantitative response characteristics of thermoreceptive and nociceptive lamina I spinothalamic neurons in the cat[J]. J Neurophysiol, 2001, 86 (3): 1459-1480.
    [52] Backonja M, Wang B, Miletic V. Responses of neurons in the ventrolateral orbital cortex to noxious cutaneous stimulation in a rat model of peripheral mononeuropathy[J]. Brain Res, 1994, 639 (2): 337-340.
    [53] Dostrovsky JO, Guilbaud G. Noxious stimuli excite neurons in nucleus submedius of the normal and arthritic rat[J]. Brain Res, 1988, 460 (2): 269-280.
    [54] Kawakita K, Dostrovsky JO, Tang JS, et al. Responses of neurons in the rat thalamic nucleus submedius to cutaneous, muscle and visceral nociceptive stimuli[J]. Pain, 1993, 55 (3): 327-338.
    [55] Snow PJ, Lumb BM, Cervero F. The representation of prolonged and intense, noxious somatic and visceral stimuli in the ventrolateral orbital cortex of the cat[J]. Pain, 1992, 48 (1): 89-99.
    [56] Fields H, Basbaum A. Central nervous system mechanisms of pain modulation. In: Wall, P.D., Melzack, R. (Eds.), Textbook of Pain. 4th ed[J]. Churchill Livingstone, New York, 1999, pp. 309–329.
    [57] Zhang YQ, Tang JS, Yuan B, et al. Effects of thalamic nucleus submedius lesions on the tail flick reflex inhibition evoked by hindlimb electrical stimulation in the rat[J]. Neuroreport, 1995, 6 (9): 1237-1240.
    [58] Casey K, Morrow T. Supraspinal pain mechanism in the cat. Kitchell, R.L. (edi.) Animal Pain Perception and Alleviation Bethesda[J]. 1983 p. 63.
    [59] Cooper SJ. Anaesthetisation of prefrontal cortex and response to noxious stimulation[J]. Nature, 1975, 254 (5499): 439-440.
    [60] Zhang S, Tang JS, Yuan B, et al. Inhibitory effects of glutamate-induced activation of thalamic nucleus submedius are mediated by ventrolateral orbital cortex and periaqueductal gray in rats[J]. Eur J Pain, 1998, 2 (2): 153-163.
    [61] Zhang S, Tang JS, Yuan B, et al. Electrically-evoked inhibitory effects of the nucleus submedius on the jaw-opening reflex are mediated by ventrolateral orbital cortex and periaqueductal gray matter in the rat[J]. Neuroscience, 1999, 92 (3): 867-875.
    [62] Zhang YQ, Tang JS, Yuan B, et al. Inhibitory effects of electrical stimulation of thalamic nucleussubmedius area on the rat tail flick reflex[J]. Brain Res, 1995, 696 (1-2): 205-212.
    [63] Grantham EG. Prefrontal lobotomy for relief of pain, with a report of a new operative technique[J]. J Neurosurg, 1951, 8 (4): 405-410.
    [64] Zhang YQ, Tang JS, Yuan B. Inhibitory effects of electrical stimulation of thalamic nucleus submedius on the nociceptive responses of spinal dorsal horn neurons in the rat[J]. Brain Res, 1996, 737 (1-2): 16-24.
    [65] Okada K, Murase K, Kawakita K. Effects of electrical stimulation of thalamic nucleus submedius and periaqueductal gray on the visceral nociceptive responses of spinal dorsal horn neurons in the rat[J]. Brain Res, 1999, 834 (1-2): 112-121.
    [66] Sumiya E, Kawakita K. Inhibitory effects of acupuncture manipulation and focal electrical stimulation of the nucleus submedius on a viscerosomatic reflex in anesthetized rats[J]. Jpn J Physiol, 1997, 47 (1): 121-130.
    [67] Yang S, Follett KA. Electrical stimulation of thalamic Nucleus Submedius inhibits responses of spinal dorsal horn neurons to colorectal distension in the rat[J]. Brain Res Bull, 2003, 59 (6): 413-420.
    [68] Li Y, Yuan B, Tang JS. Effect of stimulation and lesion of the thalamic nucleus submedius on formalin-evoked nociceptive behavior in rats[J]. Sheng Li Xue Bao, 2007, 59 (6): 777-783.
    [69] Zhang S, Tang JS, Yuan B, et al. Involvement of the frontal ventrolateral orbital cortex in descending inhibition of nociception mediated by the periaqueductal gray in rats[J]. Neurosci Lett, 1997, 224 (2): 142-146.
    [70] Zhang S, Tang JS, Yuan B, et al. Inhibitory effects of electrical stimulation of ventrolateral orbital cortex on the rat jaw-opening reflex[J]. Brain Res, 1998, 813 (2): 359-366.
    [71] Zhang YQ, Tang JS, Yuan B, et al. Inhibitory effects of electrically evoked activation of ventrolateral orbital cortex on the tail-flick reflex are mediated by periaqueductal gray in rats[J]. Pain, 1997, 72 (1-2): 127-135.
    [72] Hutchison WD, Harfa L, Dostrovsky JO. Ventrolateral orbital cortex and periaqueductal gray stimulation-induced effects on on- and off-cells in the rostral ventromedial medulla in the rat[J]. Neuroscience, 1996, 70 (2): 391-407.
    [73] Yang J, Tang J, Yuan B, et al. Neuronal response of submedius nucleus to acupuncture in rats[J]. Chin J Pain Med, 1997, (3): 223–227.
    [74] Yang J, Tang J, Yuan B, et al. [Responses of neurons in thalamic nucleus submedius to electrical stimulation of peroneal nerve and "zusanli" point in rats][J]. Zhen Ci Yan Jiu, 1996, 21 (4): 28-33.
    [75] Wang Y, Yuan B, Tang J. Thalamic nucleus submedius and anterior pretectal nucleus mediate the inhibition of spinal nociceptive transmission by EA with high and low intensities[J]. Chin J Neurosci, 1999, 15 (2): 125–130.
    [76] Coffield JA, Miletic V. Immunoreactive enkephalin is contained within some trigeminal and spinal neurons projecting to the rat medial thalamus[J]. Brain Res, 1987, 425 (2): 380-383.
    [77] Miletic V, Coffield JA. Enkephalin-like immunoreactivity in the nucleus submedius of the cat and rat thalamus[J]. Somatosens Res, 1988, 5 (4): 325-334.
    [78] McGinty JF, van der Kooy D, Bloom FE. The distribution and morphology of opioid peptide immunoreactive neurons in the cerebral cortex of rats[J]. J Neurosci, 1984, 4 (4): 1104-1117.
    [79] Burkey AR, Carstens E, Wenniger JJ, et al. An opioidergic cortical antinociception triggering site in the agranular insular cortex of the rat that contributes to morphine antinociception[J]. J Neurosci, 1996, 16 (20): 6612-6623.
    [80] Delfs JM, Kong H, Mestek A, et al. Expression of mu opioid receptor mRNA in rat brain: an in situ hybridization study at the single cell level[J]. J Comp Neurol, 1994, 345 (1): 46-68.
    [81] Mansour A, Khachaturian H, Lewis ME, et al. Autoradiographic differentiation of mu, delta, andkappa opioid receptors in the rat forebrain and midbrain[J]. J Neurosci, 1987, 7 (8): 2445-2464.
    [82] McLean S, Rothman RB, Herkenham M. Autoradiographic localization of mu- and delta-opiate receptors in the forebrain of the rat[J]. Brain Res, 1986, 378 (1): 49-60.
    [83] Tempel A, Zukin RS. Neuroanatomical patterns of the mu, delta, and kappa opioid receptors of rat brain as determined by quantitative in vitro autoradiography[J]. Proc Natl Acad Sci U S A, 1987, 84 (12): 4308-4312.
    [84] Feng J, Jia N, Han LN, et al. Microinjection of morphine into thalamic nucleus submedius depresses bee venom-induced inflammatory pain in the rat[J]. J Pharm Pharmacol, 2008, 60 (10): 1355-1363.
    [85] Xie YF, Wang J, Huo FQ, et al. Mu but not delta and kappa opioid receptor involvement in ventrolateral orbital cortex opioid-evoked antinociception in formalin test rats[J]. Neuroscience, 2004, 126 (3): 717-726.
    [86] Yang ZJ, Tang JS, Jia H. Morphine microinjections into the rat nucleus submedius depress nociceptive behavior in the formalin test[J]. Neurosci Lett, 2002, 328 (2): 141-144.
    [87] Zhao M, Li Q, Tang JS. The effects of microinjection of morphine into thalamic nucleus submedius on formalin-evoked nociceptive responses of neurons in the rat spinal dorsal horn[J]. Neurosci Lett, 2006, 401 (1-2): 103-107.
    [88] Wang JY, Zhao M, Huang FS, et al. Mu-opioid receptor in the nucleus submedius: involvement in opioid-induced inhibition of mirror-image allodynia in a rat model of neuropathic pain[J]. Neurochem Res, 2008, 33 (10): 2134-2141.
    [89] Wang JY, Zhao M, Yuan YK, et al. The roles of different subtypes of opioid receptors in mediating the nucleus submedius opioid-evoked antiallodynia in a neuropathic pain model of rats[J]. Neuroscience, 2006, 138 (4): 1319-1327.
    [90] Zhao M, Wang JY, Jia H, et al. mu- but not delta- and kappa-opioid receptors in the ventrolateral orbital cortex mediate opioid-induced antiallodynia in a rat neuropathic pain model[J]. Brain Res, 2006, 1076 (1): 68-77.
    [91] Zhao M, Wang JY, Jia H, et al. Roles of different subtypes of opioid receptors in mediating the ventrolateral orbital cortex opioid-induced inhibition of mirror-neuropathic pain in the rat[J]. Neuroscience, 2007, 144 (4): 1486-1494.
    [92] Feng J, Huo FQ, Jia N, et al. Activation of mu-opioid receptors in thalamic nucleus submedius depresses bee venom-evoked spinal c-Fos expression and flinching behavior[J]. Neuroscience, 2009, 161 (2): 554-560.
    [93] Fu JJ, Tang JS, Yuan B, et al. Response of neurons in the thalamic nucleus submedius (Sm) to noxious stimulation and electrophysiological identification of on- and off-cells in rats[J]. Pain, 2002, 99 (1-2): 243-251.
    [94] Jia H, Xie YF, Xiao DQ, et al. Involvement of GABAergic modulation of the nucleus submedius (Sm) morphine-induced antinociception[J]. Pain, 2004, 108 (1-2): 28-35.
    [95] Qu CL, Tang JS, Jia H. Involvement of GABAergic modulation of antinociception induced by morphine microinjected into the ventrolateral orbital cortex[J]. Brain Res, 2006, 1073-1074: 281-289.
    [96] Huo FQ, Chen T, Lv BC, et al. Synaptic connections between GABAergic elements and serotonergic terminals or projecting neurons in the ventrolateral orbital cortex[J]. Cereb Cortex, 2009, 19 (6): 1263-1272.
    [97] Huo FQ, Wang J, Li YQ, et al. GABAergic neurons express mu-opioid receptors in the ventrolateral orbital cortex of the rat[J]. Neurosci Lett, 2005, 382 (3): 265-268.
    [98] Xiao DQ, Tang JS, Yuan B, et al. Inhibitory effects of 5-hydroxytryptamine microinjection into thalamic nucleus submedius on rat tail flick reflex are mediated by 5-HT2 receptors[J]. NeurosciLett, 1999, 260 (2): 85-88.
    [99] Xiao DQ, Zhu JX, Tang JS, et al. 5-hydroxytryptamine 1A (5-HT1A) but not 5-HT3 receptor is involved in mediating the nucleus submedius 5-HT-evoked antinociception in the rat[J]. Brain Res, 2005, 1046 (1-2): 38-44.
    [100] Qu CL, Huo FQ, Huang FS, et al. The role of 5-HT receptor subtypes in the ventrolateral orbital cortex of 5-HT-induced antinociception in the rat[J]. Neuroscience, 2008, 152 (2): 487-494.
    [101] Huo FQ, Qu CL, Li YQ, et al. GABAergic modulation is involved in the ventrolateral orbital cortex 5-HT 1A receptor activation-induced antinociception in the rat[J]. Pain, 2008, 139 (2): 398-405.
    [102] Xiao DQ, Zhu JX, Tang JS, et al. GABAergic modulation mediates antinociception produced by serotonin applied into thalamic nucleus submedius of the rat[J]. Brain Res, 2005, 1057 (1-2): 161-167.
    [103] Barnes NM, Sharp T. A review of central 5-HT receptors and their function[J]. Neuropharmacology, 1999, 38 (8): 1083-1152.
    [104] Maricq AV, Peterson AS, Brake AJ, et al. Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel[J]. Science, 1991, 254 (5030): 432-437.
    [105] Millan MJ, Lejeune F, Gobert A. Reciprocal autoreceptor and heteroreceptor control of serotonergic, dopaminergic and noradrenergic transmission in the frontal cortex: relevance to the actions of antidepressant agents[J]. J Psychopharmacol, 2000, 14 (2): 114-138.
    [106] Emson PC, Koob GF. The origin and distribution of dopamine-containing afferents to the rat frontal cortex[J]. Brain Res, 1978, 142 (2): 249-267.
    [107] Groenewegen HJ, Uylings HB. The prefrontal cortex and the integration of sensory, limbic and autonomic information[J]. Prog Brain Res, 2000, 126: 3-28.
    [108] Oades RD, Halliday GM. Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity[J]. Brain Res, 1987, 434 (2): 117-165.
    [109] Tzschentke TM. Pharmacology and behavioral pharmacology of the mesocortical dopamine system[J]. Prog Neurobiol, 2001, 63 (3): 241-320.
    [110] Benes FM, Vincent SL, Molloy R. Dopamine-immunoreactive axon varicosities form nonrandom contacts with GABA-immunoreactive neurons of rat medial prefrontal cortex[J]. Synapse, 1993, 15 (4): 285-295.
    [111] Sheng HY, Qu CL, Huo FQ, et al. D2-like but not D1-like dopamine receptors are involved in the ventrolateral orbital cortex-induced antinociception: a GABAergic modulation mechanism[J]. Exp Neurol, 2009, 215 (1): 128-134.
    [112] Pirker S, Schwarzer C, Wieselthaler A, et al. GABA(A) receptors: immunocytochemical distribution of 13 subunits in the adult rat brain[J]. Neuroscience, 2000, 101 (4): 815-850.
    [113] Kessler RC, Berglund P, Demler O, et al. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication[J]. Arch Gen Psychiatry, 2005, 62 (6): 593-602.
    [114] Nestler EJ, Barrot M, DiLeone RJ, et al. Neurobiology of depression[J]. Neuron, 2002, 34 (1): 13-25.
    [115] Fava M, Kendler KS. Major depressive disorder[J]. Neuron, 2000, 28 (2): 335-341.
    [116] Burmeister M. Basic concepts in the study of diseases with complex genetics[J]. Biol Psychiatry, 1999, 45 (5): 522-532.
    [117] Manji HK, Drevets WC, Charney DS. The cellular neurobiology of depression[J]. Nat Med, 2001, 7 (5): 541-547.
    [118] Morilak DA, Frazer A. Antidepressants and brain monoaminergic systems: a dimensional approach to understanding their behavioural effects in depression and anxiety disorders[J]. Int J Neuropsychopharmacol, 2004, 7 (2): 193-218.
    [119] Ressler KJ, Nemeroff CB. Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders[J]. Depress Anxiety, 2000, 12 Suppl 1: 2-19.
    [120] Renard CE, Fiocco AJ, Clenet F, et al. Is dopamine implicated in the antidepressant-like effects of selective serotonin reuptake inhibitors in the mouse forced swimming test?[J]. Psychopharmacology (Berl), 2001, 159 (1): 42-50.
    [121] Hyman SE, Nestler EJ. Initiation and adaptation: a paradigm for understanding psychotropic drug action[J]. Am J Psychiatry, 1996, 153 (2): 151-162.
    [122] Mill J, Petronis A. Molecular studies of major depressive disorder: the epigenetic perspective[J]. Mol Psychiatry, 2007, 12 (9): 799-814.
    [123] Heils A, Teufel A, Petri S, et al. Allelic variation of human serotonin transporter gene expression[J]. J Neurochem, 1996, 66 (6): 2621-2624.
    [124] Lesch KP, Bengel D, Heils A, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region[J]. Science, 1996, 274 (5292): 1527-1531.
    [125] Ogilvie AD, Battersby S, Bubb VJ, et al. Polymorphism in serotonin transporter gene associated with susceptibility to major depression[J]. Lancet, 1996, 347 (9003): 731-733.
    [126] Caspi A, Sugden K, Moffitt TE, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene[J]. Science, 2003, 301 (5631): 386-389.
    [127] Kaufman J, Yang BZ, Douglas-Palumberi H, et al. Social supports and serotonin transporter gene moderate depression in maltreated children[J]. Proc Natl Acad Sci U S A, 2004, 101 (49): 17316-17321.
    [128] Hoehe MR, Wendel B, Grunewald I, et al. Serotonin transporter (5-HTT) gene polymorphisms are not associated with susceptibility to mood disorders[J]. Am J Med Genet, 1998, 81 (1): 1-3.
    [129] Kunugi H, Tatsumi M, Sakai T, et al. Serotonin transporter gene polymorphism and affective disorder[J]. Lancet, 1996, 347 (9011): 1340.
    [130] Lotrich FE, Pollock BG. Meta-analysis of serotonin transporter polymorphisms and affective disorders[J]. Psychiatr Genet, 2004, 14 (3): 121-129.
    [131] Gillespie NA, Whitfield JB, Williams B, et al. The relationship between stressful life events, the serotonin transporter (5-HTTLPR) genotype and major depression[J]. Psychol Med, 2005, 35 (1): 101-111.
    [132] Risch N, Herrell R, Lehner T, et al. Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis[J]. JAMA, 2009, 301 (23): 2462-2471.
    [133] de Kloet ER, Joels M, Holsboer F. Stress and the brain: from adaptation to disease[J]. Nat Rev Neurosci, 2005, 6 (6): 463-475.
    [134] Parker KJ, Schatzberg AF, Lyons DM. Neuroendocrine aspects of hypercortisolism in major depression[J]. Horm Behav, 2003, 43 (1): 60-66.
    [135] Nestler EJ, Gould E, Manji H, et al. Preclinical models: status of basic research in depression[J]. Biol Psychiatry, 2002, 52 (6): 503-528.
    [136] Brown ES, Varghese FP, McEwen BS. Association of depression with medical illness: does cortisol play a role?[J]. Biol Psychiatry, 2004, 55 (1): 1-9.
    [137] Raison CL, Miller AH. When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders[J]. Am J Psychiatry, 2003, 160 (9): 1554-1565.
    [138] Scaccianoce S, Del Bianco P, Paolone G, et al. Social isolation selectively reduces hippocampal brain-derived neurotrophic factor without altering plasma corticosterone[J]. Behav Brain Res, 2006, 168 (2): 323-325.
    [139] Tsankova NM, Berton O, Renthal W, et al. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action[J]. Nat Neurosci, 2006, 9 (4): 519-525.
    [140] Holsboer F. The corticosteroid receptor hypothesis of depression[J]. Neuropsychopharmacology, 2000, 23 (5): 477-501.
    [141] Skelton KH, Oren D, Gutman DA, et al. The CRF1 receptor antagonist, R121919, attenuates the severity of precipitated morphine withdrawal[J]. Eur J Pharmacol, 2007, 571 (1): 17-24.
    [142] Valdez GR. CRF receptors as a potential target in the development of novel pharmacotherapies for depression[J]. Curr Pharm Des, 2009, 15 (14): 1587-1594.
    [143] Simon NG, Guillon C, Fabio K, et al. Vasopressin antagonists as anxiolytics and antidepressants: recent developments[J]. Recent Pat CNS Drug Discov, 2008, 3 (2): 77-93.
    [144] Surget A, Belzung C. Involvement of vasopressin in affective disorders[J]. Eur J Pharmacol, 2008, 583 (2-3): 340-349.
    [145] van West D, Del-Favero J, Aulchenko Y, et al. A major SNP haplotype of the arginine vasopressin 1B receptor protects against recurrent major depression[J]. Mol Psychiatry, 2004, 9 (3): 287-292.
    [146] Monteggia LM, Luikart B, Barrot M, et al. Brain-derived neurotrophic factor conditional knockouts show gender differences in depression-related behaviors[J]. Biol Psychiatry, 2007, 61 (2): 187-197.
    [147] Karege F, Vaudan G, Schwald M, et al. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs[J]. Brain Res Mol Brain Res, 2005, 136 (1-2): 29-37.
    [148] Sen S, Nesse RM, Stoltenberg SF, et al. A BDNF coding variant is associated with the NEO personality inventory domain neuroticism, a risk factor for depression[J]. Neuropsychopharmacology, 2003, 28 (2): 397-401.
    [149] Neves-Pereira M, Mundo E, Muglia P, et al. The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study[J]. Am J Hum Genet, 2002, 71 (3): 651-655.
    [150] Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders[J]. Biol Psychiatry, 2006, 59 (12): 1116-1127.
    [151] Shirayama Y, Chen AC, Nakagawa S, et al. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression[J]. J Neurosci, 2002, 22 (8): 3251-3261.
    [152] Berton O, McClung CA, Dileone RJ, et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress[J]. Science, 2006, 311 (5762): 864-868.
    [153] Sairanen M, Lucas G, Ernfors P, et al. Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus[J]. J Neurosci, 2005, 25 (5): 1089-1094.
    [154] Zorner B, Wolfer DP, Brandis D, et al. Forebrain-specific trkB-receptor knockout mice: behaviorally more hyperactive than "depressive"[J]. Biol Psychiatry, 2003, 54 (10): 972-982.
    [155] Saarelainen T, Hendolin P, Lucas G, et al. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects[J]. J Neurosci, 2003, 23 (1): 349-357.
    [156] Tsankova NM, Kumar A, Nestler EJ. Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures[J]. J Neurosci, 2004, 24 (24): 5603-5610.
    [157] Wilkinson MB, Xiao G, Kumar A, et al. Imipramine treatment and resiliency exhibit similar chromatin regulation in the mouse nucleus accumbens in depression models[J]. J Neurosci, 2009, 29 (24): 7820-7832.
    [158] Jenuwein T, Allis CD. Translating the histone code[J]. Science, 2001, 293 (5532): 1074-1080.
    [159] Tsankova N, Renthal W, Kumar A, et al. Epigenetic regulation in psychiatric disorders[J]. Nat Rev Neurosci, 2007, 8 (5): 355-367.
    [160] Yasuda S, Liang MH, Marinova Z, et al. The mood stabilizers lithium and valproate selectivelyactivate the promoter IV of brain-derived neurotrophic factor in neurons[J]. Mol Psychiatry, 2009, 14 (1): 51-59.
    [161] Schroeder FA, Lin CL, Crusio WE, et al. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse[J]. Biol Psychiatry, 2007, 62 (1): 55-64.
    [162] Drevets WC. Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders[J]. Curr Opin Neurobiol, 2001, 11 (2): 240-249.
    [163] Dranovsky A, Hen R. Hippocampal neurogenesis: regulation by stress and antidepressants[J]. Biol Psychiatry, 2006, 59 (12): 1136-1143.
    [164] Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergence of mechanisms[J]. Neuropsychopharmacology, 2008, 33 (1): 88-109.
    [165] Sahay A, Hen R. Adult hippocampal neurogenesis in depression[J]. Nat Neurosci, 2007, 10 (9): 1110-1115.
    [166] Hunsberger JG, Newton SS, Bennett AH, et al. Antidepressant actions of the exercise-regulated gene VGF[J]. Nat Med, 2007, 13 (12): 1476-1482.
    [167] Gage FH. Neurogenesis in the adult brain[J]. J Neurosci, 2002, 22 (3): 612-613.
    [168] Lee KJ, Kim SJ, Kim SW, et al. Chronic mild stress decreases survival, but not proliferation, of new-born cells in adult rat hippocampus[J]. Exp Mol Med, 2006, 38 (1): 44-54.
    [169] Vollmayr B, Simonis C, Weber S, et al. Reduced cell proliferation in the dentate gyrus is not correlated with the development of learned helplessness[J]. Biol Psychiatry, 2003, 54 (10): 1035-1040.
    [170] Santarelli L, Saxe M, Gross C, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants[J]. Science, 2003, 301 (5634): 805-809.
    [171] Boldrini M, Underwood MD, Hen R, et al. Antidepressants increase neural progenitor cells in the human hippocampus[J]. Neuropsychopharmacology, 2009, 34 (11): 2376-2389.
    [172] Chen F, Madsen TM, Wegener G, et al. Imipramine treatment increases the number of hippocampal synapses and neurons in a genetic animal model of depression[J]. Hippocampus, 2009.
    [173] Wu X, Castren E. Co-treatment with diazepam prevents the effects of fluoxetine on the proliferation and survival of hippocampal dentate granule cells[J]. Biol Psychiatry, 2009, 66 (1): 5-8.
    [174] Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment[J]. Nature, 1997, 386 (6624): 493-495.
    [175] Brenes Saenz JC, Villagra OR, Fornaguera Trias J. Factor analysis of Forced Swimming test, Sucrose Preference test and Open Field test on enriched, social and isolated reared rats[J]. Behav Brain Res, 2006, 169 (1): 57-65.
    [176] Hattori S, Hashimoto R, Miyakawa T, et al. Enriched environments influence depression-related behavior in adult mice and the survival of newborn cells in their hippocampi[J]. Behav Brain Res, 2007, 180 (1): 69-76.
    [177] Blendy JA. The role of CREB in depression and antidepressant treatment[J]. Biol Psychiatry, 2006, 59 (12): 1144-1150.
    [178] Boer U, Alejel T, Beimesche S, et al. CRE/CREB-driven up-regulation of gene expression by chronic social stress in CRE-luciferase transgenic mice: reversal by antidepressant treatment[J]. PLoS One, 2007, 2 (5): e431.
    [179] Chen G, Zeng WZ, Yuan PX, et al. The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS[J]. J Neurochem, 1999, 72 (2): 879-882.
    [180] Kalemenev SV, Kosacheva ES, Sem'ianov AV, et al. [Effect of anticonvulsants lamotrigine and carbamazepine on the synaptic transmission in CA1 field of the rat hippocampal slices][J]. Biull Eksp Biol Med, 1998, 126 (9): 307-310.
    [181] Leng Y, Liang MH, Ren M, et al. Synergistic neuroprotective effects of lithium and valproic acid or other histone deacetylase inhibitors in neurons: roles of glycogen synthase kinase-3 inhibition[J]. J Neurosci, 2008, 28 (10): 2576-2588.
    [182] Jope RS. Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes[J]. Trends Pharmacol Sci, 2003, 24 (9): 441-443.
    [183] Chen G, Huang LD, Jiang YM, et al. The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3[J]. J Neurochem, 1999, 72 (3): 1327-1330.
    [184] Kim AJ, Shi Y, Austin RC, et al. Valproate protects cells from ER stress-induced lipid accumulation and apoptosis by inhibiting glycogen synthase kinase-3[J]. J Cell Sci, 2005, 118 (Pt 1): 89-99.
    [185] Kim HJ, Rowe M, Ren M, et al. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action[J]. J Pharmacol Exp Ther, 2007, 321 (3): 892-901.
    [186] Barr AM, Markou A, Phillips AG. A 'crash' course on psychostimulant withdrawal as a model of depression[J]. Trends Pharmacol Sci, 2002, 23 (10): 475-482.
    [187] Spielewoy C, Markou A. Withdrawal from chronic phencyclidine treatment induces long-lasting depression in brain reward function[J]. Neuropsychopharmacology, 2003, 28 (6): 1106-1116.
    [188] Taylor JR, Punch LJ, Elsworth JD. A comparison of the effects of clonidine and CNQX infusion into the locus coeruleus and the amygdala on naloxone-precipitated opiate withdrawal in the rat[J]. Psychopharmacology (Berl), 1998, 138 (2): 133-142.
    [189] Kampman KM, Volpicelli JR, McGinnis DE, et al. Reliability and validity of the Cocaine Selective Severity Assessment[J]. Addict Behav, 1998, 23 (4): 449-461.
    [190] Gawin FH, Kleber HD. Abstinence symptomatology and psychiatric diagnosis in cocaine abusers. Clinical observations[J]. Arch Gen Psychiatry, 1986, 43 (2): 107-113.
    [191] Uslaner J, Kalechstein A, Richter T, et al. Association of depressive symptoms during abstinence with the subjective high produced by cocaine[J]. Am J Psychiatry, 1999, 156 (9): 1444-1446.
    [192] Plotsky PM, Owens MJ, Nemeroff CB. Psychoneuroendocrinology of depression. Hypothalamic-pituitary-adrenal axis[J]. Psychiatr Clin North Am, 1998, 21 (2): 293-307.
    [193] Deuschle M, Schweiger U, Weber B, et al. Diurnal activity and pulsatility of the hypothalamus-pituitary-adrenal system in male depressed patients and healthy controls[J]. J Clin Endocrinol Metab, 1997, 82 (1): 234-238.
    [194] London ED, Simon SL, Berman SM, et al. Mood disturbances and regional cerebral metabolic abnormalities in recently abstinent methamphetamine abusers[J]. Arch Gen Psychiatry, 2004, 61 (1): 73-84.
    [195] Nestler EJ, Carlezon WA, Jr. The mesolimbic dopamine reward circuit in depression[J]. Biol Psychiatry, 2006, 59 (12): 1151-1159.
    [196] Park SK, Nguyen MD, Fischer A, et al. Par-4 links dopamine signaling and depression[J]. Cell, 2005, 122 (2): 275-287.
    [197] Tanda K, Nishi A, Matsuo N, et al. Abnormal social behavior, hyperactivity, impaired remote spatial memory, and increased D1-mediated dopaminergic signaling in neuronal nitric oxide synthase knockout mice[J]. Mol Brain, 2009, 2 (1): 19.
    [198] Mark GP, Kinney AE, Grubb MC, et al. Involvement of acetylcholine in the nucleus accumbens in cocaine reinforcement[J]. Ann N Y Acad Sci, 1999, 877: 792-795.
    [199] Verhoeff NP, Christensen BK, Hussey D, et al. Effects of catecholamine depletion on D2 receptor binding, mood, and attentiveness in humans: a replication study[J]. Pharmacol Biochem Behav, 2003, 74 (2): 425-432.
    [200] Solomon RL, Corbit JD. An opponent-process theory of motivation. I. Temporal dynamics ofaffect[J]. Psychol Rev, 1974, 81 (2): 119-145.
    [201] Quello SB, Brady KT, Sonne SC. Mood disorders and substance use disorder: a complex comorbidity[J]. Sci Pract Perspect, 2005, 3 (1): 13-21.
    [202] Laasonen-Balk T, Kuikka J, Viinamaki H, et al. Striatal dopamine transporter density in major depression[J]. Psychopharmacology (Berl), 1999, 144 (3): 282-285.
    [203] Jacobsen LK, Staley JK, Malison RT, et al. Elevated central serotonin transporter binding availability in acutely abstinent cocaine-dependent patients[J]. Am J Psychiatry, 2000, 157 (7): 1134-1140.
    [204] Malison RT, Price LH, Berman R, et al. Reduced brain serotonin transporter availability in major depression as measured by [123I]-2 beta-carbomethoxy-3 beta-(4-iodophenyl)tropane and single photon emission computed tomography[J]. Biol Psychiatry, 1998, 44 (11): 1090-1098.
    [205] Nunes EV, Levin FR. Treatment of depression in patients with alcohol or other drug dependence: a meta-analysis[J]. JAMA, 2004, 291 (15): 1887-1896.
    [206] Bell-Pedersen D, Cassone VM, Earnest DJ, et al. Circadian rhythms from multiple oscillators: lessons from diverse organisms[J]. Nat Rev Genet, 2005, 6 (7): 544-556.
    [207] Lowrey PL, Takahashi JS. Mammalian circadian biology: elucidating genome-wide levels of temporal organization[J]. Annu Rev Genomics Hum Genet, 2004, 5: 407-441.
    [208] Reppert SM, Weaver DR. Molecular analysis of mammalian circadian rhythms[J]. Annu Rev Physiol, 2001, 63: 647-676.
    [209] Dalgleish T, Rosen K, Marks M. Rhythm and blues: the theory and treatment of seasonal affective disorder[J]. Br J Clin Psychol, 1996, 35 ( Pt 2): 163-182.
    [210] Rosenthal NE, Sack DA, Jacobsen FM, et al. Seasonal affective disorder & light: past, present and future[J]. Clin Neuropharmacol, 1986, 9 Suppl 4: 193-195.
    [211] Atkinson M, Kripke DF, Wolf SR. Autorhythmometry in manic-depressives[J]. Chronobiologia, 1975, 2 (4): 325-335.
    [212] Boivin DB. Influence of sleep-wake and circadian rhythm disturbances in psychiatric disorders[J]. J Psychiatry Neurosci, 2000, 25 (5): 446-458.
    [213] Jones EM, Knutson D, Haines D. Common problems in patients recovering from chemical dependency[J]. Am Fam Physician, 2003, 68 (10): 1971-1978.
    [214] Lenox RH, Gould TD, Manji HK. Endophenotypes in bipolar disorder[J]. Am J Med Genet, 2002, 114 (4): 391-406.
    [215] Souetre E, Salvati E, Belugou JL, et al. Circadian rhythms in depression and recovery: evidence for blunted amplitude as the main chronobiological abnormality[J]. Psychiatry Res, 1989, 28 (3): 263-278.
    [216] Wasielewski JA, Holloway FA. Alcohol's interactions with circadian rhythms. A focus on body temperature[J]. Alcohol Res Health, 2001, 25 (2): 94-100.
    [217] McClung CA, Sidiropoulou K, Vitaterna M, et al. Regulation of dopaminergic transmission and cocaine reward by the Clock gene[J]. Proc Natl Acad Sci U S A, 2005, 102 (26): 9377-9381.
    [218] Roybal K, Theobold D, Graham A, et al. Mania-like behavior induced by disruption of CLOCK[J]. Proc Natl Acad Sci U S A, 2007, 104 (15): 6406-6411.
    [219] Abe M, Herzog ED, Block GD. Lithium lengthens the circadian period of individual suprachiasmatic nucleus neurons[J]. Neuroreport, 2000, 11 (14): 3261-3264.
    [220] Harms E, Kivimae S, Young MW, et al. Posttranscriptional and posttranslational regulation of clock genes[J]. J Biol Rhythms, 2004, 19 (5): 361-373.
    [221] Iitaka C, Miyazaki K, Akaike T, et al. A role for glycogen synthase kinase-3beta in the mammalian circadian clock[J]. J Biol Chem, 2005, 280 (33): 29397-29402.
    [222] Yin L, Wang J, Klein PS, et al. Nuclear receptor Rev-erbalpha is a critical lithium-sensitivecomponent of the circadian clock[J]. Science, 2006, 311 (5763): 1002-1005.
    [223] Sleipness EP, Sorg BA, Jansen HT. Diurnal differences in dopamine transporter and tyrosine hydroxylase levels in rat brain: dependence on the suprachiasmatic nucleus[J]. Brain Res, 2007, 1129 (1): 34-42.
    [224] Hampp G, Ripperger JA, Houben T, et al. Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood[J]. Curr Biol, 2008, 18 (9): 678-683.
    [225] Imbesi M, Yildiz S, Dirim Arslan A, et al. Dopamine receptor-mediated regulation of neuronal "clock" gene expression[J]. Neuroscience, 2009, 158 (2): 537-544.
    [226] Martinet L, Guardiola-Lemaitre B, Mocaer E. Entrainment of circadian rhythms by S-20098, a melatonin agonist, is dose and plasma concentration dependent[J]. Pharmacol Biochem Behav, 1996, 54 (4): 713-718.
    [227] Redman JR, Guardiola-Lemaitre B, Brown M, et al. Dose dependent effects of S-20098, a melatonin agonist, on direction of re-entrainment of rat circadian activity rhythms[J]. Psychopharmacology (Berl), 1995, 118 (4): 385-390.
    [228] Chagraoui A, Protais P, Filloux T, et al. Agomelatine(S 20098) antagonizes the penile erections induced by the stimulation of 5-HT2C receptors in Wistar rats[J]. Psychopharmacology (Berl), 2003, 170 (1): 17-22.
    [229] Millan MJ, Brocco M, Gobert A, et al. Anxiolytic properties of agomelatine, an antidepressant with melatoninergic and serotonergic properties: role of 5-HT2C receptor blockade[J]. Psychopharmacology (Berl), 2005, 177 (4): 448-458.
    [230] Millan MJ, Gobert A, Lejeune F, et al. The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways[J]. J Pharmacol Exp Ther, 2003, 306 (3): 954-964.
    [231] Banasr M, Soumier A, Hery M, et al. Agomelatine, a new antidepressant, induces regional changes in hippocampal neurogenesis[J]. Biol Psychiatry, 2006, 59 (11): 1087-1096.
    [232] Ongur D, An X, Price JL. Prefrontal cortical projections to the hypothalamus in macaque monkeys[J]. J Comp Neurol, 1998, 401 (4): 480-505.
    [233] Rajkowska G, Miguel-Hidalgo JJ, Wei J, et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression[J]. Biol Psychiatry, 1999, 45 (9): 1085-1098.
    [234] Ballmaier M, Toga AW, Blanton RE, et al. Anterior cingulate, gyrus rectus, and orbitofrontal abnormalities in elderly depressed patients: an MRI-based parcellation of the prefrontal cortex[J]. Am J Psychiatry, 2004, 161 (1): 99-108.
    [235] Coffey CE, Wilkinson WE, Weiner RD, et al. Quantitative cerebral anatomy in depression. A controlled magnetic resonance imaging study[J]. Arch Gen Psychiatry, 1993, 50 (1): 7-16.
    [236] Drevets WC, Price JL, Simpson JR, Jr., et al. Subgenual prefrontal cortex abnormalities in mood disorders[J]. Nature, 1997, 386 (6627): 824-827.
    [237] Mayberg HS, Lozano AM, Voon V, et al. Deep brain stimulation for treatment-resistant depression[J]. Neuron, 2005, 45 (5): 651-660.
    [238] MacQueen GM, Campbell S, McEwen BS, et al. Course of illness, hippocampal function, and hippocampal volume in major depression[J]. Proc Natl Acad Sci U S A, 2003, 100 (3): 1387-1392.
    [239] Sheline YI. 3D MRI studies of neuroanatomic changes in unipolar major depression: the role of stress and medical comorbidity[J]. Biol Psychiatry, 2000, 48 (8): 791-800.
    [240] Sheline YI. Neuroimaging studies of mood disorder effects on the brain[J]. Biol Psychiatry, 2003, 54 (3): 338-352.
    [241] Phelps EA, LeDoux JE. Contributions of the amygdala to emotion processing: from animal models to human behavior[J]. Neuron, 2005, 48 (2): 175-187.
    [242] Schlaepfer TE, Cohen MX, Frick C, et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression[J]. Neuropsychopharmacology, 2008, 33 (2): 368-377.
    [243] Willie JT, Chemelli RM, Sinton CM, et al. To eat or to sleep? Orexin in the regulation of feeding and wakefulness[J]. Annu Rev Neurosci, 2001, 24: 429-458.
    [244] Wang PS, Simon G, Kessler RC. The economic burden of depression and the cost-effectiveness of treatment[J]. Int J Methods Psychiatr Res, 2003, 12 (1): 22-33.
    [245] Sonawalla SB, Fava M. Severe depression: is there a best approach?[J]. CNS Drugs, 2001, 15 (10): 765-776.
    [246] McKinney WT. Overview of the past contributions of animal models and their changing place in psychiatry[J]. Semin Clin Neuropsychiatry, 2001, 6 (1): 68-78.
    [247] Willner P. The validity of animal models of depression[J]. Psychopharmacology (Berl), 1984, 83 (1): 1-16.
    [248] Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation[J]. Psychopharmacology (Berl), 1997, 134 (4): 319-329.
    [249] Keller MC, Neale MC, Kendler KS. Association of different adverse life events with distinct patterns of depressive symptoms[J]. Am J Psychiatry, 2007, 164 (10): 1521-1529; quiz 1622.
    [250] Kendler KS, Karkowski LM, Prescott CA. Causal relationship between stressful life events and the onset of major depression[J]. Am J Psychiatry, 1999, 156 (6): 837-841.
    [251] Kessler RC. The effects of stressful life events on depression[J]. Annu Rev Psychol, 1997, 48: 191-214.
    [252] Kaufman J, Yang BZ, Douglas-Palumberi H, et al. Brain-derived neurotrophic factor-5-HTTLPR gene interactions and environmental modifiers of depression in children[J]. Biol Psychiatry, 2006, 59 (8): 673-680.
    [253] Anisman H, Matheson K. Stress, depression, and anhedonia: caveats concerning animal models[J]. Neurosci Biobehav Rev, 2005, 29 (4-5): 525-546.
    [254] Herman JP, Cullinan WE. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis[J]. Trends Neurosci, 1997, 20 (2): 78-84.
    [255] Willner P, Towell A, Sampson D, et al. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant[J]. Psychopharmacology (Berl), 1987, 93 (3): 358-364.
    [256] Crowley JJ, Lucki I. Opportunities to discover genes regulating depression and antidepressant response from rodent behavioral genetics[J]. Curr Pharm Des, 2005, 11 (2): 157-169.
    [257] El Yacoubi M, Vaugeois JM. Genetic rodent models of depression[J]. Curr Opin Pharmacol, 2007, 7 (1): 3-7.
    [258] Henn FA, Vollmayr B. Stress models of depression: forming genetically vulnerable strains[J]. Neurosci Biobehav Rev, 2005, 29 (4-5): 799-804.
    [259] Overstreet DH, Friedman E, Mathe AA, et al. The Flinders Sensitive Line rat: a selectively bred putative animal model of depression[J]. Neurosci Biobehav Rev, 2005, 29 (4-5): 739-759.
    [260] Song C, Leonard BE. The olfactory bulbectomised rat as a model of depression[J]. Neurosci Biobehav Rev, 2005, 29 (4-5): 627-647.
    [261] Martin P, Soubrie P, Puech AJ. Reversal of helpless behavior by serotonin uptake blockers in rats[J]. Psychopharmacology (Berl), 1990, 101 (3): 403-407.
    [262] Sherman AD, Sacquitne JL, Petty F. Specificity of the learned helplessness model of depression[J]. Pharmacol Biochem Behav, 1982, 16 (3): 449-454.
    [263] Maier SF. Learned helplessness and animal models of depression[J]. Prog Neuropsychopharmacol Biol Psychiatry, 1984, 8 (3): 435-446.
    [264] Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test forantidepressants[J]. Arch Int Pharmacodyn Ther, 1977, 229 (2): 327-336.
    [265] Porsolt RD, Bertin A, Jalfre M. "Behavioural despair" in rats and mice: strain differences and the effects of imipramine[J]. Eur J Pharmacol, 1978, 51 (3): 291-294.
    [266] Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments[J]. Nature, 1977, 266 (5604): 730-732.
    [267] Borsini F, Meli A. Is the forced swimming test a suitable model for revealing antidepressant activity?[J]. Psychopharmacology (Berl), 1988, 94 (2): 147-160.
    [268] Detke MJ, Rickels M, Lucki I. Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants[J]. Psychopharmacology (Berl), 1995, 121 (1): 66-72.
    [269] Lucki I. The forced swimming test as a model for core and component behavioral effects of antidepressant drugs[J]. Behav Pharmacol, 1997, 8 (6-7): 523-532.
    [270] Lopez-Rubalcava C, Lucki I. Strain differences in the behavioral effects of antidepressant drugs in the rat forced swimming test[J]. Neuropsychopharmacology, 2000, 22 (2): 191-199.
    [271] Steru L, Chermat R, Thierry B, et al. The tail suspension test: a new method for screening antidepressants in mice[J]. Psychopharmacology (Berl), 1985, 85 (3): 367-370.
    [272] Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice[J]. Neurosci Biobehav Rev, 2005, 29 (4-5): 571-625.
    [273] Perrault G, Morel E, Zivkovic B, et al. Activity of litoxetine and other serotonin uptake inhibitors in the tail suspension test in mice[J]. Pharmacol Biochem Behav, 1992, 42 (1): 45-47.
    [274] Bai F, Li X, Clay M, et al. Intra- and interstrain differences in models of "behavioral despair"[J]. Pharmacol Biochem Behav, 2001, 70 (2-3): 187-192.
    [275] Ripoll N, David DJ, Dailly E, et al. Antidepressant-like effects in various mice strains in the tail suspension test[J]. Behav Brain Res, 2003, 143 (2): 193-200.
    [276] Thiebot MH, Martin P, Puech AJ. Animal behavioural studies in the evaluation of antidepressant drugs[J]. Br J Psychiatry Suppl, 1992, (15): 44-50.
    [277] Willner P. Animal models of depression: an overview[J]. Pharmacol Ther, 1990, 45 (3): 425-455.
    [278] Dulawa SC, Hen R. Recent advances in animal models of chronic antidepressant effects: the novelty-induced hypophagia test[J]. Neurosci Biobehav Rev, 2005, 29 (4-5): 771-783.
    [279] Bodnoff SR, Suranyi-Cadotte B, Quirion R, et al. A comparison of the effects of diazepam versus several typical and atypical anti-depressant drugs in an animal model of anxiety[J]. Psychopharmacology (Berl), 1989, 97 (2): 277-279.
    [280] Fava M, Rankin MA, Wright EC, et al. Anxiety disorders in major depression[J]. Compr Psychiatry, 2000, 41 (2): 97-102.
    [281] Kaufman J, Charney D. Comorbidity of mood and anxiety disorders[J]. Depress Anxiety, 2000, 12 Suppl 1: 69-76.
    [282] Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression[J]. Brain Struct Funct, 2008, 213 (1-2): 93-118.
    [283] Serretti A, Chiesa A, Calati R, et al. Common genetic, clinical, demographic and psychosocial predictors of response to pharmacotherapy in mood and anxiety disorders[J]. Int Clin Psychopharmacol, 2009, 24 (1): 1-18.
    [284] Katz RJ, Roth KA, Carroll BJ. Acute and chronic stress effects on open field activity in the rat: implications for a model of depression[J]. Neurosci Biobehav Rev, 1981, 5 (2): 247-251.
    [285] Katz RJ, Roth KA, Schmaltz K. Amphetamine and tranylcypromine in an animal model of depression: pharmacological specificity of the reversal effect[J]. Neurosci Biobehav Rev, 1981, 5(2): 259-264.
    [286] Aguilera G. Corticotropin releasing hormone, receptor regulation and the stress response[J]. Trends Endocrinol Metab, 1998, 9 (8): 329-336.
    [287] Magarinos AM, McEwen BS. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors[J]. Neuroscience, 1995, 69 (1): 89-98.
    [288] Tannenbaum B, Tannenbaum GS, Sudom K, et al. Neurochemical and behavioral alterations elicited by a chronic intermittent stressor regimen: implications for allostatic load[J]. Brain Res, 2002, 953 (1-2): 82-92.
    [289] Willner P. Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS[J]. Neuropsychobiology, 2005, 52 (2): 90-110.
    [290] Papp M, Moryl E, Willner P. Pharmacological validation of the chronic mild stress model of depression[J]. Eur J Pharmacol, 1996, 296 (2): 129-136.
    [291] D'Aquila PS, Newton J, Willner P. Diurnal variation in the effect of chronic mild stress on sucrose intake and preference[J]. Physiol Behav, 1997, 62 (2): 421-426.
    [292] Muscat R, Willner P. Suppression of sucrose drinking by chronic mild unpredictable stress: a methodological analysis[J]. Neurosci Biobehav Rev, 1992, 16 (4): 507-517.
    [293] Willner P, Moreau JL, Nielsen CK, et al. Decreased hedonic responsiveness following chronic mild stress is not secondary to loss of body weight[J]. Physiol Behav, 1996, 60 (1): 129-134.
    [294] Monleon S, D'Aquila P, Parra A, et al. Attenuation of sucrose consumption in mice by chronic mild stress and its restoration by imipramine[J]. Psychopharmacology (Berl), 1995, 117 (4): 453-457.
    [295] Pothion S, Bizot JC, Trovero F, et al. Strain differences in sucrose preference and in the consequences of unpredictable chronic mild stress[J]. Behav Brain Res, 2004, 155 (1): 135-146.
    [296] Nielsen CK, Arnt J, Sanchez C. Intracranial self-stimulation and sucrose intake differ as hedonic measures following chronic mild stress: interstrain and interindividual differences[J]. Behav Brain Res, 2000, 107 (1-2): 21-33.
    [297] Moreau JL, Jenck F, Martin JR, et al. Antidepressant treatment prevents chronic unpredictable mild stress-induced anhedonia as assessed by ventral tegmentum self-stimulation behavior in rats[J]. Eur Neuropsychopharmacol, 1992, 2 (1): 43-49.
    [298] Carlezon WA, Jr., Chartoff EH. Intracranial self-stimulation (ICSS) in rodents to study the neurobiology of motivation[J]. Nat Protoc, 2007, 2 (11): 2987-2995.
    [299] Todtenkopf MS, Marcus JF, Portoghese PS, et al. Effects of kappa-opioid receptor ligands on intracranial self-stimulation in rats[J]. Psychopharmacology (Berl), 2004, 172 (4): 463-470.
    [300] Agid O, Shapira B, Zislin J, et al. Environment and vulnerability to major psychiatric illness: a case control study of early parental loss in major depression, bipolar disorder and schizophrenia[J]. Mol Psychiatry, 1999, 4 (2): 163-172.
    [301] Weiss EL, Longhurst JG, Mazure CM. Childhood sexual abuse as a risk factor for depression in women: psychosocial and neurobiological correlates[J]. Am J Psychiatry, 1999, 156 (6): 816-828.
    [302] Heim C, Plotsky PM, Nemeroff CB. Importance of studying the contributions of early adverse experience to neurobiological findings in depression[J]. Neuropsychopharmacology, 2004, 29 (4): 641-648.
    [303] Pryce CR, Ruedi-Bettschen D, Dettling AC, et al. Long-term effects of early-life environmental manipulations in rodents and primates: Potential animal models in depression research[J]. Neurosci Biobehav Rev, 2005, 29 (4-5): 649-674.
    [304] Heim C, Nemeroff CB. The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies[J]. Biol Psychiatry, 2001, 49 (12): 1023-1039.
    [305] Holmes A, le Guisquet AM, Vogel E, et al. Early life genetic, epigenetic and environmental factorsshaping emotionality in rodents[J]. Neurosci Biobehav Rev, 2005, 29 (8): 1335-1346.
    [306] Kendler KS, Gardner CO, Prescott CA. Toward a comprehensive developmental model for major depression in women[J]. Am J Psychiatry, 2002, 159 (7): 1133-1145.
    [307] Newport DJ, Stowe ZN, Nemeroff CB. Parental depression: animal models of an adverse life event[J]. Am J Psychiatry, 2002, 159 (8): 1265-1283.
    [308] Zhang TY, Bagot R, Parent C, et al. Maternal programming of defensive responses through sustained effects on gene expression[J]. Biol Psychol, 2006, 73 (1): 72-89.
    [309] Ladd CO, Huot RL, Thrivikraman KV, et al. Long-term behavioral and neuroendocrine adaptations to adverse early experience[J]. Prog Brain Res, 2000, 122: 81-103.
    [310] Levine S. Infantile experience and resistance to physiological stress[J]. Science, 1957, 126 (3270): 405.
    [311] Mintz M, Ruedi-Bettschen D, Feldon J, et al. Early social and physical deprivation leads to reduced social motivation in adulthood in Wistar rats[J]. Behav Brain Res, 2005, 156 (2): 311-320.
    [312] Plotsky PM, Meaney MJ. Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats[J]. Brain Res Mol Brain Res, 1993, 18 (3): 195-200.
    [313] Ruedi-Bettschen D, Pedersen EM, Feldon J, et al. Early deprivation under specific conditions leads to reduced interest in reward in adulthood in Wistar rats[J]. Behav Brain Res, 2005, 156 (2): 297-310.
    [314] Ruedi-Bettschen D, Zhang W, Russig H, et al. Early deprivation leads to altered behavioural, autonomic and endocrine responses to environmental challenge in adult Fischer rats[J]. Eur J Neurosci, 2006, 24 (10): 2879-2893.
    [315] Pryce CR, Bettschen D, Bahr NI, et al. Comparison of the effects of infant handling, isolation, and nonhandling on acoustic startle, prepulse inhibition, locomotion, and HPA activity in the adult rat[J]. Behav Neurosci, 2001, 115 (1): 71-83.
    [316] Law AJ, Pei Q, Walker M, et al. Early parental deprivation in the marmoset monkey produces long-term changes in hippocampal expression of genes involved in synaptic plasticity and implicated in mood disorder[J]. Neuropsychopharmacology, 2009, 34 (6): 1381-1394.
    [317] Leventopoulos M, Russig H, Feldon J, et al. Early deprivation leads to long-term reductions in motivation for reward and 5-HT1A binding and both effects are reversed by fluoxetine[J]. Neuropharmacology, 2009, 56 (3): 692-701.
    [318] Francis DD, Champagne FA, Liu D, et al. Maternal care, gene expression, and the development of individual differences in stress reactivity[J]. Ann N Y Acad Sci, 1999, 896: 66-84.
    [319] Liu D, Diorio J, Tannenbaum B, et al. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress[J]. Science, 1997, 277 (5332): 1659-1662.
    [320] Kaffman A, Meaney MJ. Neurodevelopmental sequelae of postnatal maternal care in rodents: clinical and research implications of molecular insights[J]. J Child Psychol Psychiatry, 2007, 48 (3-4): 224-244.
    [321] Alonso SJ, Arevalo R, Afonso D, et al. Effects of maternal stress during pregnancy on forced swimming test behavior of the offspring[J]. Physiol Behav, 1991, 50 (3): 511-517.
    [322] Maccari S, Darnaudery M, Morley-Fletcher S, et al. Prenatal stress and long-term consequences: implications of glucocorticoid hormones[J]. Neurosci Biobehav Rev, 2003, 27 (1-2): 119-127.
    [323] McCormick CM, Smythe JW, Sharma S, et al. Sex-specific effects of prenatal stress on hypothalamic-pituitary-adrenal responses to stress and brain glucocorticoid receptor density in adult rats[J]. Brain Res Dev Brain Res, 1995, 84 (1): 55-61.
    [324] Morley-Fletcher S, Rea M, Maccari S, et al. Environmental enrichment during adolescence reverses the effects of prenatal stress on play behaviour and HPA axis reactivity in rats[J]. Eur J Neurosci,2003, 18 (12): 3367-3374.
    [325] Secoli SR, Teixeira NA. Chronic prenatal stress affects development and behavioral depression in rats[J]. Stress, 1998, 2 (4): 273-280.
    [326] Smith JW, Seckl JR, Evans AT, et al. Gestational stress induces post-partum depression-like behaviour and alters maternal care in rats[J]. Psychoneuroendocrinology, 2004, 29 (2): 227-244.
    [327] Weinstock M, Matlina E, Maor GI, et al. Prenatal stress selectively alters the reactivity of the hypothalamic-pituitary adrenal system in the female rat[J]. Brain Res, 1992, 595 (2): 195-200.
    [328] Poltyrev T, Weinstock M. Gender difference in the prevention of hyperanxiety in adult prenatally stressed rats by chronic treatment with amitriptyline[J]. Psychopharmacology (Berl), 2004, 171 (3): 270-276.
    [329] Agid O, Kohn Y, Lerer B. Environmental stress and psychiatric illness[J]. Biomed Pharmacother, 2000, 54 (3): 135-141.
    [330] Bjorkqvist K. Social defeat as a stressor in humans[J]. Physiol Behav, 2001, 73 (3): 435-442.
    [331] Huhman KL. Social conflict models: can they inform us about human psychopathology?[J]. Horm Behav, 2006, 50 (4): 640-646.
    [332] Koolhaas JM, De Boer SF, De Rutter AJ, et al. Social stress in rats and mice[J]. Acta Physiol Scand Suppl, 1997, 640: 69-72.
    [333] van Kampen M, Kramer M, Hiemke C, et al. The chronic psychosocial stress paradigm in male tree shrews: evaluation of a novel animal model for depressive disorders[J]. Stress, 2002, 5 (1): 37-46.
    [334] Meerlo P, Overkamp GJ, Daan S, et al. Changes in Behaviour and Body Weight Following a Single or Double Social Defeat in Rats[J]. Stress, 1996, 1 (1): 21-32.
    [335] Rygula R, Abumaria N, Flugge G, et al. Anhedonia and motivational deficits in rats: impact of chronic social stress[J]. Behav Brain Res, 2005, 162 (1): 127-134.
    [336] Von Frijtag JC, Van den Bos R, Spruijt BM. Imipramine restores the long-term impairment of appetitive behavior in socially stressed rats[J]. Psychopharmacology (Berl), 2002, 162 (3): 232-238.
    [337] Bohus B, Koolhaas JM, Heijnen CJ, et al. Immunological responses to social stress: dependence on social environment and coping abilities[J]. Neuropsychobiology, 1993, 28 (1-2): 95-99.
    [338] Buwalda B, de Boer SF, Schmidt ED, et al. Long-lasting deficient dexamethasone suppression of hypothalamic-pituitary-adrenocortical activation following peripheral CRF challenge in socially defeated rats[J]. J Neuroendocrinol, 1999, 11 (7): 513-520.
    [339] Meerlo P, Sgoifo A, Turek FW. The effects of social defeat and other stressors on the expression of circadian rhythms[J]. Stress, 2002, 5 (1): 15-22.
    [340] Krishnan V, Han MH, Graham DL, et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions[J]. Cell, 2007, 131 (2): 391-404.
    [341] Loscher W. Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy[J]. CNS Drugs, 2002, 16 (10): 669-694.
    [342] Bialer M, Yagen B. Valproic Acid: second generation[J]. Neurotherapeutics, 2007, 4 (1): 130-137.
    [343] Kostrouchova M, Kostrouch Z. Valproic acid, a molecular lead to multiple regulatory pathways[J]. Folia Biol (Praha), 2007, 53 (2): 37-49.
    [344] Gudmundsson G. Epilepsy in Iceland. A clinical and epidemiological investigation[J]. Acta Neurol Scand, 1966, 43: Suppl 25:21-124.
    [345] Randomized clinical trial on the efficacy of antiepileptic drugs in reducing the risk of relapse after a first unprovoked tonic-clonic seizure. First Seizure Trial Group (FIR.S.T. Group)[J]. Neurology, 1993, 43 (3 Pt 1): 478-483.
    [346] Temkin NR. Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: meta-analysis of controlled trials[J]. Epilepsia, 2001, 42 (4): 515-524.
    [347] Vajda FJ. Valproate and neuroprotection[J]. J Clin Neurosci, 2002, 9 (5): 508-514.
    [348] Eadie MJ. Can anticonvulsant drug therapy "cure" epilepsy?[J]. CNS Drugs, 2001, 15 (9): 679-690.
    [349] Loscher W. Valproate: a reappraisal of its pharmacodynamic properties and mechanisms of action[J]. Prog Neurobiol, 1999, 58 (1): 31-59.
    [350] Zeise ML, Kasparow S, Zieglgansberger W. Valproate suppresses N-methyl-D-aspartate-evoked, transient depolarizations in the rat neocortex in vitro[J]. Brain Res, 1991, 544 (2): 345-348.
    [351] Gean PW, Huang CC, Hung CR, et al. Valproic acid suppresses the synaptic response mediated by the NMDA receptors in rat amygdalar slices[J]. Brain Res Bull, 1994, 33 (3): 333-336.
    [352] Ko GY, Brown-Croyts LM, Teyler TJ. The effects of anticonvulsant drugs on NMDA-EPSP, AMPA-EPSP, and GABA-IPSP in the rat hippocampus[J]. Brain Res Bull, 1997, 42 (4): 297-302.
    [353] Gobbi G, Janiri L. Sodium- and magnesium-valproate in vivo modulate glutamatergic and GABAergic synapses in the medial prefrontal cortex[J]. Psychopharmacology (Berl), 2006, 185 (2): 255-262.
    [354] McLean MJ, Macdonald RL. Sodium valproate, but not ethosuximide, produces use- and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture[J]. J Pharmacol Exp Ther, 1986, 237 (3): 1001-1011.
    [355] Owens MJ, Nemeroff CB. Pharmacology of valproate[J]. Psychopharmacol Bull, 2003, 37 Suppl 2: 17-24.
    [356] Gottlicher M, Minucci S, Zhu P, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells[J]. EMBO J, 2001, 20 (24): 6969-6978.
    [357] Phiel CJ, Zhang F, Huang EY, et al. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen[J]. J Biol Chem, 2001, 276 (39): 36734-36741.
    [358] Henry TR. The history of valproate in clinical neuroscience[J]. Psychopharmacol Bull, 2003, 37 Suppl 2: 5-16.
    [359] Lambert PA, Carraz G, Borselli S, et al. [Dipropylacetamide in the treatment of manic-depressive psychosis][J]. Encephale, 1975, 1 (1): 25-31.
    [360] Emrich HM, von Zerssen D, Kissling W, et al. Effect of sodium valproate on mania. The GABA-hypothesis of affective disorders[J]. Arch Psychiatr Nervenkr, 1980, 229 (1): 1-16.
    [361] Fawcett J. Suicide risk factors in depressive disorders and in panic disorder[J]. J Clin Psychiatry, 1992, 53 Suppl: 9-13.
    [362] Debattista C, Solomon A, Arnow B, et al. The efficacy of divalproex sodium in the treatment of agitation associated with major depression[J]. J Clin Psychopharmacol, 2005, 25 (5): 476-479.
    [363] Mattes JA. Valproic acid for nonaffective aggression in the mentally retarded[J]. J Nerv Ment Dis, 1992, 180 (9): 601-602.
    [364] Horne M, Lindley SE. Divalproex sodium in the treatment of aggressive behavior and dysphoria in patients with organic brain syndromes[J]. J Clin Psychiatry, 1995, 56 (9): 430-431.
    [365] Hirschfeld RM. Pharmacotherapy of borderline personality disorder[J]. J Clin Psychiatry, 1997, 58 Suppl 14: 48-52; discussion 53.
    [366] Herrmann N. Valproic acid treatment of agitation in dementia[J]. Can J Psychiatry, 1998, 43 (1): 69-72.
    [367] Kunik ME, Puryear L, Orengo CA, et al. The efficacy and tolerability of divalproex sodium in elderly demented patients with behavioral disturbances[J]. Int J Geriatr Psychiatry, 1998, 13 (1): 29-34.
    [368] Meinhold JM, Blake LM, Mini LJ, et al. Effect of divalproex sodium on behavioural and cognitive problems in elderly dementia[J]. Drugs Aging, 2005, 22 (7): 615-626.
    [369] Harwood AJ. Lithium and bipolar mood disorder: the inositol-depletion hypothesis revisited[J]. Mol Psychiatry, 2005, 10 (1): 117-126.
    [370] Blaheta RA, Cinatl J, Jr. Anti-tumor mechanisms of valproate: a novel role for an old drug[J]. MedRes Rev, 2002, 22 (5): 492-511.
    [371] Blaheta RA, Michaelis M, Driever PH, et al. Evolving anticancer drug valproic acid: insights into the mechanism and clinical studies[J]. Med Res Rev, 2005, 25 (4): 383-397.
    [372] Kuendgen A, Gattermann N. Valproic acid for the treatment of myeloid malignancies[J]. Cancer, 2007, 110 (5): 943-954.
    [373] Kawagoe R, Kawagoe H, Sano K. Valproic acid induces apoptosis in human leukemia cells by stimulating both caspase-dependent and -independent apoptotic signaling pathways[J]. Leuk Res, 2002, 26 (5): 495-502.
    [374] Phillips A, Bullock T, Plant N. Sodium valproate induces apoptosis in the rat hepatoma cell line, FaO[J]. Toxicology, 2003, 192 (2-3): 219-227.
    [375] Tang R, Faussat AM, Majdak P, et al. Valproic acid inhibits proliferation and induces apoptosis in acute myeloid leukemia cells expressing P-gp and MRP1[J]. Leukemia, 2004, 18 (7): 1246-1251.
    [376] Michaelis M, Michaelis UR, Fleming I, et al. Valproic acid inhibits angiogenesis in vitro and in vivo[J]. Mol Pharmacol, 2004, 65 (3): 520-527.
    [377] Zgouras D, Becker U, Loitsch S, et al. Modulation of angiogenesis-related protein synthesis by valproic acid[J]. Biochem Biophys Res Commun, 2004, 316 (3): 693-697.
    [378] Yamamoto-Yamaguchi Y, Okabe-Kado J, Kasukabe T, et al. Induction of apoptosis by combined treatment with differentiation-inducing agents and interferon-alpha in human lung cancer cells[J]. Anticancer Res, 2003, 23 (3B): 2537-2547.
    [379] Michaelis M, Suhan T, Cinatl J, et al. Valproic acid and interferon-alpha synergistically inhibit neuroblastoma cell growth in vitro and in vivo[J]. Int J Oncol, 2004, 25 (6): 1795-1799.
    [380] Bradbury CA, Khanim FL, Hayden R, et al. Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors[J]. Leukemia, 2005, 19 (10): 1751-1759.
    [381] Bug G, Ritter M, Wassmann B, et al. Clinical trial of valproic acid and all-trans retinoic acid in patients with poor-risk acute myeloid leukemia[J]. Cancer, 2005, 104 (12): 2717-2725.
    [382] Karagiannis TC, Kn H, El-Osta A. The epigenetic modifier, valproic acid, enhances radiation sensitivity[J]. Epigenetics, 2006, 1 (3): 131-137.
    [383] Pinder RM, Brogden RN, Speight TM, et al. Sodium valproate: a review of its pharmacological properties and therapeutic efficacy in epilepsy[J]. Drugs, 1977, 13 (2): 81-123.
    [384] Bruni J, Wilder BJ. Valproic acid. Review of a new antiepileptic drug[J]. Arch Neurol, 1979, 36 (7): 393-398.
    [385] Macdonald RL, Bergey GK. Valproic acid augments GABA-mediated postsynaptic inhibition in cultured mammalian neurons[J]. Brain Res, 1979, 170 (3): 558-562.
    [386] Loscher W, Schmidt D. Increase of human plasma GABA by sodium valproate[J]. Epilepsia, 1980, 21 (6): 611-615.
    [387] Patsalos PN, Lascelles PT. Changes in regional brain levels of amino acid putative neurotransmitters after prolonged treatment with the anticonvulsant drugs diphenylhydantoin, phenobarbitone, sodium valproate, ethosuximide, and sulthiame in the rat[J]. J Neurochem, 1981, 36 (2): 688-695.
    [388] Rowley HL, Marsden CA, Martin KF. Differential effects of phenytoin and sodium valproate on seizure-induced changes in gamma-aminobutyric acid and glutamate release in vivo[J]. Eur J Pharmacol, 1995, 294 (2-3): 541-546.
    [389] Sayin U, Timmerman W, Westerink BH. The significance of extracellular GABA in the substantia nigra of the rat during seizures and anticonvulsant treatments[J]. Brain Res, 1995, 669 (1): 67-72.
    [390] Eckstein-Ludwig U, Fei J, Schwarz W. Inhibition of uptake, steady-state currents, and transient charge movements generated by the neuronal GABA transporter by various anticonvulsant drugs[J].Br J Pharmacol, 1999, 128 (1): 92-102.
    [391] Ueda Y, Willmore LJ. Molecular regulation of glutamate and GABA transporter proteins by valproic acid in rat hippocampus during epileptogenesis[J]. Exp Brain Res, 2000, 133 (3): 334-339.
    [392] Whitlow RD, Sacher A, Loo DD, et al. The anticonvulsant valproate increases the turnover rate of gamma-aminobutyric acid transporters[J]. J Biol Chem, 2003, 278 (20): 17716-17726.
    [393] Battistin L, Varotto M, Berlese G, et al. Effects of some anticonvulsant drugs on brain GABA level and GAD and GABA-T activities[J]. Neurochem Res, 1984, 9 (2): 225-231.
    [394] Loscher W. In vivo administration of valproate reduces the nerve terminal (synaptosomal) activity of GABA aminotransferase in discrete brain areas of rats[J]. Neurosci Lett, 1993, 160 (2): 177-180.
    [395] Whittle SR, Turner AJ. Effects of the anticonvulsant sodium valproate on gamma-aminobutyrate and aldehyde metabolism in ox brain[J]. J Neurochem, 1978, 31 (6): 1453-1459.
    [396] Johannessen CU. Mechanisms of action of valproate: a commentatory[J]. Neurochem Int, 2000, 37 (2-3): 103-110.
    [397] Luder AS, Parks JK, Frerman F, et al. Inactivation of beef brain alpha-ketoglutarate dehydrogenase complex by valproic acid and valproic acid metabolites. Possible mechanism of anticonvulsant and toxic actions[J]. J Clin Invest, 1990, 86 (5): 1574-1581.
    [398] Loscher W. Anticonvulsant and biochemical effects of inhibitors of GABA aminotransferase and valproic acid during subchronic treatment in mice[J]. Biochem Pharmacol, 1982, 31 (5): 837-842.
    [399] Tremolizzo L, Carboni G, Ruzicka WB, et al. An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability[J]. Proc Natl Acad Sci U S A, 2002, 99 (26): 17095-17100.
    [400] Dong E, Guidotti A, Grayson DR, et al. Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters[J]. Proc Natl Acad Sci U S A, 2007, 104 (11): 4676-4681.
    [401] Harrison NL, Simmonds MA. Sodium valproate enhances responses to GABA receptor activation only at high concentrations[J]. Brain Res, 1982, 250 (1): 201-204.
    [402] Motohashi N. GABA receptor alterations after chronic lithium administration. Comparison with carbamazepine and sodium valproate[J]. Prog Neuropsychopharmacol Biol Psychiatry, 1992, 16 (4): 571-579.
    [403] Cunningham MO, Woodhall GL, Jones RS. Valproate modifies spontaneous excitation and inhibition at cortical synapses in vitro[J]. Neuropharmacology, 2003, 45 (7): 907-917.
    [404] Slevin JT, Ferrara LP. Chronic valproic acid therapy and synaptic markers of amino acid neurotransmission[J]. Neurology, 1985, 35 (5): 728-731.
    [405] Thurston JH, Hauhart RE. Valproate doubles the anoxic survival time of normal developing mice: possible relevance to valproate-induced decreases in cerebral levels of glutamate and aspartate, and increases in taurine[J]. Life Sci, 1989, 45 (1): 59-62.
    [406] Phelan P, Regan C, Kilty C, et al. Sodium valproate stimulates the particulate form of glutamine synthetase in rat brain[J]. Neuropharmacology, 1985, 24 (9): 895-902.
    [407] Collins RM, Jr., Zielke HR, Woody RC. Valproate increases glutaminase and decreases glutamine synthetase activities in primary cultures of rat brain astrocytes[J]. J Neurochem, 1994, 62 (3): 1137-1143.
    [408] Dixon JF, Hokin LE. The antibipolar drug valproate mimics lithium in stimulating glutamate release and inositol 1,4,5-trisphosphate accumulation in brain cortex slices but not accumulation of inositol monophosphates and bisphosphates[J]. Proc Natl Acad Sci U S A, 1997, 94 (9): 4757-4760.
    [409] Kunig G, Niedermeyer B, Deckert J, et al. Inhibition of [3H]alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid [AMPA] binding by the anticonvulsant valproate in clinically relevant concentrations: an autoradiographic investigation inhuman hippocampus[J]. Epilepsy Res, 1998, 31 (2): 153-157.
    [410] Mora A, Gonzalez-Polo RA, Fuentes JM, et al. Different mechanisms of protection against apoptosis by valproate and Li+[J]. Eur J Biochem, 1999, 266 (3): 886-891.
    [411] Du J, Gray NA, Falke CA, et al. Modulation of synaptic plasticity by antimanic agents: the role of AMPA glutamate receptor subunit 1 synaptic expression[J]. J Neurosci, 2004, 24 (29): 6578-6589.
    [412] Rinaldi T, Kulangara K, Antoniello K, et al. Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid[J]. Proc Natl Acad Sci U S A, 2007, 104 (33): 13501-13506.
    [413] Hassel B, Iversen EG, Gjerstad L, et al. Up-regulation of hippocampal glutamate transport during chronic treatment with sodium valproate[J]. J Neurochem, 2001, 77 (5): 1285-1292.
    [414] Morland C, Boldingh KA, Iversen EG, et al. Valproate is neuroprotective against malonate toxicity in rat striatum: an association with augmentation of high-affinity glutamate uptake[J]. J Cereb Blood Flow Metab, 2004, 24 (11): 1226-1234.
    [415] Petroff OA, Rothman DL, Behar KL, et al. Effects of valproate and other antiepileptic drugs on brain glutamate, glutamine, and GABA in patients with refractory complex partial seizures[J]. Seizure, 1999, 8 (2): 120-127.
    [416] VanDongen AM, VanErp MG, Voskuyl RA. Valproate reduces excitability by blockage of sodium and potassium conductance[J]. Epilepsia, 1986, 27 (3): 177-182.
    [417] Stahl SM. Anticonvulsants as mood stabilizers and adjuncts to antipsychotics: valproate, lamotrigine, carbamazepine, and oxcarbazepine and actions at voltage-gated sodium channels[J]. J Clin Psychiatry, 2004, 65 (6): 738-739.
    [418] Tian LM, Alkadhi KA. Valproic acid inhibits the depolarizing rectification in neurons of rat amygdala[J]. Neuropharmacology, 1994, 33 (10): 1131-1138.
    [419] Pugsley MK, Yu EJ, McLean TH, et al. Blockade of neuronal sodium channels by the antiepileptic drugs phenytoin, carbamazepine and sodium valproate[J]. Proc West Pharmacol Soc, 1999, 42: 105-108.
    [420] Farber NB, Jiang XP, Heinkel C, et al. Antiepileptic drugs and agents that inhibit voltage-gated sodium channels prevent NMDA antagonist neurotoxicity[J]. Mol Psychiatry, 2002, 7 (7): 726-733.
    [421] Yamamoto R, Yanagita T, Kobayashi H, et al. Up-regulation of sodium channel subunit mRNAs and their cell surface expression by antiepileptic valproic acid: activation of calcium channel and catecholamine secretion in adrenal chromaffin cells[J]. J Neurochem, 1997, 68 (4): 1655-1662.
    [422] Walden J, Altrup U, Reith H, et al. Effects of valproate on early and late potassium currents of single neurons[J]. Eur Neuropsychopharmacol, 1993, 3 (2): 137-141.
    [423] Zona C, Avoli M. Effects induced by the antiepileptic drug valproic acid upon the ionic currents recorded in rat neocortical neurons in cell culture[J]. Exp Brain Res, 1990, 81 (2): 313-317.
    [424] Costa C, Martella G, Picconi B, et al. Multiple mechanisms underlying the neuroprotective effects of antiepileptic drugs against in vitro ischemia[J]. Stroke, 2006, 37 (5): 1319-1326.
    [425] Lai JS, Zhao C, Warsh JJ, et al. Cytoprotection by lithium and valproate varies between cell types and cellular stresses[J]. Eur J Pharmacol, 2006, 539 (1-2): 18-26.
    [426] Wang JF, Azzam JE, Young LT. Valproate inhibits oxidative damage to lipid and protein in primary cultured rat cerebrocortical cells[J]. Neuroscience, 2003, 116 (2): 485-489.
    [427] Wang JF, Shao L, Sun X, et al. Glutathione S-transferase is a novel target for mood stabilizing drugs in primary cultured neurons[J]. J Neurochem, 2004, 88 (6): 1477-1484.
    [428] Cui J, Shao L, Young LT, et al. Role of glutathione in neuroprotective effects of mood stabilizing drugs lithium and valproate[J]. Neuroscience, 2007, 144 (4): 1447-1453.
    [429] Shao L, Young LT, Wang JF. Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells[J]. Biol Psychiatry,2005, 58 (11): 879-884.
    [430] Frey BN, Valvassori SS, Reus GZ, et al. Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania[J]. J Psychiatry Neurosci, 2006, 31 (5): 326-332.
    [431] Gurvich N, Klein PS. Lithium and valproic acid: parallels and contrasts in diverse signaling contexts[J]. Pharmacol Ther, 2002, 96 (1): 45-66.
    [432] Brunet A, Datta SR, Greenberg ME. Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway[J]. Curr Opin Neurobiol, 2001, 11 (3): 297-305.
    [433] Belmaker RH, Bersudsky Y, Agam G, et al. How does lithium work on manic depression? Clinical and psychological correlates of the inositol theory[J]. Annu Rev Med, 1996, 47: 47-56.
    [434] Vayer P, Maitre M. Gamma-hydroxybutyrate stimulation of the formation of cyclic GMP and inositol phosphates in rat hippocampal slices[J]. J Neurochem, 1989, 52 (5): 1382-1387.
    [435] Li R, Wing LL, Wyatt RJ, et al. Effects of haloperidol, lithium, and valproate on phosphoinositide turnover in rat brain[J]. Pharmacol Biochem Behav, 1993, 46 (2): 323-329.
    [436] Shaltiel G, Shamir A, Shapiro J, et al. Valproate decreases inositol biosynthesis[J]. Biol Psychiatry, 2004, 56 (11): 868-874.
    [437] Lubrich B, van Calker D. Inhibition of the high affinity myo-inositol transport system: a common mechanism of action of antibipolar drugs?[J]. Neuropsychopharmacology, 1999, 21 (4): 519-529.
    [438] Vadnal R, Parthasarathy R. Myo-inositol monophosphatase: diverse effects of lithium, carbamazepine, and valproate[J]. Neuropsychopharmacology, 1995, 12 (4): 277-285.
    [439] Xu X, Muller-Taubenberger A, Adley KE, et al. Attenuation of phospholipid signaling provides a novel mechanism for the action of valproic acid[J]. Eukaryot Cell, 2007, 6 (6): 899-906.
    [440] Stopkova P, Saito T, Fann CS, et al. Polymorphism screening of PIP5K2A: a candidate gene for chromosome 10p-linked psychiatric disorders[J]. Am J Med Genet B Neuropsychiatr Genet, 2003, 123B (1): 50-58.
    [441] Sczekan SR, Strumwasser F. Antipsychotic drugs block IP3-dependent Ca(2+)-release from rat brain microsomes[J]. Biol Psychiatry, 1996, 40 (6): 497-502.
    [442] Mora A, Sabio G, Alonso JC, et al. Different dependence of lithium and valproate on PI3K/PKB pathway[J]. Bipolar Disord, 2002, 4 (3): 195-200.
    [443] Chalecka-Franaszek E, Chuang DM. Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons[J]. Proc Natl Acad Sci U S A, 1999, 96 (15): 8745-8750.
    [444] De Sarno P, Li X, Jope RS. Regulation of Akt and glycogen synthase kinase-3 beta phosphorylation by sodium valproate and lithium[J]. Neuropharmacology, 2002, 43 (7): 1158-1164.
    [445] Beaulieu JM, Sotnikova TD, Yao WD, et al. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade[J]. Proc Natl Acad Sci U S A, 2004, 101 (14): 5099-5104.
    [446] Pan T, Li X, Xie W, et al. Valproic acid-mediated Hsp70 induction and anti-apoptotic neuroprotection in SH-SY5Y cells[J]. FEBS Lett, 2005, 579 (30): 6716-6720.
    [447] Beaulieu JM, Marion S, Rodriguiz RM, et al. A beta-arrestin 2 signaling complex mediates lithium action on behavior[J]. Cell, 2008, 132 (1): 125-136.
    [448] Liang MH, Wendland JR, Chuang DM. Lithium inhibits Smad3/4 transactivation via increased CREB activity induced by enhanced PKA and AKT signaling[J]. Mol Cell Neurosci, 2008, 37 (3): 440-453.
    [449] Chen J, Ghazawi FM, Bakkar W, et al. Valproic acid and butyrate induce apoptosis in human cancer cells through inhibition of gene expression of Akt/protein kinase B[J]. Mol Cancer, 2006, 5: 71.
    [450] Yuan PX, Huang LD, Jiang YM, et al. The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth[J]. J Biol Chem, 2001, 276 (34): 31674-31683.
    [451] Einat H, Yuan P, Gould TD, et al. The role of the extracellular signal-regulated kinase signaling pathway in mood modulation[J]. J Neurosci, 2003, 23 (19): 7311-7316.
    [452] Cieslik K, Abrams CS, Wu KK. Up-regulation of endothelial nitric-oxide synthase promoter by the phosphatidylinositol 3-kinase gamma /Janus kinase 2/MEK-1-dependent pathway[J]. J Biol Chem, 2001, 276 (2): 1211-1219.
    [453] Bassa BV, Roh DD, Vaziri ND, et al. Lysophosphatidylcholine activates mesangial cell PKC and MAP kinase by PLCgamma-1 and tyrosine kinase-Ras pathways[J]. Am J Physiol, 1999, 277 (3 Pt 2): F328-337.
    [454] Siafaka-Kapadai A, Patiris M, Bowden C, et al. Incorporation of [3H]valproic acid into lipids in GT1-7 neurons[J]. Biochem Pharmacol, 1998, 56 (2): 207-212.
    [455] Hao Y, Creson T, Zhang L, et al. Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis[J]. J Neurosci, 2004, 24 (29): 6590-6599.
    [456] Eldar-Finkelman H. Glycogen synthase kinase 3: an emerging therapeutic target[J]. Trends Mol Med, 2002, 8 (3): 126-132.
    [457] Li X, Bijur GN, Jope RS. Glycogen synthase kinase-3beta, mood stabilizers, and neuroprotection[J]. Bipolar Disord, 2002, 4 (2): 137-144.
    [458] Gould TD, Manji HK. Glycogen synthase kinase-3: a putative molecular target for lithium mimetic drugs[J]. Neuropsychopharmacology, 2005, 30 (7): 1223-1237.
    [459] Jonathan Ryves W, Dalton EC, Harwood AJ, et al. GSK-3 activity in neocortical cells is inhibited by lithium but not carbamazepine or valproic acid[J]. Bipolar Disord, 2005, 7 (3): 260-265.
    [460] Hall AC, Brennan A, Goold RG, et al. Valproate regulates GSK-3-mediated axonal remodeling and synapsin I clustering in developing neurons[J]. Mol Cell Neurosci, 2002, 20 (2): 257-270.
    [461] Tong N, Sanchez JF, Maggirwar SB, et al. Activation of glycogen synthase kinase 3 beta (GSK-3beta) by platelet activating factor mediates migration and cell death in cerebellar granule neurons[J]. Eur J Neurosci, 2001, 13 (10): 1913-1922.
    [462] Kozlovsky N, Nadri C, Belmaker RH, et al. Lack of effect of mood stabilizers or neuroleptics on GSK-3 protein levels and GSK-3 activity[J]. Int J Neuropsychopharmacol, 2003, 6 (2): 117-120.
    [463] Gould TD, Chen G, Manji HK. In vivo evidence in the brain for lithium inhibition of glycogen synthase kinase-3[J]. Neuropsychopharmacology, 2004, 29 (1): 32-38.
    [464] Roh MS, Eom TY, Zmijewska AA, et al. Hypoxia activates glycogen synthase kinase-3 in mouse brain in vivo: protection by mood stabilizers and imipramine[J]. Biol Psychiatry, 2005, 57 (3): 278-286.
    [465] Coyle JT, Manji HK. Getting balance: drugs for bipolar disorder share target[J]. Nat Med, 2002, 8 (6): 557-558.
    [466] Chen G, Manji HK, Hawver DB, et al. Chronic sodium valproate selectively decreases protein kinase C alpha and epsilon in vitro[J]. J Neurochem, 1994, 63 (6): 2361-2364.
    [467] Lenox RH, McNamara RK, Watterson JM, et al. Myristoylated alanine-rich C kinase substrate (MARCKS): a molecular target for the therapeutic action of mood stabilizers in the brain?[J]. J Clin Psychiatry, 1996, 57 Suppl 13: 23-31; discussion 32-23.
    [468] Manji HK, Lenox RH. Ziskind-Somerfeld Research Award. Protein kinase C signaling in the brain: molecular transduction of mood stabilization in the treatment of manic-depressive illness[J]. Biol Psychiatry, 1999, 46 (10): 1328-1351.
    [469] Chen G, Masana MI, Manji HK. Lithium regulates PKC-mediated intracellular cross-talk and gene expression in the CNS in vivo[J]. Bipolar Disord, 2000, 2 (3 Pt 2): 217-236.
    [470] Watterson JM, Watson DG, Meyer EM, et al. A role for protein kinase C and its substrates in the action of valproic acid in the brain: implications for neural plasticity[J]. Brain Res, 2002, 934 (1): 69-80.
    [471] Birnbaum SG, Yuan PX, Wang M, et al. Protein kinase C overactivity impairs prefrontal cortical regulation of working memory[J]. Science, 2004, 306 (5697): 882-884.
    [472] Chen G, Manji HK, Wright CB, et al. Effects of valproic acid on beta-adrenergic receptors, G-proteins, and adenylyl cyclase in rat C6 glioma cells[J]. Neuropsychopharmacology, 1996, 15 (3): 271-280.
    [473] Wang JF, Asghari V, Rockel C, et al. Cyclic AMP responsive element binding protein phosphorylation and DNA binding is decreased by chronic lithium but not valproate treatment of SH-SY5Y neuroblastoma cells[J]. Neuroscience, 1999, 91 (2): 771-776.
    [474] Montezinho LP, Mork A, Duarte CB, et al. Effects of mood stabilizers on the inhibition of adenylate cyclase via dopamine D(2)-like receptors[J]. Bipolar Disord, 2007, 9 (3): 290-297.
    [475] Raivich G, Behrens A. Role of the AP-1 transcription factor c-Jun in developing, adult and injured brain[J]. Prog Neurobiol, 2006, 78 (6): 347-363.
    [476] Chen G, Yuan P, Hawver DB, et al. Increase in AP-1 transcription factor DNA binding activity by valproic acid[J]. Neuropsychopharmacology, 1997, 16 (3): 238-245.
    [477] Asghari V, Wang JF, Reiach JS, et al. Differential effects of mood stabilizers on Fos/Jun proteins and AP-1 DNA binding activity in human neuroblastoma SH-SY5Y cells[J]. Brain Res Mol Brain Res, 1998, 58 (1-2): 95-102.
    [478] Chen G, Yuan PX, Jiang YM, et al. Valproate robustly enhances AP-1 mediated gene expression[J]. Brain Res Mol Brain Res, 1999, 64 (1): 52-58.
    [479] Morton S, Davis RJ, McLaren A, et al. A reinvestigation of the multisite phosphorylation of the transcription factor c-Jun[J]. EMBO J, 2003, 22 (15): 3876-3886.
    [480] Boyle WJ, Smeal T, Defize LH, et al. Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity[J]. Cell, 1991, 64 (3): 573-584.
    [481] Sullivan NR, Burke T, Siafaka-Kapadai A, et al. Effect of valproic acid on serotonin-2A receptor signaling in C6 glioma cells[J]. J Neurochem, 2004, 90 (5): 1269-1275.
    [482] Arinze IJ, Kawai Y. Sp family of transcription factors is involved in valproic acid-induced expression of Galphai2[J]. J Biol Chem, 2003, 278 (20): 17785-17791.
    [483] Ryu H, Lee J, Olofsson BA, et al. Histone deacetylase inhibitors prevent oxidative neuronal death independent of expanded polyglutamine repeats via an Sp1-dependent pathway[J]. Proc Natl Acad Sci U S A, 2003, 100 (7): 4281-4286.
    [484] Kawai Y, Arinze IJ. Valproic acid-induced gene expression through production of reactive oxygen species[J]. Cancer Res, 2006, 66 (13): 6563-6569.
    [485] Ichiyama T, Okada K, Lipton JM, et al. Sodium valproate inhibits production of TNF-alpha and IL-6 and activation of NF-kappaB[J]. Brain Res, 2000, 857 (1-2): 246-251.
    [486] Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system[J]. Neuron, 2002, 35 (4): 605-623.
    [487] DeCastro M, Nankova BB, Shah P, et al. Short chain fatty acids regulate tyrosine hydroxylase gene expression through a cAMP-dependent signaling pathway[J]. Brain Res Mol Brain Res, 2005, 142 (1): 28-38.
    [488] Rao JS, Bazinet RP, Rapoport SI, et al. Chronic treatment of rats with sodium valproate downregulates frontal cortex NF-kappaB DNA binding activity and COX-2 mRNA[J]. Bipolar Disord, 2007, 9 (5): 513-520.
    [489] Chen B, Wang JF, Hill BC, et al. Lithium and valproate differentially regulate brain regional expression of phosphorylated CREB and c-Fos[J]. Brain Res Mol Brain Res, 1999, 70 (1): 45-53.
    [490] Casu MA, Sanna A, Spada GP, et al. Effects of acute and chronic valproate treatments on p-CREB levels in the rat amygdala and nucleus accumbens[J]. Brain Res, 2007, 1141: 15-24.
    [491] Williams RS, Cheng L, Mudge AW, et al. A common mechanism of action for three mood-stabilizing drugs[J]. Nature, 2002, 417 (6886): 292-295.
    [492] Marchion DC, Bicaku E, Daud AI, et al. Valproic acid alters chromatin structure by regulation of chromatin modulation proteins[J]. Cancer Res, 2005, 65 (9): 3815-3822.
    [493] Kramer OH, Zhu P, Ostendorff HP, et al. The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2[J]. EMBO J, 2003, 22 (13): 3411-3420.
    [494] Chen Y, Sharma RP, Costa RH, et al. On the epigenetic regulation of the human reelin promoter[J]. Nucleic Acids Res, 2002, 30 (13): 2930-2939.
    [495] Detich N, Bovenzi V, Szyf M. Valproate induces replication-independent active DNA demethylation[J]. J Biol Chem, 2003, 278 (30): 27586-27592.
    [496] Milutinovic S, D'Alessio AC, Detich N, et al. Valproate induces widespread epigenetic reprogramming which involves demethylation of specific genes[J]. Carcinogenesis, 2007, 28 (3): 560-571.
    [497] Kim SH, Jeong JW, Park JA, et al. Regulation of the HIF-1alpha stability by histone deacetylases[J]. Oncol Rep, 2007, 17 (3): 647-651.
    [498] Castro LM, Gallant M, Niles LP. Novel targets for valproic acid: up-regulation of melatonin receptors and neurotrophic factors in C6 glioma cells[J]. J Neurochem, 2005, 95 (5): 1227-1236.
    [499] Bredy TW, Wu H, Crego C, et al. Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear[J]. Learn Mem, 2007, 14 (4): 268-276.
    [500] Wu X, Chen PS, Dallas S, et al. Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons[J]. Int J Neuropsychopharmacol, 2008, 11 (8): 1123-1134.
    [501] Yildirim E, Zhang Z, Uz T, et al. Valproate administration to mice increases histone acetylation and 5-lipoxygenase content in the hippocampus[J]. Neurosci Lett, 2003, 345 (2): 141-143.
    [502] Stockhausen MT, Sjolund J, Manetopoulos C, et al. Effects of the histone deacetylase inhibitor valproic acid on Notch signalling in human neuroblastoma cells[J]. Br J Cancer, 2005, 92 (4): 751-759.
    [503] Rocchi P, Tonelli R, Camerin C, et al. p21Waf1/Cip1 is a common target induced by short-chain fatty acid HDAC inhibitors (valproic acid, tributyrin and sodium butyrate) in neuroblastoma cells[J]. Oncol Rep, 2005, 13 (6): 1139-1144.
    [504] Li XN, Shu Q, Su JM, et al. Valproic acid induces growth arrest, apoptosis, and senescence in medulloblastomas by increasing histone hyperacetylation and regulating expression of p21Cip1, CDK4, and CMYC[J]. Mol Cancer Ther, 2005, 4 (12): 1912-1922.
    [505] Gurvich N, Berman MG, Wittner BS, et al. Association of valproate-induced teratogenesis with histone deacetylase inhibition in vivo[J]. FASEB J, 2005, 19 (9): 1166-1168.
    [506] Hsieh J, Nakashima K, Kuwabara T, et al. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells[J]. Proc Natl Acad Sci U S A, 2004, 101 (47): 16659-16664.
    [507] Laeng P, Pitts RL, Lemire AL, et al. The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells[J]. J Neurochem, 2004, 91 (1): 238-251.
    [508] Sinn DI, Kim SJ, Chu K, et al. Valproic acid-mediated neuroprotection in intracerebral hemorrhage via histone deacetylase inhibition and transcriptional activation[J]. Neurobiol Dis, 2007, 26 (2): 464-472.
    [509] Jessberger S, Nakashima K, Clemenson GD, Jr., et al. Epigenetic modulation of seizure-inducedneurogenesis and cognitive decline[J]. J Neurosci, 2007, 27 (22): 5967-5975.
    [510] Sharma RP, Rosen C, Kartan S, et al. Valproic acid and chromatin remodeling in schizophrenia and bipolar disorder: preliminary results from a clinical population[J]. Schizophr Res, 2006, 88 (1-3): 227-231.
    [511] Di Daniel E, Mudge AW, Maycox PR. Comparative analysis of the effects of four mood stabilizers in SH-SY5Y cells and in primary neurons[J]. Bipolar Disord, 2005, 7 (1): 33-41.
    [512] Kim SJ, Lee BH, Lee YS, et al. Defective cholesterol traffic and neuronal differentiation in neural stem cells of Niemann-Pick type C disease improved by valproic acid, a histone deacetylase inhibitor[J]. Biochem Biophys Res Commun, 2007, 360 (3): 593-599.
    [513] Leng Y, Chuang DM. Endogenous alpha-synuclein is induced by valproic acid through histone deacetylase inhibition and participates in neuroprotection against glutamate-induced excitotoxicity[J]. J Neurosci, 2006, 26 (28): 7502-7512.
    [514] Shen S, Li J, Casaccia-Bonnefil P. Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain[J]. J Cell Biol, 2005, 169 (4): 577-589.
    [515] Bazan NG. Lipid signaling in neural plasticity, brain repair, and neuroprotection[J]. Mol Neurobiol, 2005, 32 (1): 89-103.
    [516] van Bergeijk J, Haastert K, Grothe C, et al. Valproic acid promotes neurite outgrowth in PC12 cells independent from regulation of the survival of motoneuron protein[J]. Chem Biol Drug Des, 2006, 67 (3): 244-247.
    [517] Yamauchi J, Miyamoto Y, Murabe M, et al. Gadd45a, the gene induced by the mood stabilizer valproic acid, regulates neurite outgrowth through JNK and the substrate paxillin in N1E-115 neuroblastoma cells[J]. Exp Cell Res, 2007, 313 (9): 1886-1896.
    [518] Jin N, Kovacs AD, Sui Z, et al. Opposite effects of lithium and valproic acid on trophic factor deprivation-induced glycogen synthase kinase-3 activation, c-Jun expression and neuronal cell death[J]. Neuropharmacology, 2005, 48 (4): 576-583.
    [519] Kanai H, Sawa A, Chen RW, et al. Valproic acid inhibits histone deacetylase activity and suppresses excitotoxicity-induced GAPDH nuclear accumulation and apoptotic death in neurons[J]. Pharmacogenomics J, 2004, 4 (5): 336-344.
    [520] Hashimoto R, Hough C, Nakazawa T, et al. Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation[J]. J Neurochem, 2002, 80 (4): 589-597.
    [521] Mark RJ, Ashford JW, Goodman Y, et al. Anticonvulsants attenuate amyloid beta-peptide neurotoxicity, Ca2+ deregulation, and cytoskeletal pathology[J]. Neurobiol Aging, 1995, 16 (2): 187-198.
    [522] Monti B, Polazzi E, Batti L, et al. Alpha-synuclein protects cerebellar granule neurons against 6-hydroxydopamine-induced death[J]. J Neurochem, 2007, 103 (2): 518-530.
    [523] Dou H, Birusingh K, Faraci J, et al. Neuroprotective activities of sodium valproate in a murine model of human immunodeficiency virus-1 encephalitis[J]. J Neurosci, 2003, 23 (27): 9162-9170.
    [524] Rekling JC. Neuroprotective effects of anticonvulsants in rat hippocampal slice cultures exposed to oxygen/glucose deprivation[J]. Neurosci Lett, 2003, 335 (3): 167-170.
    [525] Sugai F, Yamamoto Y, Miyaguchi K, et al. Benefit of valproic acid in suppressing disease progression of ALS model mice[J]. Eur J Neurosci, 2004, 20 (11): 3179-3183.
    [526] Peng GS, Li G, Tzeng NS, et al. Valproate pretreatment protects dopaminergic neurons from LPS-induced neurotoxicity in rat primary midbrain cultures: role of microglia[J]. Brain Res Mol Brain Res, 2005, 134 (1): 162-169.
    [527] Chen PS, Wang CC, Bortner CD, et al. Valproic acid and other histone deacetylase inhibitors induce microglial apoptosis and attenuate lipopolysaccharide-induced dopaminergicneurotoxicity[J]. Neuroscience, 2007, 149 (1): 203-212.
    [528] Dragunow M, Greenwood JM, Cameron RE, et al. Valproic acid induces caspase 3-mediated apoptosis in microglial cells[J]. Neuroscience, 2006, 140 (4): 1149-1156.
    [529] Hassan MN, Laljee HC, Parsonage MJ. Sodium valproate in the treatment of resistant epilepsy[J]. Acta Neurol Scand, 1976, 54 (3): 209-218.
    [530] Bernasconi R, Bencze W, Hauser K, et al. Protective effects of diazepam and valproate on beta-vinyllactic acid-induced seizures[J]. Neurosci Lett, 1984, 47 (3): 339-344.
    [531] Bolanos AR, Sarkisian M, Yang Y, et al. Comparison of valproate and phenobarbital treatment after status epilepticus in rats[J]. Neurology, 1998, 51 (1): 41-48.
    [532] Pallini R, Palestini M, Lauretti L, et al. Effect of magnesium valproate on amygdala-kindled seizures in the rat: comparison with sodium valproate[J]. Neurol Res, 1989, 11 (1): 17-23.
    [533] Schwarz SS, Freed WJ. Inhibition of quisqualate-induced seizures by glutamic acid diethyl ester and anti-epileptic drugs[J]. J Neural Transm, 1986, 67 (3-4): 191-203.
    [534] Brandt C, Gastens AM, Sun M, et al. Treatment with valproate after status epilepticus: effect on neuronal damage, epileptogenesis, and behavioral alterations in rats[J]. Neuropharmacology, 2006, 51 (4): 789-804.
    [535] Ren M, Leng Y, Jeong M, et al. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction[J]. J Neurochem, 2004, 89 (6): 1358-1367.
    [536] Gotfryd K, Owczarek S, Hoffmann K, et al. Multiple effects of pentyl-4-yn-VPA enantiomers: from toxicity to short-term memory enhancement[J]. Neuropharmacology, 2007, 52 (3): 764-778.
    [537] Mellow AM, Solano-Lopez C, Davis S. Sodium valproate in the treatment of behavioral disturbance in dementia[J]. J Geriatr Psychiatry Neurol, 1993, 6 (4): 205-209.
    [538] Loy R, Tariot PN. Neuroprotective properties of valproate: potential benefit for AD and tauopathies[J]. J Mol Neurosci, 2002, 19 (3): 303-307.
    [539] Tariot PN, Loy R, Ryan JM, et al. Mood stabilizers in Alzheimer's disease: symptomatic and neuroprotective rationales[J]. Adv Drug Deliv Rev, 2002, 54 (12): 1567-1577.
    [540] Armon C, Shin C, Miller P, et al. Reversible parkinsonism and cognitive impairment with chronic valproate use[J]. Neurology, 1996, 47 (3): 626-635.
    [541] Nutt J, Williams A, Plotkin C, et al. Treatment of Parkinson's disease with sodium valproate: clinical, pharmacological, and biochemical observations[J]. Can J Neurol Sci, 1979, 6 (3): 337-343.
    [542] Price PA, Parkes JD, Marsden CD. Sodium valproate in the treatment of levodopa-induced dyskinesia[J]. J Neurol Neurosurg Psychiatry, 1978, 41 (8): 702-706.
    [543] Chen PS, Peng GS, Li G, et al. Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes[J]. Mol Psychiatry, 2006, 11 (12): 1116-1125.
    [544] Caraceni T, Calderini G, Consolazione A, et al. Biochemical aspects of Huntington's chorea[J]. J Neurol Neurosurg Psychiatry, 1977, 40 (6): 581-587.
    [545] Pearce I, Heathfield KW, Pearce MJ. Valproate sodium in Huntington chorea[J]. Arch Neurol, 1977, 34 (5): 308-309.
    [546] Schwarcz R, Bennett JP, Jr., Coyle JT. Inhibitors of GABA metabolism: implications for Huntington's disease[J]. Ann Neurol, 1977, 2 (4): 299-303.
    [547] Hockly E, Richon VM, Woodman B, et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease[J]. Proc Natl Acad Sci U S A, 2003, 100 (4): 2041-2046.
    [548] Sadri-Vakili G, Bouzou B, Benn CL, et al. Histones associated with downregulated genes are hypo-acetylated in Huntington's disease models[J]. Hum Mol Genet, 2007, 16 (11): 1293-1306.
    [549] Tremolizzo L, Rodriguez-Menendez V, DiFrancesco JC, et al. Huntington's disease and HDACi: would sulpiride and valproate be of therapeutic value?[J]. Med Hypotheses, 2007, 69 (4): 964-965.
    [550] Rouaux C, Panteleeva I, Rene F, et al. Sodium valproate exerts neuroprotective effects in vivo through CREB-binding protein-dependent mechanisms but does not improve survival in an amyotrophic lateral sclerosis mouse model[J]. J Neurosci, 2007, 27 (21): 5535-5545.
    [551] Brichta L, Hofmann Y, Hahnen E, et al. Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy[J]. Hum Mol Genet, 2003, 12 (19): 2481-2489.
    [552] Sumner CJ, Huynh TN, Markowitz JA, et al. Valproic acid increases SMN levels in spinal muscular atrophy patient cells[J]. Ann Neurol, 2003, 54 (5): 647-654.
    [553] Kernochan LE, Russo ML, Woodling NS, et al. The role of histone acetylation in SMN gene expression[J]. Hum Mol Genet, 2005, 14 (9): 1171-1182.
    [554] Tang JS, Qu CL, Huo FQ. The thalamic nucleus submedius and ventrolateral orbital cortex are involved in nociceptive modulation: a novel pain modulation pathway[J]. Prog Neurobiol, 2009, 89 (4): 383-389.
    [555] Millan MJ. Descending control of pain[J]. Prog Neurobiol, 2002, 66 (6): 355-474.
    [556] Pertovaara A. Plasticity in descending pain modulatory systems[J]. Prog Brain Res, 2000, 129: 231-242.
    [557] Ren K, Dubner R. Descending modulation in persistent pain: an update[J]. Pain, 2002, 100 (1-2): 1-6.
    [558] Vanegas H, Schaible HG. Descending control of persistent pain: inhibitory or facilitatory?[J]. Brain Res Brain Res Rev, 2004, 46 (3): 295-309.
    [559] Arsenault A, Sawynok J. Perisurgical amitriptyline produces a preventive effect on afferent hypersensitivity following spared nerve injury[J]. Pain, 2009, 146 (3): 308-314.
    [560] Decosterd I, Woolf CJ. Spared nerve injury: an animal model of persistent peripheral neuropathic pain[J]. Pain, 2000, 87 (2): 149-158.
    [561] Missale C, Nash SR, Robinson SW, et al. Dopamine receptors: from structure to function[J]. Physiol Rev, 1998, 78 (1): 189-225.
    [562] Vallone D, Picetti R, Borrelli E. Structure and function of dopamine receptors[J]. Neurosci Biobehav Rev, 2000, 24 (1): 125-132.
    [563] Seamans JK, Gorelova N, Durstewitz D, et al. Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons[J]. J Neurosci, 2001, 21 (10): 3628-3638.
    [564] Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals[J]. Pain, 1983, 16 (2): 109-110.
    [565] Dixon WJ. Efficient analysis of experimental observations[J]. Annu Rev Pharmacol Toxicol, 1980, 20: 441-462.
    [566] Altier N, Stewart J. Dopamine receptor antagonists in the nucleus accumbens attenuate analgesia induced by ventral tegmental area substance P or morphine and by nucleus accumbens amphetamine[J]. J Pharmacol Exp Ther, 1998, 285 (1): 208-215.
    [567] Coffeen U, Lopez-Avila A, Ortega-Legaspi JM, et al. Dopamine receptors in the anterior insular cortex modulate long-term nociception in the rat[J]. Eur J Pain, 2008, 12 (5): 535-543.
    [568] Depaulis A, Morgan MM, Liebeskind JC. GABAergic modulation of the analgesic effects of morphine microinjected in the ventral periaqueductal gray matter of the rat[J]. Brain Res, 1987, 436 (2): 223-228.
    [569] Magnusson JE, Fisher K. The involvement of dopamine in nociception: the role of D(1) and D(2) receptors in the dorsolateral striatum[J]. Brain Res, 2000, 855 (2): 260-266.
    [570] Meyer PJ, Morgan MM, Kozell LB, et al. Contribution of dopamine receptors to periaqueductalgray-mediated antinociception[J]. Psychopharmacology (Berl), 2009, 204 (3): 531-540.
    [571] Taylor BK, Joshi C, Uppal H. Stimulation of dopamine D2 receptors in the nucleus accumbens inhibits inflammatory pain[J]. Brain Res, 2003, 987 (2): 135-143.
    [572] Ren WH, Guo JD, Cao H, et al. Is endogenous D-serine in the rostral anterior cingulate cortex necessary for pain-related negative affect?[J]. J Neurochem, 2006, 96 (6): 1636-1647.
    [573] Baliki M, Al-Amin HA, Atweh SF, et al. Attenuation of neuropathic manifestations by local block of the activities of the ventrolateral orbito-frontal area in the rat[J]. Neuroscience, 2003, 120 (4): 1093-1104.
    [574] Burkey AR, Carstens E, Jasmin L. Dopamine reuptake inhibition in the rostral agranular insular cortex produces antinociception[J]. J Neurosci, 1999, 19 (10): 4169-4179.
    [575] Lopez-Avila A, Coffeen U, Ortega-Legaspi JM, et al. Dopamine and NMDA systems modulate long-term nociception in the rat anterior cingulate cortex[J]. Pain, 2004, 111 (1-2): 136-143.
    [576] Altier N, Stewart J. The role of dopamine in the nucleus accumbens in analgesia[J]. Life Sci, 1999, 65 (22): 2269-2287.
    [577] Esclapez M, Campistron G, Trottier S. Immunocytochemical localization and morphology of GABA-containing neurons in the prefrontal and frontoparietal cortex of the rat[J]. Neurosci Lett, 1987, 77 (2): 131-136.
    [578] Ohara PT, Granato A, Moallem TM, et al. Dopaminergic input to GABAergic neurons in the rostral agranular insular cortex of the rat[J]. J Neurocytol, 2003, 32 (2): 131-141.
    [579] Gaspar P, Bloch B, Le Moine C. D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons[J]. Eur J Neurosci, 1995, 7 (5): 1050-1063.
    [580] Vincent SL, Khan Y, Benes FM. Cellular colocalization of dopamine D1 and D2 receptors in rat medial prefrontal cortex[J]. Synapse, 1995, 19 (2): 112-120.
    [581] Goldman-Rakic PS, Leranth C, Williams SM, et al. Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex[J]. Proc Natl Acad Sci U S A, 1989, 86 (22): 9015-9019.
    [582] Lidow MS, Goldman-Rakic PS, Rakic P, et al. Dopamine D2 receptors in the cerebral cortex: distribution and pharmacological characterization with [3H]raclopride[J]. Proc Natl Acad Sci U S A, 1989, 86 (16): 6412-6416.
    [583] Santana N, Mengod G, Artigas F. Quantitative analysis of the expression of dopamine D1 and D2 receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex[J]. Cereb Cortex, 2009, 19 (4): 849-860.
    [584] Abbott FV, Franklin KB, Westbrook RF. The formalin test: scoring properties of the first and second phases of the pain response in rats[J]. Pain, 1995, 60 (1): 91-102.
    [585] Coderre TJ, Fundytus ME, McKenna JE, et al. The formalin test: a validation of the weighted-scores method of behavioural pain rating[J]. Pain, 1993, 54 (1): 43-50.
    [586] Watson GS, Sufka KJ, Coderre TJ. Optimal scoring strategies and weights for the formalin test in rats[J]. Pain, 1997, 70 (1): 53-58.
    [587] Wheeler-Aceto H, Cowan A. Standardization of the rat paw formalin test for the evaluation of analgesics[J]. Psychopharmacology (Berl), 1991, 104 (1): 35-44.
    [588] Koyanagi S, Himukashi S, Mukaida K, et al. Dopamine D2-like receptor in the nucleus accumbens is involved in the antinociceptive effect of nitrous oxide[J]. Anesth Analg, 2008, 106 (6): 1904-1909.
    [589] Association AP. Diagnostic and statistical manual of mental disorders. 4th ed[J]. Washington (DC): The Association, 1994.
    [590] Kessler RC, Berglund P, Demler O, et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R)[J]. JAMA, 2003, 289 (23): 3095-3105.
    [591] Gureje O, Kola L, Afolabi E. Epidemiology of major depressive disorder in elderly Nigerians in the Ibadan Study of Ageing: a community-based survey[J]. Lancet, 2007, 370 (9591): 957-964.
    [592] Phillips MR, Zhang J, Shi Q, et al. Prevalence, treatment, and associated disability of mental disorders in four provinces in China during 2001-05: an epidemiological survey[J]. Lancet, 2009, 373 (9680): 2041-2053.
    [593] Patten SB, Lee RC. Epidemiological theory, decision theory and mental health services research[J]. Soc Psychiatry Psychiatr Epidemiol, 2004, 39 (11): 893-898.
    [594] Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study[J]. Lancet, 1997, 349 (9064): 1498-1504.
    [595] Cryan JF, Markou A, Lucki I. Assessing antidepressant activity in rodents: recent developments and future needs[J]. Trends Pharmacol Sci, 2002, 23 (5): 238-245.
    [596] Bowden CL. Valproate[J]. Bipolar Disord, 2003, 5 (3): 189-202.
    [597] Fountoulakis KN, Vieta E, Sanchez-Moreno J, et al. Treatment guidelines for bipolar disorder: a critical review[J]. J Affect Disord, 2005, 86 (1): 1-10.
    [598] Freeman TW, Clothier JL, Pazzaglia P, et al. A double-blind comparison of valproate and lithium in the treatment of acute mania[J]. Am J Psychiatry, 1992, 149 (1): 108-111.
    [599] Keck PE, Jr., McElroy SL, Nemeroff CB. Anticonvulsants in the treatment of bipolar disorder[J]. J Neuropsychiatry Clin Neurosci, 1992, 4 (4): 395-405.
    [600] Peterson GM, Naunton M. Valproate: a simple chemical with so much to offer[J]. J Clin Pharm Ther, 2005, 30 (5): 417-421.
    [601] Pope HG, Jr., McElroy SL, Keck PE, Jr., et al. Valproate in the treatment of acute mania. A placebo-controlled study[J]. Arch Gen Psychiatry, 1991, 48 (1): 62-68.
    [602] Vigo DV, Baldessarini RJ. Anticonvulsants in the treatment of major depressive disorder: an overview[J]. Harv Rev Psychiatry, 2009, 17 (4): 231-241.
    [603] Redrobe JP, Bourin M. Evidence of the activity of lithium on 5-HT1B receptors in the mouse forced swimming test: comparison with carbamazepine and sodium valproate[J]. Psychopharmacology (Berl), 1999, 141 (4): 370-377.
    [604] Szymczyk G, Zebrowska-Lupina I. Influence of antiepileptics on efficacy of antidepressant drugs in forced swimming test[J]. Pol J Pharmacol, 2000, 52 (5): 337-344.
    [605] Rostock A, Hoffmann W, Siegemund C, et al. Effects of carbamazepine, valproate calcium, clonazepam and piracetam on behavioral test methods for evaluation of memory-enhancing drugs[J]. Methods Find Exp Clin Pharmacol, 1989, 11 (9): 547-553.
    [606] Tomasiewicz HC, Mague SD, Cohen BM, et al. Behavioral effects of short-term administration of lithium and valproic acid in rats[J]. Brain Res, 2006, 1093 (1): 83-94.
    [607] Rajkowska G. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells[J]. Biol Psychiatry, 2000, 48 (8): 766-777.
    [608] Passingham RE, Toni I, Rushworth MF. Specialisation within the prefrontal cortex: the ventral prefrontal cortex and associative learning[J]. Exp Brain Res, 2000, 133 (1): 103-113.
    [609] Tekin S, Cummings JL. Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update[J]. J Psychosom Res, 2002, 53 (2): 647-654.
    [610] Strakowski SM, Delbello MP, Adler CM. The functional neuroanatomy of bipolar disorder: a review of neuroimaging findings[J]. Mol Psychiatry, 2005, 10 (1): 105-116.
    [611] Stanfield AC, Moorhead TW, Job DE, et al. Structural abnormalities of ventrolateral and orbitofrontal cortex in patients with familial bipolar disorder[J]. Bipolar Disord, 2009, 11 (2): 135-144.
    [612] El-Mallakh RS, Huff MO. Mood stabilizers and ion regulation[J]. Harv Rev Psychiatry, 2001, 9 (1): 23-32.
    [613] Emrich HM, Wolf R. Valproate treatment of mania[J]. Prog Neuropsychopharmacol Biol Psychiatry, 1992, 16 (5): 691-701.
    [614] Post RM, Weiss SR, Chuang DM. Mechanisms of action of anticonvulsants in affective disorders: comparisons with lithium[J]. J Clin Psychopharmacol, 1992, 12 (1 Suppl): 23S-35S.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700