固体非均匀混合介质频域介电特性测量理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着微波检测技术在道路工程领域中的应用,用于道路施工的岩石、沙子等非均匀混合介质介电特性的研究成为热点,非均匀混合介质测量理论也成为介电测量技术发展的一个重要分支。非均匀混合介质介电特性主要受界面极化影响,而界面极化发生频率范围较宽。因此,在不同频段对固体非均匀混合介质介电测量技术的研究具有重要意义。
     文章对固体非均匀混合介质在低频、射频和高频段的介电测量方法展开讨论。在低频段采用电容法,设计一款新型平板电容器。电容器测量原理是将测量样本看做电容和电导并联的等效集总回路,通过测量回路导纳得到样本介电常数。通过对传统电容器结构和算法的改进,提高电容器的测量精度。在射频段,从分析电极间场分布出发,根据似稳场理论建立极板间导纳的高阶场函数,通过计算贝萨尔零阶场和高阶场函数得到样本介电常数。此方法有效提高射频段电容器测量精度和测量频率上限,使得对非均匀介质宽频介电谱测量成为可能。
     在高频段,提出了基于微带线结构的谐振微带环和平行微带线的介电测量方法。微带环采用微扰原理。微带环紧贴测量样本,构成等效回路,样本介电常数差异会影响微带环电场分布,微带环的谐振频率与品质因数发生扰动,通过计算这种变化可得到样本的介电常数;平行微带线利用相位法,通过检测微带线插入样本前后相位的变化来计算样本的介电常数。平行微带线结构不同于传统的微带传输线结构,是将微带线底层的接地板改为与顶层相同的微带线结构,这种结构不仅保持微带线原有传输模式,同时增强边缘电场分布,从而提高测量分辨率和精度。与传统的平行线、同轴线、波导和谐振腔相比,这两种微带线结构的测量方法对样本尺寸加工精度要求低,适合固体材料测量。
     在较高频段,岩石等混合介质介电常数受其电导率的影响较小,因此,采用不同检测方法分别对沙子含水量,饱水砂岩孔隙度等物理参数进行实验测量,并对实验结果采用经验公式进行验证。在低频至射频段,采用平板电容器分别对用作路基的饱水岩石、油气岩石和泥质岩石的介电谱进行测量与讨论,对多弛豫过程和低频弛豫强度异常增大现象进行分析;对模拟路面结构的两相和三相平板电容模型的介电谱进行解析计算和实验测量,将计算值与测量结果进行比对分析。
With the application of microwave nondestructive testing used in road works in recentyears, the research on dielectric properties of inhomogeneous complex media like rock andsand for road construction has become the focus. Inhomogeneous complex media for theresearch of dielectric measurement techniques provide an important branch. The dielectricproperties of inhomogeneous complex media are mainly influenced by the interfacialpolarization and the interfacial polarization always occurs in broadband. Hence, it is crucial toresearch on the dielectric measurement technology of solid inhomogeneous complex media indifferent frequency bands.
     This dissertation mainly introduces the dielectric permittivity measurement methods ofsolid inhomogeneous complex materials in different frequency bands. In LF band, thecapacitance method is used to design a new plate capacitor. In the capacitor, the measuredsamples are seen as the parallel lumped circuit of the equivalent capacitance and conductance.By measuring the admittance, the sample dielectric permittivity is obtained. With theimprovement of the structure and algorithm of traditional capacitors, the capacitormeasurement accuracy is improved. In RF band, according to the analysis of field distributionbetween the electrodes and the quasi-static field, a higher order function of admittancebetween the electrodes is established, and through calculating the zero order and higher orderBesar functions, the sample permittivity is obtained. The algorithm improves the measuringprecision of capacitor and the upper limit of measurement frequency, which makes themeasurement for the broadband dielectric spectroscopy of inhomogeneous media possible.
     In HF band, a micro-strip ring resonator and a parallel microstrip line both based onmicro-strip transmission line are presented. The microstrip ring is based on perturbationtheory. When microstrip ring closes to the sample to composite an equivalent dielectric model,the sample permittivity differences will affect the electric field distribution of microstrip ring,which will disturb the resonant frequency and quality factor of the microstrip ring. Inaccordance with the disturbance, the sample dielectric permittivity is obtained by calculation.Parallel microstrip line is based on phase. Through calculating the phase difference of microstrip line, the sample dielectric permittivity is obtained. Parallel microstrip line isdifferent from the traditional microstrip line, and the plate ground at the bottom layer ischanged to the strip line, same with the top layer. The structure not only keeps the originaltransmission mode of microstrip line, and the edge electric field intensity is increased, butimproves the resolution and the accuracy of measurement. Compared with the traditionalparallel lines, coaxial cable, waveguide and resonant cavity methods as well, the twoproposed microstrip line probes have low requirements for mechanical dimensions of sample,and are suitable for the measurement of solid materials.
     In the higher frequency range, the conductivity has little impact on dielectric permittivityof inhomogeneous complex media. Therefore, with different detection methods, the sandmoisture content, and the porosity of water saturated sandstones were measured, theexperimental results are verified by using the empirical formula. In LF and RF bands, used bythe plate capacitor, the dielectric spectra of the various rocks such as oil and gas bearing rocks,water saturated rock, and shaly rock as the rock subgrade are measured and discussed, themultiple relaxation processes and the abnormal rises in relaxation intensity at low frequenciesare analyzed. The dielectric spectra of two-phase and three-phase flat capacitor materials to beused to simulate of pavement structure are analytically calculated and experimentallymeasured, and the measurement results are confirmed by the calculated values.
引文
[1] Shilov V. N.,Delgado A.V.,Gonzalez F.,et al. Thin double layer theory of thewide-frequency range dielectric dispersion of suspensions of non-conducting sphericalparticles including surface conductivity of the stagnant layer [J]. Colloids and SurfacesA: Physicochemical and Engineering Aspects,2001,V192(1-3):253-265
    [2] Aoshima M,Satoh A. Two-dimensional Monte Carlo simulations of a colloidaldispersion composed of rod-like ferromagnetic particles in the absence of an appliedmagnetic field [J]. Journal of Colloid and Interface Science,2006,v293(1):77-87
    [3] Satoh A. Three-dimensional Monte Carlo simulations of internal aggregate structures ina colloidal dispersion composed of rod-like particles with magnetic moment normal tothe particle axis [J]. Journal of Colloid and Interface Science,2008,v318(1):68-81
    [4]李大蔚,乔继欣,王晓琳,等.压力驱动膜过程中浓差极化的介电模型[J].化学学报,2006,67(4):300-306
    [5]李大蔚,乔继欣,王晓琳,等.探测膜/溶液体系内部信息的介电谱方法-以模型和解析为中心[J].膜科学与技术,2007,27(2):1-4
    [6] Osaki T.,Tanioka A. Dielectric relaxation in the intermediate layer in a bipolarmembrane under the water split-ting phenomenon I. Shift of the dielectric properties bymeans of time-domain impedance measurements [J]. Journal of Colloid and InterfaceScience,2002,v253:88-93
    [7]赵孔双.微小生物细胞的介电研究方法[J].生物物理学报,2000,16(1):176-181
    [8] Y C Wang,X H Xu,Y L Liu,et al. Set pair analysis model in surrounding rockclassification of highway tunnel [J]. Harbin Gong ye Daxue Xuebao/Journal of HarbinInstitute of Technology,2011,v43(4):114-119
    [9]王国平,金文玉.计算机辅助沉积岩岩石分类和命名系统的设计研究[J].地质学刊,2010,34(4):391-396
    [10] Tanaino A. S. Rock drill ability classification. Part II: Canonical representation of rockproperties in the rock classification by fracture resistance [J]. Journal of MiningScience,2008, v44(6):600-615
    [11] Medina, C. R.,Rupp John A.,Barnes David A. Effects of reduction in porosity andpermeability with depth on storage capacity and injectivity in deep saline aquifers: Acase study from the Mount Simon Sandstone aquifer [J]. International Journal ofGreenhouse Gas Control,2011,v5(1):146-156
    [12] Abdullah H. H.,Elsadek H.A.,Eldeeb H.E.,et al. Fractional derivatives based schemefor FDTD modeling of nth-order Cole-Cole dispersive media [J]. IEEE Antennas andWireless Propagation Letters,2012,v11:281-284
    [13]杨丽君,齐超亮,邓帮飞,等.采用修正Cole-Cole模型提取油纸绝缘频域介电谱的特征参量方法[J].高电压技术,2013,v39(2):310-316
    [14] Titov K.,Komarov V.,Tarasov V.,et al. Theoretical and experimental study of timeDomain-induced polarization in water-saturated sands [J]. Journal of AppliedGeophysics,2002,v50(4):417-433
    [15] Pavlin M.,Miklavcic D. Effective Conductivity of Suspension of Permeabilized Cells: ATheoretical Analysis [J]. Biophysical Journal,2003,v85:719-729
    [16] Dias CA. Developments in a model to describe low-frequency electrical Polarization ofrocks [J]. GeoPhysics,2000,v65(2):437-451
    [17]席道瑛,杜赟,易良坤.低频下渗透率尺度效应对弛豫过程影响的实验分析[J].岩石力学与工程学报,2009,v28(1):2795-2801
    [18]张辉.复电阻率三维电磁场正反演研究[D].吉林:吉林大学,2006:56-63
    [19] Palin W.M.,Fleming Garry J.P.,Marquis Peter M. An evaluation of the mechanicalproperties of 'hydrothermal' dental glass after water immersion and surface polishing[J].Dental Materials,2003,v19(2):92-100
    [20]马韬,陈明生,吴先良,等.基于GPU加速的高阶矩量法研究与应用[J].微波学报,2013,29(4):34-37
    [21]肖洪天,岳中琦.用边界元方法分析复合材料中的裂纹问题[J].计算力学学报,2003,20(6):721-724
    [22]董健.边界积分方程及快速算法在分析复杂电磁问题中的研究与应用[D].长沙:国防科学技术大学,2005:70-75
    [23] D Wu D,J Chen,C Liu. Numerical evaluation of effective dielectric Properties of three-dimensional composite materials with arbitrary inclusions using a finite-differencetime-domain method [J]. Journal of Applied physics,2007,v102(2):124-127
    [24] Calame J P. Evolution of Davidson-Cole relaxation behavior in randomconductor-insulator composites [J]. Journal of Applied Physics,2003, v94(9):5945-5957
    [25] Asami K. Simulation of dielectric relaxation in Periodic binary systems of complexgeometry [J]. Journal of Colloid and Interface Science,2005,v292(l):228-235
    [26] Zhao X.,Wu Y.,Fan Z.,et al. Three-dimensional simulations of the complex dielectricproperties of random composites by finite element method [J]. Journal of AppliedPhysics,2004,v95(12):8110-8118
    [27]赵杰.边坡稳定有限元分析方法中若干应用问题研究[D].大连:大连理工大学,2006:23-26
    [28]吴昌英,丁君,韦高,等.一种微波介质谐振器介电常数测量方法[J].测控技术,2007,27(6):95-99
    [29]李最雄,杨涛,汪万福,等.西藏壁画空鼓病害的探地雷达检测[J].电子科技大学学报,2010,39(6):864-869
    [30] Casanova J.J.,Evett S.R,Schwartz R.C. Design of access-tube TDR sensor for soilwater content: Testing [J]. IEEE Sensors Journal,2012,12(6):2064-2070
    [31]徐江峰,金永兴,邬良能,等.理想导体金属谐振腔电磁场微扰理论研究[J].微波学报,2004,20(1):26-30
    [32]尹虎承.基于自动平衡电桥方法阻抗测量系统的研究[D].哈尔滨:哈尔滨工业大学,2010:30-34
    [33]马为民,吴维韩.电源谐波对介质损耗测量的影响[J].清华大学学报(自然科学版),1997,37(1):65~68
    [34] Hsieh L H,Chang K. Equivalent lumped elements G,L,C and unloaded Q's of closed-and open-loop ring resonators[J]. IEEE Transactions on Microwave Theory andTechniques,2002,v50(2):453-460
    [35] Sagbas M, Electronically tunable mutually coupled circuit using only two activecomponents[J]. International Journal of Electronics,2014,v101(3):364-374
    [36] Biryuk N.D.,Nechaev Y.B.,Alyohin S.Y. A problem of stability of parametrical systemof two coupled circuits with external conductive connection [J]. Radioelectronics andCommunications Systems,2008,v51(8):426-430
    [37] Biryuk N.D.,Nechaev Y.B.,Alyohin S.Y. Stability criteria for parametric systemconsisting of two coupled circuits with external conductor link [J]. Radioelectronics andCommunications Systems,2008,v51(9):495-501
    [38]周伟,檀珠峰,田蔚风.分档电桥电路的简单标定方法[J].测控技术,2003,v43(9):15-19
    [39]吴昌英,丁君,韦高等.一种微波介质谐振器介电常数测量方法[J].测控技术,2008,27(6):134-137
    [40]钱江波,韩中合,田松峰等.流动湿蒸汽湿度测量微波谐振腔结构分析[J].华北电力大学学报,2005,32(3):52-57
    [41]阮开智,韦高,袁晴晴.短路反射法测量复介电常数的研究[J].测控技术,2010,29(11):97-99
    [42]倪尔瑚.材料科学中的介电谱技术.北京:科学出版社,1999:15-50
    [43] Mopsik F. I. Transformation of time-domain relaxation data into the frequency domain[J]. IEEE transactions on electrical insulation,1985,vEI-20(6):957-964
    [44] Mopsik F. I. Precision time-domain dielectric spectrometer [J]. Review of ScientificInstruments,1984,v55(1):79-87
    [45] Hanai T. Electric properties of emulsions. In: P.Sherman Editor, Emulsion science [J].Academic Press,1968:353-468
    [46] Feldman Y.,Wasserman E.,Srolovitz D.J,et al. High-rate, gas-phase growth of MoS2nested inorganic fullerenes and nanotubes [J]. Science,1995,v267(5195):222-225
    [47] Feldman Y.,Margulis L.,Homyonfer M.,et al. Preparation of nested fullerenes andnanotubes of MoS2[J]. High Temperature Materials and Processes,1996,v15(3):163-169
    [48] Rica R.A., Jiménez M. L., Delgado, A.V. Electric permittivity of concentratedsuspensions of elongated goethite particles [J]. Journal of Colloid and Interface Science,2010,v343(2):564-573
    [49] Hollingsworth A.D.,Saville D.A. Dielectric spectroscopy and electrophoretic mobilitymeasurements interpreted with the standard electrokinetic model [J]. Journal of Colloidand Interface Science,2004,v272(1):235-245
    [50] Fornes J A. Dielectric relaxation around a charged colloidal cylinder in an electrolyte [J].Journal of Colloid and Interface Science,2000,v222(1):97-102
    [51] Cametti C. Dielectric spectra of ionic water-in-oil microemulsions below percolation:Frequency dependence behavior [J]. Physical Review E-Statistical,Nonlinear,and SoftMatter Physics,2010,v81(3):117-123
    [52] Sengwa RJ,Soni A. Low-frequency dielectric dispersion and microwave dielectricproperties of dry and water-saturated lime-stones of the jodhpur region [J]. Geophysics,2006,v71:G269-G277
    [53] Ahualli S.,Jimenez ML.,Delgado AV,et al. Electro-acoustic and dielectric dispersionof concentrated colloidal suspensions [J]. IEEE Transactions on Dielectrics andElectrical Insulation,2006,v13(3):657-663
    [54] Midmore B.R., O'Brien, R.W. Conductivity of concentrated suspensions at lowfrequencies [J]. Journal of Colloid and Interface Science,1988,v123(2):486-493
    [55] Chassagne C.,Bedeaux, D. The dielectric response of a colloidal spheroid [J]. Journal ofColloid and Interface Science,2008,v326(1):240-253
    [56] Russell A.S.,Scales P.J.,Mangelsdorf C.S.,et al. High-frequency dielectric response ofhighly charged sulfonate lattices [J]. Langmuir,1995,v11(5):1553-1556
    [57] Shilov V.N.,Borkovskaja, Y.B.,Dukhin, A.S. Electroacoustic theory for concentratedcolloids with overlapped DLs at arbitrary κa I. Application to nanocolloids andnonaqueous colloids [J]. Journal of Colloid and Interface Science,2004,v277(2):347-358
    [58] Grosse C.,Arroyo, F.J.,Shilov, V. N.,et al. Numerical results for the dielectricdispersion parameters of colloidal suspensions [J]. Journal of Colloid and InterfaceScience,2001,v242(1):191-196
    [59] Villafuerte M.,Bridoux G..,Heluani S.P.,et al. Dielectric permittivity and conductivityspectra of La0.5Ca0.5MnO3thin films presenting electric field induced metal-insulatortransition[J]. Thin Solid Films,2010,v518(8):2261-2265
    [60] Pavlin M.,Miklavcic D. Effective Conductivity of Suspension of Permeabilized Cells: ATheoretical Analysis [J]. Biophysical Journal,2003,v85:719-729
    [61] Russell A.S.,Scales P.J.,Mangelsdorf C.S.,et al. Electrophoretic investigation of therelaxation term in electrokinetic theory [J]. Langmuir,1995,v11(4):1112-1120
    [62] Fernandez B. A.,Martinez G. R.,Cabrerizo Vilchez, M.A.,et al. Effect of surface chargedensity on the electrosurface properties of positively charged polystyrene beads [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,1994,v92(1-2):121-126
    [63] Zholkovskij E.K.,Shilov V.N.,Koval'chuk V.I. Ac and dc conductivities of a dispersesystem of the conductor-in-conductor type [J]. Journal of Colloid and Interface Science,1996,v184(2):414-418
    [64] Vera P.,Gallardo V.,Salcedo J.,et al. Colloidal stability of a pharmaceutical latex:Experimental determinations and theoretical predictions [J]. Source: Journal of Colloidand Interface Science,1996,v177(2):553-558
    [65] Russell A.S.,Scales P.J.,Mangelsdorf, C.S.,et al. Electrophoretic investigation of therelaxation term in electrokinetic theory [J]. Langmuir,1995,v11(4):1112-1116
    [66] Rosen L.A.,Saville, D.A. Dielectric spectroscopy of colloidal dispersions. Comparisonsbetween experiment and theory [J]. Langmuir,1991,v7(1):36-42
    [67] Rosen L.A., Baygents J.C., Saville D.A. Interpretation of dielectric responsemeasurements on colloidal dispersions using the dynamic stern layer model,Journal ofChemical Physics,1993,v98(5):4183-4187
    [68] Tirado Mónica, Grosse Constantino. Dependence of the broad frequency dielectricspectra of colloidal polystyrene particle suspensions on the difference between thecounterion and co-ion diffusion coefficients [J]. Journal of Colloid and InterfaceScience,2006,v298(2):973-981
    [69] Grosse C.,Tirado M.,Pieper W.,et al. Broad frequency range study of the dielectricproperties of suspensions of colloidal polystyrene particles in aqueous electrolytesolutions [J]. Journal of Colloid and Interface Science,1998,v205(1):26-30
    [70] Carrique F.,Zurita L.,Delgado V. Thin double-layer approximation and exact standardprediction for the dielectric response of a colloidal suspension [J]. Journal of Colloidand Interface Science,1995,v170(1):176-181
    [71] Carrique, F,Arroyo, F.J.,Delgado A.V. Electrokinetics of concentrated suspensions ofspherical colloidal particles: Effect of a dynamic stern layer on electrophoresis and DCconductivity [J]. Journal of Colloid and Interface Science,2001,v243(2):351-361
    [72] Grosse C.,López-García J.J.,Horno J.,et al. Influence of the finite ion size on thepredictions of the standard electrokinetic model: Frequency response [J]. Journal ofColloid and Interface Science,2009,v336(2):857-864
    [73] Wyman J. Chem Review[J].1936,v19:213-216
    [74] Oncley J L. Journal of the American Chemical Society [J],1938,v60:1115-1123
    [75] Abfalterer W.P.,Bateman F.B.,Dietrich F.S.,et al. Inadequacies of the nonrelativistic3N Hamiltonian in describing the n+d total cross section [J]. Physical Review Letters,1998,v81(1):57-60
    [76] Cook H F. journal of applied physics[J].1952,v3:249-252
    [77] Ishikawa A.,Hanai T.,Koizumi N. Evaluation of relative permittivity and electricalconductivity of ion-exchange beads by analysis of high-frequency dielectric relaxations[J]. Japanese journal of applied physics,1981,v20(1):79-86
    [78] Hanai T.,Sekine K. Theory of dielectric relaxations due to the interfacial polarizationfor two-component suspensions of spheres [J]. Colloid and Polymer Science,1986,v264(10):888-895
    [79] Schwan H. P.,Schwarz G.,Maczuk J. Journal of Chemical Physics [J].1962,v66:2626-2635
    [80] Dukhin S.S. Dielectric phenomena and the double layer in disperse systems andpolyelectrolyte [M]. New York:John Wiley and Sons,1974:45-49
    [81] Hill R J. Electric-field-enhanced transport in polyacrylamide hydrogel nanocomposites[J]. Journal of Colloid and Interface Science,2007,v316(2):635-644
    [82] Cooper J.,Hill R.M. Dielectric spectroscopy of liquid lamellar phases [J].Journal ofColloid and Interface Science,1996,v180(1):27
    [83] Shilov V.N.,Delgado A.V.,Gonzalez C. F.,et al. Thin double layer theory of thewide-frequency range dielectric dispersion of suspensions of non-conducting sphericalparticles including surface conductivity of the stagnant layer [J]. Colloids and SurfacesA: Physicochemical and Engineering Aspects,2001,v192(1-3):253-265
    [84]邱万英.非理想边缘电容器电容的分析[J].华东交通大学学报,25(3):86-89
    [85]杨滔,彭敏放,沈美娥.应用准稳态测量及小波变换的接地网腐蚀检测[J].仪器仪表学报,2011,32(9):2132-2137
    [86]朱樟明,钟波,杨银堂.基于RLC π型等效模型的互连网络精确焦耳热功耗计算[J].物理学报,2010,59(7):4895-4899
    [87] Mazauric V.,Rondot L.,Wendling. Enhancing quasi-static modeling:A claim forelectric field computation [J]. IEEE Transactions on Magnetics,2013,v49(5):1629-1632
    [88] Parise M. Second-order formulation for the quasi-static field from a vertical electricdipole on a lossy half-space [J]. Progress in Electromagnetics Research,2013,v136:509-521
    [89] Saxton J.A,Lane J.A. Electrical Properties of seawater [J]. Wireless Engineer,1952,v10:269-273
    [90] Wharton R.P.,Hazen G.A.,Rau R.N. Electromagnetic Propagation logging: advancesin technique and interpretation [C], presented at the55th Ann,Tech Conf. of the Societyof petroleum Engineers of AIME,1980,v9:9276-9279
    [91] Chao S.H. Measurements of microwave conductivity and dielectric constant by thecavity perturbation method and their errors [J]. IEEE Transactions on MicrowaveTheory and Techniques,1985,v33(6):519-526
    [92] Nakai H.,Kobayashi Y.,Ma Z.W. Wide-band measurements for frequency dependenceof complex permittivity of a dielectric rod using multi-mode tm0m0cavities [C].Proceedings of2008Asia Pacific Microwave Conference(APMC2008),Proceedings of2008Asia Pacific Microwave Conference(APMC2008),2008:2352-2356
    [93] Chen, M.Y.,Yu J.P.,Xu D.M. Measurement of complex permittivity of thin substratesusing the TE01n resonant cavity [J]. Microwave and Optical Technology Letters,2004,v42(4):274-277
    [94] Alexopoulos N.G... Integrated-Circuit Structures on Anisotropic Substrates [J]. IEEETransactions on Microwave Theory and Techniques,1985,v33(10):847-881
    [95] Pozar D. M. Microwave Engineering [M]. New York:John Wiley,1998,215-220
    [96]李宗谦,佘京兆,高葆新.微波工程基础[M].北京:清华大学出版社,2005:35-50
    [97] Shen L.C. Dielectric properties of reservoir: rocks at ultra-high frequencies [J].Geophysics,1985,v50(4):692-704
    [98]黄卡玛.复杂电磁媒质介电系数测量方法及实验研究[D].四川:四川大学,2006:23-28
    [99]唐璞,韩周安,罗航,等.测量散粒状介质复介电常数的同轴腔法[J].微波学报2005,4(21):150-152
    [100]F. Adamo,G. Andria,F. Attivissimo,et al. An acoustic method for soil moisturemeasurement [J],IEEE Transactions on Instrumentation and Measurement,2004,v53:891–898
    [101]沈金松,苏本玉,王智茹,等.泥质砂岩电导率模型的分析及对比[J].测井技术,2008,32(5):385-393
    [102]Nisanci M. H.,De P. F.,Koledintseva M. Y.,et al. From Maxwell Garnett to Debyemodel for electromagnetic simulation of composite dielectrics-Part II: Randomcylindrical inclusions [J]. IEEE Transactions on Electromagnetic Compatibility,2012,v54(2):280-289
    [103]马新仿,张士诚,郎兆新.分形理论在岩石孔隙结构研究中的应用[J].岩石力学与工程学报,2009,22(1):2164-2167
    [104]姚军,赵秀才,衣艳静,等.储层岩石微观结构性质的分析方法[J].中国石油大学学报(自然科学版),2007,13(1):224-230
    [105]殷之文.电介质物理学[M].北京:清华大学版社,2006:101-105
    [106]Roland C,Bernard A.电介质材料及其介电性能[M].北京:科学出版社,2005:35-50
    [107]Beltramo P J.,Roa R.,Carrique F.,et al. Dielectric spectroscopy of concentratedcolloidal suspensions [J]. Journal of Colloid and Interface Science,2013,v408(1):54-58
    [108]肖占山,徐世浙,罗延钟.含气泥质砂岩频散特性的实验研究[J].天然气工业,2006,26(10):63-66
    [109]Cole K.S.,Cole R.H. Dispersion and absorption in dielectrics [J]. Journal of ChemicalPhysics,1961,v9:341-51
    [110]靳钊,贺之莉.路面层状混合电介质低频介电增强现象研究[J].长安大学学报(自然版),2014,v34(2):45-50
    [111]J C Li. Numerical convergence and physical fidelity analysis for Maxwell's equations inmaterials [J]. Computer Methods in Applied Mechanics and Engineering,2009,v198(37):3161-3172
    [112]骆淼.周期结构混合介质电性谱的三维有限差分模拟[D].武汉:中国地质大学,2009:41-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700