碳纤维复合芯导线综合性能的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来我国电力系统迅猛发展,架空导线输送容量出现严重不足的现象,各国供电公司都在积极寻找应对的方案。方案中最佳的选择是寻找一种合适的扩容导线,最好不改变原有输电走廊。碳纤维复合芯导线即是这种最佳选择。然而针对碳纤维复合芯导线挂网运行的试验及检测都不系统。
     按国家标准的检测程序建立一个碳纤维复合芯导线的试验平台,试验平台主要由检测设备构成,并且针对碳纤维复合芯导线的试验对设计的拉力机,升流器,过滑轮,微风振动系统,电阻率测定仪,直流电阻测定仪等提出更为合理的参数,确保整个试验与检测的顺利进行。
     对碳纤维复合芯导线的高温拉断力,高温握力,温度与弧垂,耐振疲劳等机械性能进行试验,并由此得出碳纤维复合芯导线弧垂低,抗覆冰性能良好等关键性能优于现挂网运行的钢芯铝绞线的指标,碳纤维复合芯导线的施工以及挂网运行需要注意的铝股变形和过滑轮折断等问题,对导线寿命预测等提供一个新的标准。
     对导线进行直流电阻的检测,铝股电阻率的测定,导线载流量和电晕与无线电干扰等电气性能分别进行试验,得出了碳纤维复合芯导线优于钢芯铝绞线的扩容作用,高温运行下扩容将近一倍,另外碳纤维复合芯导线的起晕电压也较高,易于高压高温下运行,无线电的电压也较小。最终也为碳纤维复合芯导线挂网运行提供较为准确的数据支持。
In recent years China's electric power systems developed rapidly, the phenomenon of transmission capacity of overhead conductors is serious deficiencies, the power company of all the countries are actively looking for the response programs. The best choice of programs is to find a suitable expansion of wire, preferably without changing the transmission corridor. ACCC is the best choice for this. However, the test and inspection for ACCC hanging on to run are not systems.
     To establish a test platform for test a ACCC according to national standards. The test platform is mainly made up of testing equipment. The system include the Tensile testing machine, High-current generator, over pulleys, Aeolian vibration system, electrical resistance instrument, etc. the DC These machines are more reasonable than before because of designing carefully.
     The ACCC is many good mechanical properties. The tensile force at high temperature, the grip at high temperature, the relationship between sag and temperature , the perform at vibration etc. We can conclude lots of better performance after the test. In addition, we can expect more accurately the life of ACCC by the test results.
     The ACCC is lots of good electrical performances. These are the test of DC resistance, the test of an aluminum resistivity, and the capacity of current of an ACCC, the occurrence of the corona at high voltage and other electrical performances. So, we can prove that the ACCC have better performances at high temperature and high voltage. The current capacity of ACCC is double the general ASCR under normal running. We can also conclude that the ACCC have a higher occurrence voltage for corona and a lower radio induced voltage. In all, The test is the basis of the ACCC running in general grid.
引文
[1]何州文,陈新,王秋玲.国内碳纤维复合芯导线的研究和应用综述[J].电力建设. 2010,31(4): 90-93
    [2]甘兴忠.碳纤维复合芯软铝绞线等扩容量导线的性能及应用[J].电线电缆. 2007(5): 37-41
    [3]碳纤维复合芯软铝绞线等扩容量导线的性能及应用[J].信息动态. 4:43
    [4] Magne Runde, Harald Jensvold, and Mario Jochim. Compression Connectors for StrandedAluminum Power Conductors. IEEE TRANSACTIONS ON POWER DELIVERY, VOL.19,NO.3,JULY 2004:933-941
    [5]尤志魏,朱爱钧,潘裕新等.碳纤维复合芯(ACCC)导线在上海电网应用分析[J].华东电力. 2009, 8(37): 1292-1295
    [6]瞿业明.新型扩容导线及在电网改造中的应用[J].浙江电力. 2007, 1:75-78
    [7] Tim KavanaghOisín Armstrong. An Evaluation of High Temperature Low Sag Conductors forUprating the 220kV Transmission Network in Ireland. UPEC2010: 1-5
    [8]王作民.新型导线的介绍[J].江苏电机工程. 2004,4(23): 50-51
    [9] ACCC碳纤维复合芯导线[J].简明电讯: 70
    [10]王国忠,黄豪士.节能型扩容导线的应力及弧垂的计算[J].电线电缆. 2009, 5:11-14
    [11]黄国飞,季世泽,蒋华君.碳纤维芯软铝绞线的特性研究与应用[J].电线电缆. 2007, 4:10-14
    [12]王洪,柳亦兵,董玉明等.基于短期振动测量数据的线路振动状态评估方法[J].电网技术.2008, 12(32): 12-16
    [13]王洪,柳亦兵,董玉明等.架空线路导线疲劳试验振动幅度的研究[J].中国电机工程学报. 2008, 4(28): 123-128
    [14]金辉,方伟,冯佃选等. 720mm2导线“一牵六”放线工艺简介[J].湖北电力. 2009, 33: 49-52
    [15]彭庆京.新型的放线恒张力控制系统[J].安徽科技, 2004, 6: 37
    [16]张伟军.张力放线中过线滑车的数量[J].江苏电机工程, 2002, 21(4): 42-44
    [17]璞强.对山区架线工器具改进的建议[J].上海电力. 2006, 5: 545-546
    [18]何正祥.恒张力放线系统的设计及其制作[J].电线电缆. 2000, 7: 37-39
    [19]崔海英.浅谈放线张力装置的改进设计[J].电线电缆. 2003, 6: 43-46
    [20]李德平.张力放线中的电防护方式与接地滑车[J].电力金具. 2004, 1: 5-12
    [21]刘正庆.转角塔双滑车挂具长度不作调整的条件分析[J].广西电力工程. 1999, 2: 38-40
    [22] Azevedo CRF. Cescon T.Failure analysis of aluminum cable steel reinforced(ASCR) conductor of the transmission line crossing the paranariver[J]. Engineering Failure Anlysis, 2002(9): 645-664
    [23] Simpson A, Salmon N J, Taylor C N. Computational comparison of efficaciesof aeolian vibration damping devices for multi-conductor overhead power lines[J]. IEEE Proceedings. 1990, 137(3):225-232
    [24] Cigada A, Diana G, Falco M, et al. Vortex shedding and wake-induced vibrations in single and bundle cables[J]. Journal of Wind Engineering and Industrial Aerodynamics. 1997, 72: 253-263
    [25] Brunair R M, Ramey G E, Duncan R. An experimental evaluation of s-n curves and validity of miner’s cumulative hypothesis for an ACSR conductor[J].IEEE Transactions on Power Delivery. 1988, 3(3): 1131-1140
    [26] Zhou Z R, Goudreau S, Fiset M, et al. Single wire fretting fatigue tests for electrical conductor bending fatigue evaluation[J]. Wear, 1995, (181-183): 537-543
    [27] Ramey G E,Silva J M. An experimental evaluation of conductor aeolian fatigue damage mitigation by amplitude reduction[J]. IEEE Transactions on Power Apparatus and Systems, 1981, 100(12): 4935-4940
    [28] IEEE Std 1138-1994 IEEE standard construction of composite fiber optic overhead ground wire(OPGW)for use onelectric utility power lines[S]. Power Communications Committee of the IEEE Power Engineering Society. 1994
    [29]景朝,徐乃管.复合交变应力条件下的导线疲劳试验方法[J].电力建设, 2001, 22(2): 18-20
    [30] IEEE Committee Report. Standardization of conductor vibration measurements[R]. 1966, 85(1)
    [31] Pullen J. The control of aeolian vibration in single-conductor transmission lines[C]. IEEE Winter Power Meeting, New York, 1970
    [32] Palo Alto. Wind induced conductormotion[M]. Transmission line reference book. California, USA. Electric Power Research Institute. 1979
    [33] Walter B. Recommendations for the evaluation of the lifetime of transmission line conductors[C]. CIGRE, Sarajevo, 1979
    [34] EirGrid. A strategy for the development of Ireland Electricity Grid for a Sustainable and Competitive Future[C]. GRID. 2009
    [35] L.O.Barthold,D.E.Douglass, and D.A.Woodford. Maximising the capability of existing AC transmission Lines[C]. CIGRé. 2008
    [36] Conductors for the Uprating of Overhead Lines, CIGRéWorking Group B2.12[M]. Technical Brochure. 2004
    [37] E.J.Bosze, A. Alawar, A.Lim,J.Randy, Y.I.Tsai,and S.Nutt. Comparison ofACCC/TW with ACCR,ACSS and ACSR, Univ.of Southern California, M.C.Gill Foundation: Composites Center. Unpub. Report. 2006,7: 54-61
    [38] I.Albizu, A.J.Mazón, and I.Zamora. Flexible Strain-Tension Calculations for Gap-Type Overhead Conductor[J], IEEE Transactions on Power Delivery. 2009, 12(3): 45-52
    [39] Braga G E, Nakamura R, Furtado T A. Aeolian vibration of overheadtransmission line cables. Endurance limits[C]. IEEE/PES Transmi-ssion&Distribution conference&Expositon, Lastin, America. 2004: 487-492
    [40] Overhead Conductor Safe Design Tension with Respect to Aeolian Vibration[J]. CIGRéWorking Group B2. 2005, 11: 273
    [41] P. Catchpole. Development of Stress-Strain Polynomials and creep Parameters for ACCC/TW Conductors[J]. Power Engineers, Inc. 2007,2: 34
    [42] Papailiou K O. On the bending stiffness of transmission line conductors[J]. IEEE Transactions on Power Delivery. 1997, 12(4):1576-1588

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700