宽带无线通信中小波包多载波调制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着经济、社会和科技的发展以及人们生活水平的提高,人们对通信方式尤其是无线通信的要求也越来越高。随时随地、高速率、高质量的无线数据传输已经成为4G发展的方向。目前,紧张的无线频谱资源已经使频谱利用率成为无线通信系统面临的重要问题。多载波调制技术能有效地解决上述问题并以其高效的频谱利用率和良好的抗多径衰落性能成为4G的核心传输技术之一。正是在这一背景下,本文主要针对基于小波包的新型多载波调制技术及信道估计和均衡技术进行了深入的研究。本文研究工作的主要内容与成果如下:
     1.提出了基于最优导频信号辅助调制的离散小波包调制(DWPM)系统。我们利用基于LMS(Least Mean Square)算法的最优导频信号辅助调制消除信道干扰的同时,提出了一种新的传输帧结构与之相匹配,然后通过欧式距离检测出解调后的码元,最后推导出基于QPSK调制的离散小波包调制(DWPM)设计方案的误比特率公式,仿真结果表明:在瑞利衰落信道下,DWPM系统的性能要比传统的OFDM系统的性能要好,OPSAM-DWPM系统的性能要比普通的PSAM-DWPM系统的性能要好,最优导频信号辅助调制(OPSAM)的性能要比DQPSK的性能要好并且最优导频信号辅助调制(OPSAM)在一定信噪比范围内没有误码下限。
     2.提出了一种基于导频信号和最大似然信道估计算法的离散小波包调制(DWPM)系统。我们通过对导频信号结构的特殊设计,来获得信道状态信息,并利用最大似然估计(Maximum Likelihood Estimation)算法估计出最优的信道状态信息,最后,利用基于迫零(Zero Forcing,ZF)算法的H~矩阵消除由多径衰落信道引起的码间干扰(Inter-Symbol Interference, ISI)。通过仿真分析了该系统在多径衰落信道下的性能。仿真结果表明,在多径衰落信道环境中,而且没有信道编码的情况下,带有(QPSK、16QAM、64QAM)调制的DWPM系统的性能要比传统的OFDM系统的性能要好。
     3.提出了一种自适应分数间隔均衡器(Fractionally -Spaced Equalizers, FSE)的新型离散小波包(DWPM)调制系统。该系统主要是利用LMS算法的分数间隔均衡器来抑制多径衰落信道引起的码间干扰(ISI)并且利用离散小波包调制来并行传输数据。在多径衰落信道和高斯噪声情况下,推导出基于M-ary QAM调制的DWPM设计方案的误码率公式。仿真结果表明在多径衰落信道和高
Recently, the requirement for wireless communication is more and more, with the development of economy, society, technology, and the improvement of people’s standard of living. Wireless data transmission whenever and wherever with high speed, high quality is the direction of the development of the fourth generation wireless communication technique. The efficiency of frequency spectrum is very important for wireless communication system because of the lack of frequency spectrum resource. Multicarrier modulation can availably solve the above-mentioned problem. For its high efficiency of frequency spectrum and effectively eliminating the inter-symbol interference (ISI) resulted from the multipath fading channel, multicarrier modulation becomes one of the important technologies of the fourth generation wireless communication.
     In the above-mentioned background, multicarrier modulation based on wavelet packet, channel estimation and equalization technologies are studied in this dissertation. The major achievements and results are outlined as follows:
     1. Discrete Wavelet Packet Modulation (DWPM) System based on ML (Maximum Likelihood) algorithm and Optimum Pilot Symbol Assisted Modulation (OPSAM) is studied for Rayleigh Fading Channels. The channel interference is suppressed by OPSAM based on LMS (Least Mean Square) algorithm and the demodulated symbols are detected by ML detecting algorithm and novel transmission frame structure is proposed. Finally, an expression for the probability of error for a DWPM scheme on QPSK is derived in the presence of flat fading channel and Gaussian noise. It is demonstrated by simulation results that in the flat fading channels and Guassian noise, the performance of the proposed scheme is better than that of the traditional the OFDM scheme; the proposed scheme can provide greater immunity to flat fading channels and Guassian noise than both the DQPSK DWPM scheme and the normal-PSAM (Pilot Symbol Assisted Modulation) DWPM scheme; the performance of the OPSAM is better than that of the DQPSK modulation and the error floor of the OPSAM is inexistent within SNR limits.
     2. Novel DWPM (Discrete Wavelet Packet Modulation) system with blind channel
引文
[1] R.W.Chang, Synthesis of band limited orthogonal signals for multichannel data transmission, Bell Syst. Tech. J., Dec. 1996, 45:1775~1796.
    [2] Salzberg, B. R., Performance of an efficient parallel data transmission system, IEEE Transactions on Communications, Dec. 1967, 15(6):805~813.
    [3] R.R.Mosier and R.G.Clabaugh, Kineplex, A bandwidth efficient binary transmission system, AIEE Trans. Part. 1: Communications. & Electronics, Jan. 1958, 76:723~728.
    [4] S.B.Weinstein and P.M.Ebert, Data transmission by frequency-division multiplexing using the discrete Fourier transform, IEEE Transactions on Communications, Oct. 1971, 19(5):628~634.
    [5] G. C. Porter, Error distribution and diversity performance of a frequency differential PSK HF modem, IEEE Transactions on Communications, Aug.1968, 16(4), 567~575.
    [6] M. S. Zimmerman, , and A. L. Kirsch, The AN/GSC-10(KATHRYN) variable rate data modem for HF radio, IEEE Transactions on Communications, Apr. 1967, 15(2), 197~204.
    [7] B.Hirosaki, An orthogonally multiplexed QAM system using the discrete fourier transform, IEEE Transactions on Communications, Jul. 1981, 29(7): 982~989.
    [8] B.Hirosaki, A 19.2 kbits voice band data modem based on orthogonality multiplexed QAM techniques, Proc. IEEE ICC, 1985:21.1.1 ~5.
    [9] P. S. Chow, J. C. Tu, and J. M. Cioffi, Performance evaluation of a multichannel transceiver system for ADSL and VHDSL services, IEEE Journal on Selected Areas in Communications, Aug. 1991, 9(6):909~919.
    [10] J. S. Chow, Tu, J.C. and Cioffi, J.M, A discrete multitone transceiver system for HDSL applications, IEEE Journal on Selected Areas in Communications, Aug. 1991, 9(6) :895~908.
    [11] R. V. Paiement, Evaluation of single carrier and multicarrier modulation techniques for digital ATV terrestrial broadcasting, CRC report, No. CRC-RP-004, Ottawa, Canada, Dec. 1994.
    [12] H. Sari, G. Karma, and I. Jeanclaude, Transmission techniques for digital terrestrial TV broadcasting, IEEE Communications Magazine, Feb. 1995, 33 (2):100~109.
    [13] A. V. Oppenheim and R. W. Schaffer, Discrete-time signal processing, Prentio Hall International, ISBN 0-13-216771-9, 1989.
    [14] ETSI, Broadband radio access networks (BRAN); HIPERLAN Type 2 technical specification part 1—Physical Layer, DTS/BRAN030003-1, Oct. 1999.
    [15] IEEE, Supplement to IEEE standard for information technology — telecommunications and information exchange between systems — Local and metropolitan area networks — specific requirements — Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHZ Band, P802.11a/D7.0, Jul. 1999.
    [16] G. W. Wornell and A. V. Oppenheim, Wavelet-based representations of self – similar signals with application to fractal modulation, IEEE Transactions on Information Theory (Special Issue on Wavelet Transforms and Multiresolution Signal Analysis), Mar. 1992,38 (pt. II):785~800.
    [17] D. Cochran and C. Wei, Scale based coding of digital communication signals, Proc. IEEE-SP Int. Symp. Time-Frequency and Time-Scale Anal., Victoria, BC USA, Oct. 1992:455~458.
    [18] M. A. Tzannes and M. C. Tzannes, Bit-by-bit channel coding using wavelets, Proc. IEEE Global Telecommunications Conference, Orlando, FL USA, DEC. 1992: 684 ~ 688.
    [19] P. P. Ghandhi, S. S. Rao, and R. S. Pappu, On waveform coding using wavelets, Proc. 27th Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA, 1993: 901~905.
    [20] S. D. Sandberg and M. A. Tzannes, Overlapped discrete multitone modulation for high speed copper wire communications, IEEE Journal on Selected Areas in Commu nications, Dec. 1995,13(9) 1571~1585.
    [21] K. Hetling, G. J. Saulnier, and P. K. Das, Optimized perfect reconstruction quadrature mirror filter (PR-QMF) based codes for multi-user communications, Proc. SPIE in Wavelet Applications II, Apr. 1995:248~259.
    [22] R. S. Orr, C. Pike, and M. J. Lyall, Wavelet transform domain communication systems, in Wavelet Applications II, vol. 2491 of Proc.SPIE, Apr. 1995, pp. 271–282.
    [23] J. Wu, Q. Jin, and K. M. Wong, Multiplexing based on wavelet packets, Proc. SPIE in Wavelet Applications II, Apr. 1995:315~326.
    [24] J.N.Livingston and C.C.Tung, Bandwidth efficient PAM signaling using wavelets, IEEE Transactions on Communications, Dec.1996, 44(12):1629~1631.
    [25] L.Zhou, J.Li, J.Liu, and G.Zhang, A novel wavelet packet division multiplexing based on maximum likelihood algorithm and optimum pilot symbol assisted modulation for Rayleigh fading channels, Circuits Systems Signal Processing, Jun.2005, 24(3):287~302.
    [26] J. F. Wu, Wavelet packet division multiplexing, Ph.D. dissertation, Department of Electrical and Computer Engineering, McMaster Univ., Hamilton, Canada, 1998.
    [27] A.R.Lindsey. Wavelet packet Modulation for orthogonally multiplexed communication, IEEE Transactions on Signal Recessing, May1997, 45 (5): 1336 ~ 1339.
    [28] W.Li, R.Wang, Y.Zhao and W.Wu, Bi-orthogonal wavelet packet based multi carrier modulation, Proc. IEEE ICII, Beijing, China, Nov.2001:464~467.
    [29] F.Daneshgaram and M.Mondin, Caherent frequency-hopped CDMA and ortho gonal frequency division multiplexing with wavelets. Electronics Letters. Mar.1995, 31 (6): 428~429.
    [30] G. W. Wornell, Emerging applications of multirate signal processing and wavelets in digital communications, Proceedings of the IEEE, Apr. 1996, 84(4):586~603.
    [31] S.Srinidhi, J.G.Proakis M.Stojanovic Wavelet based modulation for frequency hopped spread spectrum communications, Proc.VTC, Houson, TX USA, May 1999:904~908.
    [32] T.K.Adhikary and V.U.Reddy, Complex wavelet packets for multicarrier modulation, Proc. of IEEE ICASSP, Seattle WA, USA, May 1998:1821~1824.
    [33] P.P.Gandhi, S.S.Rao and R.S.Pappu, Wavelets for baseband coding of waveforms. IEEE Global Telecommunications Conference, San Francisco, CA USA, Dec. 1994:363-367.
    [34] R. E. Learned, H. Krim, B. Claus, A. S. Willsky, and W. C. Karl, Wavelet-packet-based multiple access communication, Proc. SPIE, Oct. 1994: 246~259.
    [35] R. E. Learned, A. S. Willsky, and D. M. Boroson, Low complexity signal processing and optimal joint detection for oversaturated multiple access communications, IEEE Transactions on Signal Processing, Jan. 1997, 45(1):113~123.
    [36] T.N.Davidson, A.J.Schott and K.M.Wong, Branch-hopped wavelet packet division multiplexing. Proc.ICASSP,Seattle, WA USA, May 1998 : 3233~3236.
    [37] T. N. Davidson, Z.Q. Luo and K. M. Wong, A hopping scheme for wavelet packet division multiplexing, Proc. Symp. Wavelet Subband Block Transforms Comm., NewJersey Inst. Tech., Newark, NJ USA, Mar. 1997:10.
    [38] K.M.Wong, Design of branch-hopped wavelet packet division multiplexing schemes, Proc. IEEE ICSP, Beijing, China, Oct. 1998: 257~262.
    [39] B. Sklar, Digital communications. fundamentals and applications. Englewood Cliffs, NJ: Prentice-Hall, 1988.
    [40] S. Haykin, Communication systems, 3rd ed,Wiley, New York, 1994.
    [41] J. G. Proakis, Digital communications, 3rd ed,McGraw-Hill, New York, 1995.
    [42] E. A. Lee and D. G. Messerschmitt, Digital communications, 2nd ed. MA: Kluwer, Boston, 1993.
    [43] K. M. Wong, J. F. Wu, T. N. Davidson, and Q. Jin, Wavelet packet division multiplexing and wavelet packet design under timing error effects, IEEE Transactions on Signal Processing, Dec. 1997,45(12):2877~2890.
    [44] K. M. Wong, J. F. Wu, T. N. Davidson, Q. Jin, and P. C. Ching, Performance of wavelet packet division multiplexing in impulsive and Gaussian noise, IEEE Transactions on Communications, Jul. 2000, 48(7):1083~1086.
    [45] P. A. Bello and R. Esposito, A new method for calculating probabilities of errors due to impulsive noise, IEEE Transactions on Communication Technology, Jun. 1969 17(3):368~379.
    [46] P. A. Bello and R. Esposito, Error probabilities due to impulsive noise in linear and hard-limited DPSK systems, IEEE Transactions on Communication Technology, Feb. 1971,19(1):14~20.
    [47] S. Oshita and K. Feher, Performance of coherent M-ary PSK systems in an impulsive and Gaussian noise environment, IEEE Transactions on Communications, Nov. 1982, 30(11):2458~2464.
    [48] S. Oshita and K. Feher, Performance of coherent PSK and DPSK systems in an impulsive and Gaussian noise environment, IEEE Transactions on Communications, Dec. 1982,30(12):2540~2546.
    [49] K.F.To, K.T.Wong and K.M.Wong, Analysis of amplifier nonlinearities on wavelet packet division multiplexing, Proc. IEEE ICASSP, Istanbul, Turkey, Jun. 2000:2813~2816.
    [50] K.F.To, P.C.Ching and K.M.Wong, Compensation of amplifier nonlinearities on wavelet packet division multiplexing, Proc. IEEE ICASSP, Salt Lake city UT, USA, May 2001:2669~2672.
    [51] A.A.M.Saleh, Frequency-independent and frequency dependent nonlinear modelsof TWT amplifiers, IEEE Transactions on Communications, Nov. 1981, 29 (11): 1715 ~1720.
    [52] A.B.Aicha, F.Tlili and S.B.Jebara, PAPR analysis and reduction in WPDM systems, Proc. IEEE ISCCSP, Hammamet, Tunisia, Mar.2004:315~318.
    [53] St.H. Mller and J. B. Huber, OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences, Electronics Letters, Feb.1997,33 (5):368~369.
    [54] R.W. Bauml, R.F.H. Fischer and J. B. Huber, Reducing the peak-to-average ratio of multicarrier modulation by selected mapping, Electronics Letters, Oct. 1996, 32(2): 2056~2057.
    [55] S. Ben Slimane, Peak-to-average power ratio reduction of OFDM signals using pulse shaping, Proc. IEEE GLOBECOM, San Francisco, CA USA, Nov.2000:1412 ~ 1416.
    [56] S. Hara and R. Prasad, Overview of multicarrier CDMA, IEEE Communications. Magazine, Dec. 1997, 35(12):126~133.
    [57] S. Kondo and L. B. Milstein, Performance of multicarrier DS CDMA systems, IEEE Transactions on Communications, Feb. 1996, 44(2):238~246.
    [58] E. A. Sourour and M. Nakagawa, Performance of orthogonal multicarrier CDMA in a multipath fading channel, IEEE Transactions on Communications, Mar.1996, 44(3): 356~367.
    [59] A.Muayyadi and Abu-Rgheff, M.N.A.,Wavelet-based MC-CDMA cellular systems, Proc. IEEE ISSSTA’2000, Parsippany, NJ USA,Sep.2000:145~149.
    [60] R.Wang and S.Cheng, Performance of MC-CDMA based on wavelet packets in Rayleigh multipath fading channel, Electronics Letters, Jun.2000,36 (12):1070~1072.
    [61] T.Matsuda, S.Hara and N.Morinaga, Joint receiver for DSCDMA/TDMA signals using complex multirate filter bank, IEICE Transactions, 1997, J80-B-II,(12): 1021 ~ 1027.
    [62] G.Zhang and G.Bi Complex wavelet packet basis function based frequency-hopping multiple access communication system, Proc. IEEE PIMRC, San Diego, CA USA, Sep. 2001:74~78.
    [63] X.Yu, X.Zhang and G.Bi, Performance of an MC-CDMA system based on the complex wavelet packet and pre-equalisation, Proc. IEE Communications, Apr. 2004, 151(2):152~156.
    [64] IEEE standard 802.11b, Wireless LAN Medium Access Control (MAC) andPhysical Layer (PHY) Specifications: High-Speed Physical Layer Extension in the 2.4 GHz Band, 1999.
    [65] V. K. Jain and B. A. Myers, OWSS: A new signaling system for 100-150 Mb/s wireless lans, IEEE Wireless Communications, Aug. 2003, 10(4):16~24.
    [66] V. K. Jain, OWSS Multiple Access System for 100 Mbps Wireless LANs, Proc. ICC, Helsinki, Finland, Jun. 2001:1471~1475.
    [67] V. K. Jain, Hybrid Wavelet/Spread-spectrum System for Broadband Wireless LANs, Proc. Int’l. Symp. Circuits and System, Sydney, Australia, May 2001:554~557.
    [68] J. H. Dholakia, V. K. Jain, and B. A. Myers, Adaptive Equalization for 100 Mbps OWSS wireless LANS, Proc. IEEE GLOBECOM, San Antonio, TX USA, Nov. 2001: 3583~3587.
    [69] O.Edfors, M. Sandell, J. J.van de Beek, S. K. Wilson, and P. O. B?rjesson, OFDM channel estimation by singular value decomposition, Proc. IEEE Vehicular Technology conference, Atlanta, GA USA, Apr.1996:923~927.
    [70] M.Sandell, S. K. Wilson, and P. O. B?rjesson, Performance analysis of coded OFDM on fading channels with Non-Ideal interleaving and channel knowledge, Research Report TULEA 1996:20,Division of Signal Processing, Lule? University of Technology, Sep.1996
    [71] J.J.van de Beek, O.Edfors, M. Sandell, S. K. Wilson, and P. O. B?rjesson, On channel estimation in OFDM systems, Proc. IEEE Vehicular Technology Conference, Rosemont, IL USA, July 1995:715~719.
    [72] M.Sandell and O.Edfors, A comparative study of pilot-based channel estimators for wireless OFDM, Research Report TULEA 1996:19,Division of Signal Processing, Lule? University of Technology, Sep.1996
    [73] P.H?her, TCM on Frequency – Selective Land-Mobile Fading Channels, Proc. Tirrenia international Workshop on Digital Communications, Tirrenia, Italy, Sep.1991:317~328.
    [74] J. Rinne and M. Renfors, Pilot spacing in orthogonal frequency division multiplexing systems on practical channels, IEEE Transactions on Consumer Electronics, Nov. 1996, 42(4):959~962.
    [75] O. Edfors, M. Sandell, J. J. van de Beek, S. K. Wilson and P. O. Borjesson, OFDM channel estimation by singular value decomposition, IEEE Transactions on Communications, July 1998, 46(7):931~939.
    [76] Y. Li, L. J. Cimini Jr., and N. R. Sollenberger, Robust channel estimation forOFDM systems with rapid dispersive fading channels, IEEE Transactions on Communications, Jul. 1998, 46(7):902~915.
    [77] Y. Li, Pilot-symbol-aided channel estimation for OFDM in wireless systems, IEEE Transactions on Vehicular Technology, Jul. 2000, 49(4):1207~1215.
    [78] R. Negi and J. Cioffi, Pilot tone selection for channel estimation in a mobile OFDM system, IEEE Transactions on Consumer Electronics, Aug. 1998, 44(3): 1122 ~ 1128.
    [79] S. Sampei and T. Sunaga, Rayleigh fading compensation for QAM in land mobile radio communications, IEEE Transactions on Vehicular Technology, May 1993, 42 (2):137~147.
    [80] S.V. Vaseghi, Advanced signal processing and digital noise reduction, 2nd ed. Chichester, England: John Wiley and Sons, 1996.
    [81] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C: the art of scientific computing, 2nd ed. New York, NY: Cambridge University Press, 1992.
    [82] Hsieh and C.Wei, Channel estimation for OFDM systems based on comb-type pilot arrangement in frequency selective fading channels, IEEE Transactions on Consumer Electronics, Feb. 1998, 44(1):217~225.
    [83] Michele Morelli and Umberto Mengali, A comparison of pilot-aided channel estimation methods for OFDM systems, IEEE Transactions on Signal Processing, Dec. 2001, 49(12):3065~3073.
    [84] H.Takanashi and R. van Nee, Merged physical layer specification for the 5 GHz band, IEEE P802.11-98/72-rl, March 1998.
    [85] H. Liu, G. Xu, L. Tong, and T. Kailath, Recent developments in blind channel equalization: From cyclostationnarity to subspaces, Signal Processing, Apr 1996,50, (1-2):83~99.
    [86] A.Seaglione G.B.Giannakis and S.Barbarossa, Redundant filterbank precoders and equalizer-Part 1 Unification and optimal designs, IEEE Transactions on Signal Processing, Jul. 1999,47(7):1988~2006.
    [87] Anastasios Stamouilis, Georgios B.Giannakis, Block FIR Decision-Feedback Equalizers for Filterbank Precoded Transmissions with Blind Channel Estimation Capabilities, IEEE Transactions on Communications, Jan. 2001, 49 (1):69~83.
    [88] B. Muquet and M. de Courville, Blind and semi-blind channel identification methods using second order statistics for OFDM systems, Proc. IEEE Int. Conf.Acoust., Speech, Signal Process., Phoenix, AZ USA, Mar. 1999:2745~2748.
    [89] M. Tsatsanis and G. B. Giannakis, Transmitter induced cyclostationarity for blind channel equalization, IEEE Transactions on Signal Processing, Jul. 1997, 45(7): 1785 ~ 1794.
    [90] Bertrand Muque,Marc de Courville and Pierre Duhamel, Subspace-based blind and semi-blind channel estimation for OFDM systems, IEEE Transactions on Signal Processing, Jul. 2002, 50(7), 1699~1712.
    [91] U. Tureli and H. Liu, Blind carrier synchronization and channel identification for OFDM communications, Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Seattle, WA USA, May 1998:3509~3512.
    [92] X. Wang and K. J. Ray Liu, Adaptive channel estimation using cyclic prefix in multicarrier modulation system, IEEE Communications Letters, Oct 1999, 3 (10): 291 ~293.
    [93] S.Roy, and C.Li, A subspace blind channel estimation method for OFDM systems without cyclic prefix, IEEE Transactions on Wireless Communications, Oct. 2002, 1(4):572~579.
    [94] R. Kalman and R. Bucy, New results in linear filtering and prediction theory, Transactions on ASME. Journal Basic Engineering, Mar.1961, 83(D):85~108.
    [95] J. Cheung, Adaptive Equalisersfor Wideband TDMA Mobile Radio. PhD thesis, Department of Electronics and Computer Science, University of Southampton, UK, 1991.
    [96] S. Haykin, Adaptive Filter Theory. Englewood Cliffs, Prentice-Hall, NJ USA, 1996.
    [97] B. Widrow and S. Steams, Adaptive Signal Processing. Englewood Cliffs, Prentice –Hall, NJ USA, 1985.
    [98] B. Widrow, On the statistical on the efficiency of the LMS algorithm with non stationary inputs, IEEE Transactions on Information Theory, Mar. 1984, 30(2): 211 ~ 221.
    [99] B. Widrow, J. McCool, M. Lanimore, and C. Johnson Jr, Stationary and non - stationary learning characteristics of the LMS adaptive filter, Proceedings of the IEEE, August 1976, 64(8): 1151-1~162.
    [100] D. Falconer and L. Ljung, Application of fast Kalman estimation to adaptive equalization, IEEE Transactions on Communications, October 1978, 26(10): 1439 ~ 1446.
    [101] D. Godard, Channel equalization using a Kalman filter for fast data transmission, IBM Journal on Research and Development, May 1974:267~273.
    [102] Clark and R. Harun, Assessment of Kalman-filter channel estimators for an HF radio link, Proceedings of the IEE, Oct. 1986, 133:513~521.
    [103] P. Shukla and L. Turner, Channel estimation-based adaptive DFE for fading multipath radio channels, Proceedings of the IEE - I, Oct. 1991, 138(6):525-543.
    [104] R. Lucky, Automatic equalization for digital communication, Bell Systems Technical Journal, Apr. 1965, 44:547~588.
    [105] R. Lucky, Techniques for adaptive equalization of digital communication, Bell Systems Technical Journal, Feb. 1966, 45:255~286.
    [106] R. Lawrence and H. Kaufman, The Kalman filter for equalization of a digital communications channel, IEEE Transactions on Communications, 1971, 19: 1137 ~1141.
    [107] J. Mark, A note on the modified Kalman filter for channel equalization, Proceedings of the IEEE, 1973, 61:481~482.
    [108] S. Kleibano, V. Privalkii, and I. Time, Kalman filter for equalization of digital communications channel, Automation and Remote Control, 1974, 2:1097~1102.
    [109] Luvinson and G. Pirani, Design and performance of an adaptive receiver for synchronous data transmission, IEEE Transactions on AES, 1979, 15:635~648.
    [110] M. Kumar, M. Yurtseven, and A. Rahrooh, Design and performance analysis of an adaptive fir kalman equalizer, Journal of the Franklin Institute, 1993, 330(5): 929 ~ 938.
    [111] T. Lee and D. Cunningham, Kalman filter equalization for QPSK communicatio ns, IEEE Transactions on Communications, 1976, 24:361~364.
    [112] E. D. Messe and G. Corsini. Adaptive Kalman filter equalizer, IEE Electronics Letters, 1980, 16(8):547~549.
    [113] F. Hsu, Square root Kalman filtering for high speed data received over fading dispersive HF channels, IEEE Transactions on Information Theory, 1982, 28: 753 ~763.
    [114] G. Richards, Implementation of kalman filters for process identification, GEC Journal Research, 1983, 1:100~107.
    [115] M. Mueller, Least squares algorithms for adaptive equalizers, Bell Systems Technical Journal, Oct. 1981, 60:1905~1925.
    [116] Sayed and T. Kailath, A state-space approach to adaptive RLS filtering, IEEE Signal Processing Magazine, Jul. 1994, 11:571~577.
    [117] S. Chen, G. J. Gibson, C. F. N. Cowan, and P. M. Grant, Adaptive equalization of finite nonlinear channels using multilayer perceptions, Signal Processing, 1990, 20: 107~119.
    [118] S. Chen, B. Mulgrew, and P. M. Grant, A clustering technique for digital communications channel equalization using radial basis function networks, IEEE Transactions on Neural Networks, Jul. 1993, 4(4):570~579.
    [119] G. Kechriotis, E. Zervas, and E. S. Manolakos, Using recurrent neural networks for adaptive communication channel equalization, IEEE Transactions on Neural Networks, Mar. 1994,5(2):267~278.
    [120] S. Siu, G. J. Gibson, and C. F. N. Cowan, Decision feedback equalization using neural network structures, Proc. 1st IEE Int. Conf. Artificial Neural Networks, London ,UK, Oct.1989: 125~128.
    [121] T. Fechner, Nonlinear noise filtering with neural networks: Comparison with Weiner optimal filtering, Proc. 3rd IEE Int. Conf. Artificial Neural Networks, Brighton, UK, May 1993: 143~147.
    [122] H. Leung and S. Haykin, The complex backpropagation algorithm, IEEE Transactions Acoustics, Speech, Signal Processing, Sept. 1991, 39(9):2101~2104.
    [123] J. C. Patra, R. N. Pal, R. Baliarsingh, and G. Panda, Nonlinear channel equalization for QAM constellation using artificial neural networks, IEEE Transactions on Systems, Man, Cybernetics. Apr. 1999, 29(2):262~271.
    [124] S. Chen, S. Mclaughlin, and B. Mulgrew, Complex-valued radial basis function network, Part II: Application to digital communications channel equalization, Signal Processing, Feb.1994, 36:165~188.
    [125] I. Cha and S. Kassam, Channel equalization using adaptive complex radial basis function networks ,IEEE Journal on Select. Areas Communications, Jan. 1995, 13(1): 122~131.
    [126] Y.W. Lu, N. Sundararajan and P. Saratchandran, Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm, IEEE Transactions on Neural Networks, Mar. 1998, 9(2):308~318.
    [127] Y.W.Lu, N.Sundararajan and P. A.Saratchandran, A sequential learning scheme for function approximation using minimal radial basis function neural networks, Neural Computation, Feb. 1997,9(2):461~478.
    [128] C. P. Kumar, P. Saratchandran and N. Sundararajan, Minimal radial basis function neural networks for nonlinear channel equalisation, Proc. IEE Vision, Image, SignalProcessing, Oct.2000, 147(5):428~435.
    [129] D. Jianping, N. Sundararajan and P. Saratchandran, Complex-valued minimal radial basis function neural network for nonlinear system processing, International Journal of Neural Sytems, 2000, 10(2):95~106.
    [1] S.Weinstein and P.Ebert, Data transmission by frequency division multiplexing using the discrete Fourier transform. IEEE Transactions on Communications, May 1971, 19(5): 628~634.
    [2] J.A.C.Bingham, Multicarrier modulation for data transmission: An idea whose time has come, IEEE Communication Magazine, May 1990, 28(5): 5~14.
    [3] Wong K M, Wu J F, Davidson T N and Jin Q. Wavelet packet division multiplexing and wavelet packet design under timing error effects. IEEE Transactions on Signal Processing, Dec. 1997, 45(12): 2877~2890.
    [4] W.M.Yang, G.G.Bi and T.S.P.Yum, A multirate wireless transmission system using wavelet packet modulation, Proc. IEEE Vehicular Technology Conference, Phoenix, AZ USA, 1997: 368~372.
    [5] J.G.Proakis, Digital Communications. Mc-Hill, New York, 1995.
    [6] J.W.C.Jakes, Microwave Mobile Communications, John Wiley &Sons, New York, 1974.
    [7] H.V.Tree, Detection, Estimation and Modulation Theory. Part I, Wiley, New York, 1968.
    [8] J.K.Cavers, Pilot symbol assisted modulation and differential detection in fading and delay spread, IEEE Transactions on Communications, Jul. 1995, 47(7): 2206~2212.
    [9]J.K.Cavers, An analysis of pilot symbol assisted modulation for Rayleigh fading channels, IEEE Transactions on Vehicular Technology, Nov. 1991, 40 (4): 686~693.
    [10] C.-L.Liu and K.Feher, Pilot-symbol aided coherent M-ary PSK in frequency – selective fast Rayleigh fading channels, IEEE Transactions on Communications, Jan. 1994, 42(1): 54~62.
    [11] A. Mammela and V. Kaasila, Smoothing and interpolation in a pilot symbol assisted diversity system, Int. Journ. of Wireless Inform. Networks, 1997, 51(3): 205~214.
    [12] S. Sampei and T. Sunaga, Rayleigh fading compensation for QAM in land mobile radio communications, IEEE Transactions on Vehicular Technology, May 1993, 42(2): 137~147.
    [13] N. Lo, D. D. Falconer, and A. U. H. Sheikh, Adaptive equalization and diversity combining for mobile radio using interpolated channel estimates, IEEE Transactions on Vehicular Technology, Aug. 1991,40(3): 636~645.
    [14] Y. S. Kim, C. J. Kim, G. Y. Jeong, Y. J. Bang, H. K. Park, and S. S.Choi, New Rayleigh fading channel estimator based on PSAM channelsounding technique, Proc. IEEE ICC, Montreal, Canada, Jun. 1997: 1518~1520.
    [15] X. Tang, M. Alouini, and A. J. Goldsmith, Effect of channel estimation error on M-QAM BER performance in Rayleigh fading, IEEE Transactions on Communication, Dec.1999,47(12): 1856~1864.
    [16] E. Okamoto, H. Li, and T. Ikegami, Rayleigh fading compensation for16QAM using FFT,IEEE Transactions on Vehicular Technology, Sep. 1999, 48(5): 1626~1633.
    [17] K.E.Baddour and N.C.Beaulieu, Improved pilot symbol aided estimation of Rayleigh fading channels with unknown autocorrelation statistics, Proc. IEEE VTC, Los Angeles, CA, USA, Sep. 2004: 2101~2107.
    [18]I.Daubechies, Orthonormal bases of compactly supported wavelets, C.P.A.M: 909~996.
    [19] V.K.Jain and B.A.Myers. OWSS: A new signaling system for 100-150 Mb/s wireless lans, IEEE Wireless Communications, Aug. 2003, 10(4):16~ 24.
    [20] J. F. Wu, Wavelet packet division multiplexing, Ph.D. dissertation, Department of Electrical and Computer Engineering, McMaster Univ., Hamilton, Canada, 1998.
    [21]O.Edfors, M.Sandell, J.-J. Van de Beek, S.K.Wilson, and P.O.Borjesson, OFDM channel estimation by singular value decomposition, IEEE Transactions on Communications, Jul. 1998, 46(7):931~939.
    [22]L.Deneire, P.Vandenameele, L.Van der Perre, B.Gyselinckx, and M.Engels, A low complexity ML channel estimator for OFDM. IEEE Transactions on Communications, Feb. 2003, 51(2):135~140.
    [23]S.Coleri, M.Ergen, A.Puri, and A.Bahai,Channel estimation techniques based on pilot arrangement in OFDM systems. IEEE Transactions on Broadcasting, Sep. 2002, 48(3):223~229.
    [24]M.Morelli and U.Mengali, A comparison of pilot–aided channel estimation methods for OFDM Systems. IEEE Transactions on Signal Processing, Dec. 2001, 49(12):3065~3073.
    [1] Y. Li and Z. Ding, Global convergence of fractionally spaced Godard adaptive equalizers, Proc. Asilomar Conference on Signals Systems and Computers, Pacific Grove , CA USA, Oct.1994:617~621.
    [2] I. Fijalkow, F. L. de Victoria,and C. R. Johnson Jr., Adaptive fractionally spaced blind equalization, Proc. Workshop on 6th IEEE Digital Signal Process, Yosemite, CA USA, 1994:257~260.
    [3] Z. Ding, “On convergence analysis of fractionally spaced adaptive blind equalizers,” IEEE Transactions on Signal Processing, Mar.1997, 45(3):650 ~657.
    [4] Y. Li and Z. Ding, Global convergence of fractionally spaced Godard (CMA)adaptive equalizers, IEEE Transactions on Signal Processing, Apr. 1996, 44(4):818~826.
    [5] I. Fijalkow, J. R. Treichler and C. R. Johnson, Jr., Fractionally spaced blind equalization: Loss of channel diversity, Proc. IEEE International Conf. Acoustics Speech and Signal Process, May 1995:1988~1991.
    [6] D. Slock and C. B. Papadias, Further results on blind identification and equalization in multiple FIR channels, Proc. IEEE. International Conf. Acoustics Speech and Signal Process, May 1995:1964~1967.
    [7] K. A. Meriam et al., Prediction error methods for time-domain blind identification of multichannel FIR filters, Proc. IEEE International Conf. Acoustics Speech and Signal Process., May 1995:1968~1971.
    [8] G. Ungerboeck, Fractional tap-spacing equalizer and consequences for clock recovery in data modems, IEEE Transactions on Communications, Agu.1976, 24(8):856~864.
    [9] R. D. Gitlin and S. B. Weinstein, Fractionally-spaced equalization: an improved digital transversal equalizer, Bell Syst. Tech. J., Feb.1981, 60(2): 275~296.
    [10]Z.-Q.Luo, M.Meng, and K.M.Wong, A fractionally spaced blind equalizer based on linear programming, IEEE Transactions on Signal Processing, Jul. 2002, 50(7):1650~1660.
    [11] G-H Im, H-C Won and C.J.Park, Convergence Behavior of a PS-FSE in the presence of a Cyclostationary Crosstalk Interference, IEEE Communications Letters, Aug. 2000, 4(8):261~263.
    [12]H.Mohammd, S.Weiss, M.Rupp and L.Hanzo, Fast adaptation of fractionally spaced equalizers, IEE Electronics Letters, Jan.2002, 38(2): 96~97.
    [1] J. G. proakis, Digital communications, 3rd edition, McGraw-Hill, New York, 1995.
    [2] K. M. Wong, J. F. Wu, T. N. Davidson, and Q. Jin, Wavelet packet division multiplexing and wavelet packet design under timing error effects, IEEE Trans. Signal Processing, Dec. 1997,45(12):2877~2890.
    [3] L.Zhou, J.Li, J.Liu, and G.Zhang, A novel wavelet packet division multiplexing based on maximum likelihood algorithm and optimum pilot symbol assisted modulation for Rayleigh fading channels, Circuits Systems and Signal processing, Jun. 2005, 24(3):287~302.
    [4] X.F.Ying, Z.Y.Chu,Y.Wang and K.C.Yi, A scheme of M-ary multi-carrier spread spectrum based on wavelet packet, Proc. International Conference on Advanced Information Networking and Applications, Japan, Mar. 2004: 219~222.
    [5] V. K. Jain and B. A. Myers, OWSS: A new signaling system for 100-150 Mb/s wireless lans, IEEE Wireless Communications, Aug. 2003, 10(4):16~24.
    [6]R.Wang and S.X.Cheng, Performance of MC-CDMA based on wavelet packets in Rayleigh multipath fading channel, Electronics Letters, Jun. 2000,36(12):1070~1072.
    [7]S.Haykin, Neural Networks: A Comprehensive Foundation, 2nd edition, Prentice Hall, New York, 1999.
    [8]T.Poggio and F.Girosi, Networks for approximation and learning, Proceedings of IEEE, Sept.1990,78(9):1481~1497.
    [9] C.R. Johnson, H. J. Lee, et al., On fractionally-spaced equalizer design for microwave radio channels, Proc. Asilomar Conf. on Signals, Systems, and computers, Pacific Grove, CA, November 1995:698~702.
    [1]IEEE, Supplement to IEEE Standard for Information technology — Telecommunications and information exchange between systems — Local and metropolitan area networks — Specific requirements — Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHZ Band. P802.11a/D7.0, July 1999.
    [2]M.Z.Win and R.A.Scholtz, Ultra-Wide bandwidth Time-Hopping Spead -Spectrum Impulse Radio for Wireless Multiple_access Communications, IEEE Transactions on Communication, Apr. 2000,48(4), 679~691.
    [3]H.W.Yang, A road to future broadband wireless access: MIMO-OFDM -Based air interface, IEEE Communication Magazine, Jan.2005, 43(1),53~60.
    [4]V. K. Jain and B. A. Myers, OWSS: A new signaling system for 100-150 Mb/s wireless lans, IEEE Wireless Communications, Aug. 2003, 10(4):16~24.
    [5]V. K. Jain, OWSS Multiple Access System for 100 Mbps Wireless LANs, Proc. ICC, Helsinki, Finland, Jun. 2001:1471~1475.
    [6]D.Divakaran, V.K.Jain, and B.A.Myers, Spectral Characteristics of OWSS Signal, IEEE Communications Letters, Apr.2005, 9(4):325~327.
    [7] 丁玉美,数字信号处理,西安:西安电子科技大学出.
    [8] J.G.Proakis, Digital Communications. Mc-Hill, New York, 1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700