NC-OFDM系统导频优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非连续OFDM(NC-OFDM)是IEEE802.22标准中物理层的主要数据传输模式。与传统的OFDM技术相比,其可用子载波具有非连续分布的特点,这给它的各种关键技术带来了新的挑战。导频设计是决定应用于CR的NC-OFDM系统性能的关键因素之一,NC-OFDM系统的本质虽然是OFDM,但是由于NC-OFDM可用频谱的非连续和动态变化特性,所以已有的面向固定使用频谱的OFDM系统的研究成果不能够照搬使用,需要对其进行必要的改进、完善和创新。传统的OFDM系统中的等功率等间隔导频序列是最优的,但在NC-OFDM系统中,由于可用频谱的非连续性,以及为保证授权用户(PU)干扰容限所引起的各子载波/子信道上的功率限制,应用于NC-OFDM系统的最优导频的功率和位置均呈现非均匀分布的特点。获取子载波非连续及子载波功率受限情况下NC-OFDM系统的最优导频设计规则,能够降低导频设计的计算复杂度,适应认知NC-OFDM系统导频图案需要动态变化的要求,并最大化地改善系统误码率性能。
     本文以凸优化理论为工具,对NC-OFDM系统的导频优化设计问题进行研究。主要包括以下三个方面:
     1.采用凸变换方法研究NC-OFDM系统导频优化设计问题;
     NC-OFDM系统导频最优化设计的数学模型中,由于优化变量取值集合的非连续性,导致该优化问题是一个非凸优化问题,无法通过数值计算的方法获得最优解,必须寻求某种凸映射的方法解决上述非凸难题,才能利用成熟的凸优化工具对导频设计的可行解进行深入的研究。
     首先建立NC-OFDM系统导频设计的多目标优化问题,分别在单PU和多PU通信环境提出解决导频优化设计非凸问题的凸变换方法,从而可以采用凸优化工具研究NC-OFDM系统的导频优化设计。这也是以后各章导频优化设计的基础。除此之外,本章针对单PU通信环境提出适合NC-OFDM系统的一种次优导频图案设计;然后分析多PU通信环境NC-OFDM系统载波功率分布特点,提出基于重要导频的次优导频设计。
     2.研究子载波功率受限的导频位置优化设计问题;
     当不同SU短距离通信时,一般只需对发射信号进行小功率放大即可满足信道传输要求,此时发射信号处于系统中功率放大器的线性区,不需要考虑HPA非线性带来的失真。因此理想HPA特性下NC-OFDM系统的导频优化设计要满足子载波总功率限制条件,以及子信道的功率分布限制,以保证自身系统的高性能和PU通信的可靠性。本文首先建立认知NC-OFDM系统PU干扰温度分析模型,并把PU干扰温度限制转化为子信道发射功率限制;在此基础上,建立满足子载波总功率限制以及子信道功率限制条件下的功率分配最优化问题,运用Lagrange乘子法得到其最优解,即同时满足PU通信可靠性和SU自身性能要求的最优子载波/子信道功率分布;然后,建立子信道功率受限的导频位置优化问题,并对该优化问题进行松弛求解,从理论上推导出最优导频位置与子载波功率的关系式、不同导频位置距离的函数关系以及初始导频的选择规则。所得结论可用于解决子载波功率受限时的最优导频位置选择问题。
     3.研究HPA非线性干扰受限的导频位置优化设计问题。
     当不同SU远距离通信或信道较差时,往往需要对发射信号进行大功率放大以满足系统性能的要求。此时动态范围较大的NC-OFDM信号经过HPA后将产生严重的带内失真和带外频谱泄露,影响自身性能,并对PU造成严重干扰。此时NC-OFDM系统的导频设计需要考虑HPA非线性的影响。
     首先建立NC-OFDM系统带外功率泄漏和PU频带干扰功率的数学模型,定量计算NC-OFDM系统中HPA非线性引起的PU频带干扰,并建立以PU频带干扰功率等于PU干扰容限为目标函数的一个非线性规划问题,通过优化求解得到PU干扰容限与HPA非线性参数、保护载波数量、PU频带占用率之间的约束关系,称此约束关系为HPA非线性干扰限制;然后推导导频辅助非线性信道估计的MSE闭合式,并建立满足HPA非线性干扰限制的导频优化设计数学模型;最后运用数值分析的方法得到HPA非线性干扰限制下的最优导频位置。
     本文从NC-OFDM系统导频优化设计问题的凸变换求解、子载波功率受限以及考虑HPA非线性三个角度展开深入研究,给出适用于NC-OFDM系统的最优以及次优导频设计方法,从而完善和提高NC-OFDM系统接收机的信道估计性能,优化系统误码率性能,为认知无线电技术的应用提供理论依据和技术基础。
Noncontinuous orthogonal frequency division multiplexing (NC-OFDM) modulation technique is one of main data transmission mode for IEEE802.22, and its available subcarriers have the characteristics of non-continuous distribution compared with traditional OFDM systems, which brings new technical challenges. Especially, the pilot design is one of the key issues that has to be solved in order to improve the performance of NC-OFDM systems in cognitive radio context. Because of the noncontinuous and dynamic characteristics of available spectrums, it is necessary to modify, improve or/and innovate the existing research of OFDM systems. In traditional OFDM systems, equi-powered and equi-spaced pilots are optimal, however, for satisfying primary users(PUs)'interference constrains, the optimal pilots of NC-OFDM systems will be non-uniform with available subcarriers' limited power distribution and non-continuous spectrums. The proposed pilot optimization design rules under the above two conditions can reduce the computation complexity of pilot designs, adapt to the requirements of dynamic pilot pattern, and maximize the BER performance.
     The pilot optimization design of the NC-OFDM systems based on the convex optimization theory has been analyzed and summarized in this dissertation. The main contents include the following three aspects:
     1. The pilot optimization design of a NC-OFDM system based on convex mapping has been studied.
     Because of the discontinuity of the optimization variable set, the optimal pilot design is a non-convex optimization problem, which is very difficult to obtain the optimal solution by the numerical method. It is necessary to seek the convex mapping methods to this nonconvex problem, and then obtain the feasible solution by convex optimization tools.
     Firstly, the pilot design of multi-objective optimization problem is found, the non-convex problem is solved by convex mapping in single PU scenarios amd more PU scenarios. Then we can obtain the optimal pilot pattern based convex optimization. The suboptimal pilot design in different Scenarios are also presented for reducing the computation complexity.
     2. A optimization design of the pilot positions under a power constraint of available subcarriers has been studied.
     In short-distance communication scenes beween different SUs, generally the lower power amplifier can meet the requiements of channel transmission, which presents linear characteristic and doesn't bring nonlinear distortion for NC-OFDM signals and out-of-band(OOB) interference. Assuming ideal HPA characteristics, the pilot optimization design only need to consider the total power constraint of available subcarriers and the sub-channel power constraints from PU interference constraints。
     Under a total power constraint and sub-channel power constraints, the pilot optimization design is studied. Firstly, the mutual interference between SU and PU transmissions is analyzed and the PU interference temperature model is found. Mapping the PU interference temperature constraints into the sub-channels' transmission power constraints, the optimal subcarrier power allocation is obtained by the Lagrange method. Then, we reconstruct the pilot optimization design under the above available subcarriers'power allocation, and obtain the suboptimal soluton using a upper bound of the channel estion MSE instead of MSE. Theoretical analysis has shown that the suboptimal pilot positions is a function of the available subcarriers'powers and the distance between different pilots.
     3. The optimization design of pilot positions under a HPA nonlinear interference constraint has been studied based on the analysis of nonlinear HPA.
     For the poor channel conditions or long-distance communication between SUs, the high power amplifier(HPA) is neccssary to obtain higher signal power for meeting the requirements of NC-OFDM systems, however, large dynamic range of NC-OFDM signals after HPA will lead to serious in-band distortions and OOB spectrum leakages, the latter will increase the interference temperature in PU band. In this scene, it is necessary to consider the nonlineality of HPA for pilot optimization design.
     Firstly, a mathematical model for measuring the OOB radiation in NC-OFDM systems is presented, and the interference power in adjacent PUs' bands are computed in this dissertation. Based on this mathematical model, the HPA nonlinear interference constraint among HPA nonlinear parameter, the number of guard subcarriers, PUs' occupancy rate and PU interference temperature limits is obtained by solving the nonlinear programming (NLP) problem. Then, the closed expression of pilot-assisted channel estimation MSE consideringr the HPA nonlinearity is deduced, and the pilot optimaization design problem under a HPA nonlinear interference constraint is described and solved by the numerical method..
     According to the exploration and study of these key technologies, we have shown some pilot optimization designs which can reduce the computational complexity and improve the channel estimation performance of a NC-OFDM system receiver, thereby, optimizing the BER performance and providing a theoretical and technical basis for a widely application.
引文
[1]G. Staple, K. Werbach. The end of spectrum scarcity[J]. IEEE Spectrum.2004,41(3):48-52.
    [2]FCC. Facilitating opportunities for flexible, efficient, and reliable spectrum use employing cognitive radio technologies. NPRM & Order, ET Docket No.03-108, FCC 03-322,2003.
    [3]J. Mitola, G. Maguire. Cognitive radio:Making software radios more personal[J]. IEEE Personal Communication Magazine,1999,6(4):13-18.
    [4]J. Mitola. Cognitive radio for flexible mobile multimedia communication[C].1999 IEEE International Workshop on Mobile Multimedia Communications, Nov.1999,15-17:3-10.
    [5]J. Mitola. Cognitive radio:An integrated agent architecture of software defined radio[D]. Doctor of Technology, Royal Inst. KHT, Stockholm, Sweden,2000.
    [6]Rajbanshi R, Wyglinski A M, Minden G J. Peak-to-average power ratio Analysis for NC-OFDM Transmissions[C]. IEEE 66th Vehicular Technology Conference:VTC2007. Sept.30,2007:1351-1355.
    [7]T. Weiss,J. Hillenbrand, A. Krohn,and F.Jondral. Mutual interference in OFDM-based spectrum pooling systems[C]. IEEE Vehicular Technology Conference, May 2004. vol.4, pp.1873-1877.
    [8]R. Negi, J. Cioffi, Pilot tone selection for channel estimation in a mobile OFDM system[J], IEEE Trans. Consum. Electron., Aug.1998. Vol.44, pp.1122-1128.
    [9]Shichang Zhang, Jun Wang, Shaoqian Li. A channel estimation method for NC-OFDM systems in cognitive radio context, Communication Systems[C], ICCS 2008. pp208-212.
    [10]张世昌.认知无线电系统中NC-OFDM信道估计技术研究[])].导师:李少谦.:电子科技大学,2009.
    [11]王军;李洪宇;张世昌等.基于修正变换域降噪的NC-OFDM信道估计算法[J].电子科技大学学报,2009,(05):639-643.
    [12]Rashad, I.; Budiarjo, I.; Nikookar, H. Efficient Pilot Pattern for OFDM-based Cognitive Radio Channel Estimation-Part 1[C],200714th IEEE Symposium on Communications and Vehicular Technology in the Benelux,2007, PP:1-5.
    [13]Budiarjo, I.; Rashad, I.; Nikookar, H. Efficient Pilot Pattern for OFDM-based Cognitive Radio Channel Estimation-Part 2[C].2007 14th IEEE Symposium on Communications and Vehicular Technology, Benelux, Nov.2007,1-5,15.
    [14]Xuetao Dong, Xianzhong Xie. Research on Stochastic Comb-Pilot Design for NC-OFDM System[C].in Proc.IEEE WICOM Conf.,2008:1-3.
    [15]M.Ghogho, On optimum pilot design for OFDM systems with virtual carriers[J]. in Proc. IEEE EURASIP IntSymp.Control, Communications,and Signal Processing,Mar.2006.
    [16]Q. Huang, M. Ghogho, S. Freear. Pilot design for MIMO OFDM systems with virtual carriers[J]. IEEE Trans. Signal Proc.,2009, vol.57, no.5, pp.2024-2029.
    [17]江彬,吴大焰,高西奇.基于遗传算法的OFDM系统导频设计[J].东南大学学报,2008,38(5):746-751.
    [18]R. J. Baxley, J. E. Kleider, G. T. Zhou. Pilot design for OFDM with null edge subcarriers[J]. IEEE Trans. On Wireless Communications, Jan.2009,.8(1):396-405.
    [19]胡蝶,何良华,杨绿溪.基于非均匀分布的MIMO OFDM系统最优导频序列设计[J].电子与信息学报,2007,29(03):635-638.
    [20]Hu, Die; Xiaolin Zhou; A new pilot design method for OFDM systems with virtual subcarriers[C], Wireless Communications, Networking and Information Security (WCNIS), 2010 IEEE International Conference on,25-27 June 2010, pp.73-77.
    [21]D. Hu, L. He. Pilot design for channel estimation in OFDM-based cognitive radio systems[C]. in Proc. IEEE Global Telecommunications Conf.,2010, pp.1-5.
    [22]Die Hu, Lianghua He, Xiaodong Wang. An Efficient Pilot Design Method for OFDM-Based Cognitive Radio Systems[J], IEEE Transactions on wireless communications, APRIL 2011, 10(4):1252-1259.
    [23]S. Ohno, E. Manasseh, M. Nakamoto. Preamble and pilot symbol design for channel estimation in OFDM systems with null subcarriers[J]. EURASIP Journal on Wireless Communications and Networking, June 2011, pp.1-17.
    [24]Emmanuel Manasseh, Shuichi Ohno, Masayoshi Nakamoto, Pilot design for non-continuous spectrum usage in OFDM-based cognitive radio networks[C].2012 20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27-31.
    [25]Zhu Chunhua, Yang Shouyi. Optimal Pilot Design for Channel Estimation in OFDM-based Cognitive Radio[C].2011 3rd international conference on machine learning and computing: ICMLC2011,2011年2月,volume:2, PP:31-35.
    [26]屠佳;蔡跃明;徐友云;认知无线电中的一种信道估计方法[J].解放军理工大学学报(自然科学版),2008,(06):651-655.
    [27]楚高峰;李校林;认知无线电中基于导频的信道估计研究[J].广东通信技术,2010,(02):63-67+71.
    [28]Qianxi Lu, Wei Wang, Tao Peng,et al. Efficient Multiuser Water-filling Algorithm under Interference Temperature Constraints in OFDMA-based Cognitive Radio Networks [J], Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, ppl74-177,2007.
    [29]Peng wang, Ming Zhao, Limin Xiao,et al. Power allocation in OFDM-based cognitive radio systems [C]. Washington D C:IEEE Press,2007.4061-4065.
    [30]王鹏,钟晓峰,肖立民等.基于OFDM的认知无线电系统中最优功率分配[J].清华大学学报:自然科学版,2009,49(8):1144-1147.
    [31]Bansal G, Hossain M J, Bhargava V K. Adaptive power loading for OFDM-based cognitive radio systems[C]. Proc IEEE ICC [S], IEEE Press,2007,5137-5142.
    [32]杨守义;薄建华;刘博文等.基于OFDM的认知无线电系统中的功率分配改进[J].郑州大 学学报(工学版),2010,(06):51-54.
    [33]宋延涛;杨守义;梅亚楠;.基于认知OFDM网络的次优化功率分配研究[A].中国通信学会无线及移动通信委员会.2011全国无线及移动通信学术大会论文集[C].中国北京:人民邮电山版社,2011:431-435.
    [34]杨守义;宋延涛;陈泽先等.基于OFDM的认知无线电系统中功率分配算法[J].郑州大学学报(工学版),20ll,(05):56-60.
    [35]Xin Kang; Ying-Chang Liang; Garg, H.K., et al. Sensing-based spectrum sharing in cognitive radio networks [C].2008 IEEE Global Telecommunications Conference:GLOBECOM" 2008,pp:1-5.
    [36]Xin Kang, Yingchang Liang, A. Nallanathan, H. K. Garg, and R. Zhang, Optimal Power Allocation for OFDM-Based Cognitive Radio with New Primary Transmission Protection Criteria[J], IEEE Trans. Wireless Commun.,, Jun.2010, vol.9, no.6, pp.2066-2075.
    [37]S.M.Almalfouh, GL.Stuber, Interference-Aware Power Allocation in Cognitive Radio Networks with Imperfect Spectrum Sensing[C], ICC, May 2010, pp.1-6.
    [38]S.Stotas, A.Nallanathan, Optimal Sensing Time and Power Allocation in Multiband Cognitive Radio Networks[J], IEEE Trans. on Comm., Jan.2011, pp.226-235.
    [39]唐伦,王欢,陈前斌等.认知OFDM网络中基于中断概率约束的功率分配[J],北京邮电大学学报,2010,33(1),PP:120-123.
    [40]Smolnikar, M.; Mohorcic, M., Gacanin, H., et al. Closed-form BER expression for OFDM with pilot-assisted channel estimation in a nonlinear multipath fading channel[C]. IEEE International Conference on Communication Systems (ICCS),2010, pp:441-445.
    [41]Nunes, F.D.; Leitao, J.M.N., Nonlinear channel estimation in fading OFDM systems[C], 1999 Global Telecommunications Conference, GLOBECOM'99, vol.4, pp.2157,2161.
    [42]Nanqing Zhou, Hao Liu. Nonlinear Channel Estimation Based on Multi-level PN Sequences in OFDM Systems[C]. Future Generation Communication and Networking (FGCN 2007), 6-8 Dec.2007, vol.1, pp.570,574.
    [43]Ching-Hsiang Tseng. Characterization of nonlinear channels in OFDM systems using signals with spectral notches[C],2010 IEEE International Symposium on Power Line Communications and Its Applications (ISPLC),28-31 March 2010, pp.249,254.
    [44]Ching-Hsiang Tseng; Chin-Feng Lin; Fu-Sheng Lu; Hsien-Sen Hung; Tzong-Dar Wu; Hoang-Yang Lu; Shun-Hsyung Chang. Frequency-domain channel estimation for nonlinear multicarrier underwater communication systems[C]. OCEANS 2010 IEEE-Sydney,24-27 May 2010, pp.1,5.
    [45]朱春华,杨守义,穆晓敏,齐林.基于认知无线电的NC-OFDM系统中HPA非线性的研究[J],电讯技术,2010,50(1):37~41.
    [46]朱春华,杨守义。考虑HPA非线性的NC-OFDM系统最优参数设计[J],北京理工大学学报2011.6,31(6):703~707.
    [47]Qingwen Han; Clarkson, V.L.; Xiaoping Zeng, Joint algorithm for pcak-to-average power reduction of NC-OFDM system[C],2010 3rd International Congress on Image and Signal Processing (CISP),16-18 Oct.2010, vol.9, pp.4399,4403.
    [48]何雪云;宋荣方;周克琴;认知无线电NC-OFDM系统中基于压缩感知的信道估计新方法[J].通信学报,2011,(11):85-94.
    [49]Jia Min; Gu Xue-mai; Wu Qun; An improved channel estimation method for NC-OFDM systems in Cognitive Radio context[C],2011 6th International ICST Conference on Communications and Networking in China (CHINACOM),17-19 Aug.2011, pp.147-150.
    [50]Jinnan Liu; Shulan Feng; Haiguang Wang, Comb-Type Pilot Aided Channel Estimation in Non-Contiguous OFDM Systems for Cognitive Radio[C],2009 5th International Conference on Wireless Communications, Networking and Mobile Computing:WiCom'09,24-26 Sept. 2009, pp.1,4.
    [51]Won J Y, Kang H G, Kim Y H, Song I, Song M S. Fractional bandwidth mode detection and synchronization for OFDM-based cognitive radio systems[C]. IEEE Vehicular Technology Conference:VTC Spring 2008, May 11-14,2008:1599-1603.
    [52]WEISS T, HILLENBRAND J, KROHN A, etal. Mutual interference in OFDM-based spectrum pooling systems [C]. Milan:IEEE Press,2004.1873-1877.
    [53]J. D. Poston, W. D. Home. Dis-contiguous OFDM considerations for dynamic spectrum access in idle TV channels[C].1st IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks:DySPAN2005, Nov 8-11,2005, pp:607-610.
    [54]R. Rajbanshi, A. M. Wyglinski, G. J. Minden. An efficient implementation of NC-OFDM transceivers for cognitive radios[C].1st International Conference on Cognitive Radio Oriented Wireless Networks and Communications, June 8-10,2006, pp:1-5.
    [55]汪裕民,OFDM关键技术与应用,机械工业出版社,2007.
    [56]S. Song and A. C. Singer, Pilot-aided OFDM channel estimation in the presence of the guard band [J], IEEE Trans. Commun.,, Aug.2007, vol.55, no.8, pp.1459-1465.
    [57]Handbook of Mathematics [M]. Bejing, China:Higher Education Press,1979.
    [58]Jian L, Keusgen W, and Kortke A. Optimization of time domain windowing and guardband size for cellular OFDM systems[C]. IEEE 68th Vehicular Technology Conference, Sept. 2008:1-5.
    [59]Mahmoud H A, Arslan H. Sidelobe suppression in OFDM-based spectrum sharing systems using adaptive symbol transition [J]. IEEE Communications Letters, February 2008. 12(2):133-135.
    [60]Shao Jian-hua, Liang Xin. A new approach for PAPR reduction of NC-OFDM system based on cognitive radio[C].5th International Conference on Wireless Communications, Networking and Mobile Computing, WiCom'09.24-26 Sept.2009:1-4.
    [61]Zhou Yuan, Wyglinski A M. Cognitive radio-based OFDM sidelobe suppression employing modulated filter banks and cancellation carriers[C]. IEEE Military Communications Conference:MILCOM 2009.2009:1-5.
    [62]Minkoff J. The role of AM-to-PM conversion in memoryless nonlinear systems [J]. IEEE Trans. On Communication, Feb.1985, vol. COM-33:139-143.
    [63]K. Panta, J. Armstrong. Spectral analysis of OFDM signals and its improvement by polynomial cancellation coding[J]. IEEE Trans. On consumer Electronics.2003,49(4): 939-943.
    [64]Rappaport T S. Wireless communication principle and practice [M]. Prentice-Hall, Inc., New Jersey,1996.
    [65]Papoulis A. Probability, Random Variables and Stochastic Process [M],3rd ed. New York: McGraw-Hill,1991:307.
    [66]Minkoff J. The role of AM-to-PM conversion in memoryless nonlinear systems [J]. IEEE Trans. On Communication, Feb.1985, vol. COM-33:139-143.
    [67]唐焕文,秦学志.实用最优化方法[M],大连:大连理工大学出版社,2004:276-279.
    [68]Paolo Banelli and Saverio Cacopardi, Theoretical analysis and performance of OFDM signals in nonlinear AWGN channels [J]. IEEE Trans.Commun., vol.48, March 2000, PP: 430-441.
    [69]纪忠宝.采用对角分布导频对非线性OFDM系统进行信道估计[J].现代计算机,2011.07,1-3.
    [70]Dukuyun K., Stuber G. I. Clipping noise mitigation for OFDM by decision-aided reconstruction [J]. Communication Letters,1999,3(1):4-6.
    [71]Hangjun C., Haimovich A. M. Iterative estimation and cancellation of clipping noise for OFDM signals. Communiactions Letters,2003,7(7):305-307.
    [72]Schwartz S. C., Jinyun Z., Daqing G. Iterative channel estimation for OFDM with clipping[C]. The IEEE 5th international symposium on wireless personal multimedia communications,2002,3:1304-1308.
    [73]Sterba J., Kocur D. Evaluation of channel estimation error inflicted by nonlinear amplification and of its recovery by the means of iterative algorithm[C]. Radioeletronika, 2010 20th international conference,2010:1-4.
    [74]Sterba J. Gazda J., Deumal M., et al. Interative algorithm for nonlinear noise cancellation and channel reestimation in nonlinearly distorted OFDM systems[C].2010 IEEE 8th international symposium on applied machine intelligence and informatics,2010:65-70.
    [75]Sterba J., Fazda J., Deumal M., et al. Iterative algorithm for channel reestimation and data recovery in nonlinearly distorted OFDM systems [J]. Acta Polytechnica Hungarica,2010, 7(1):103-118.
    [76]Bingyang W., Shixin C, Gaifeng W. Clipping effects on channel estimation and signal detection in OFDM[C]. IEEE 14th proceedings on personal, indoor and mobile radio communications,2003,1:31-534.
    [77]Bingyang Wu; Shixin Cheng; Haifeng Wang, Iterative channel estimation and signal detection in clipped OFDM[C],2005 IEEE Global Telecommunications Conference, GLOBECOM'05,2-2 Dec.2005, vol.4, pp.2265-2269.
    [78]Yang L., Sezginer S. Simple interative channel estimation in LTE systems[C].20118th international workshop on multicarrier systems & solutions,2011:1-5.
    [79]解永生,周磊磊,罗炬锋,付耀先OFDM系统中抗非线性失真的迭代信道估计算法[J].,现代电子技术,2012,35(5):74-79.
    [80]周楠清OFDM系统中功率放大器的预失真技术研究[D].导师:刘皓.:电子科技大学,2008.
    [81]Ghassemi, A.; Lampe, L.; Attar, A., et al. Joint Sidelobe and Peak Power Reduction in OFDM-Based Cognitive Radio[C], Vehicular Technology Conference Fall (VTC 2010-Fall), 2010 IEEE 72nd,6-9 Sept.2010, pp.1-5.
    [82]Jaechan Lim; Hong, Daehyoung, Frequency-selective and nonlinear channel estimation with unknown noise statistics[J], IEEE Communications Letters, March 2010, vol.14, no.3, pp.245,247.
    [83]Li, Zhe; Mu, Xiaomin, A Nonlinear Distortion Compensation Algorithm Combined with Channel Estimation in OFDM System[C], Computational and Information Sciences (ICCIS), 2011 International Conference on,21-23 Oct.2011, pp.813,816.
    [84]David W. Chi, Mishal Al-Gharabally, Pankaj Das. Effects of Channel Estimation Error and Nonlinear HPA on the Performance of OFDM in Rayleigh Channels with Application to 802.1 In WLAN [C],2008, WCNC 2008 proceedings, PP:852-857.
    [85]Palicot, Jacques; Louet, Y.; Mroue, M.,Peak to Average Power Ratio sensor for green Cognitive Radio[C], Personal Indoor and Mobile Radio Communications (PIMRC),2010 IEEE 21st International Symposium on,26-30 Sept.2010, pp.2669,2674.
    [86]Diet, A.; Robert, F.; Penaloza, M.S., et al. Flexibility of class E HPA for cognitive multi-radio architecture[C], IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications,2008. PIMRC 2008,15-18 Sept.2008, pp.1-5.
    [87]Diet, A.; Robert, F.; Ribiere-Tharaud, et al. Front end accordability for cognitive multi-radio, using a class E HPA and a multi-band antenna[C], Microwave Conference,2008. APMC 2008. Asia-Pacific,16-20 Dec.2008, pp.1-4.
    [88]Drotar, P.; Gazda, J.; Deumal, M., et al. Receiver based compensation of nonlinear distortion in MIMO-OFDM[C],2010 IEEE International Microwave Workshop Series on RF Front-ends for Software Defined and Cognitive Radio Solutions (IMWS),22-23 Feb.2010, pp.1-4.
    [89]Cherif, M.; Zayani, R.; Bouallegue, R., Compensation for nonlinear distortion in MIMO OFDM systems using MMSE receiver[C], Communication Systems (ICCS),2012 IEEE International Conference on,21-23 Nov.2012, pp.115-119.
    [90]Jae YeonWon, Sung Bo Shin, Yun Hee Kim. An Adaptive OFDMA Platform for IEEE 802. 22 Based on Cognitive Radios[A]. Asia-Pacific Conference on Communications[C],2006: 1-5.
    [91]S.M.凯依.现代谱估计原理与应用[M].北京:科学出版社,1994.
    [92]Ghasemi A., Elvino S. S. Collaborative spectrum sensing for opportunistic access in fading environment[C]. IEEE DYSPAN,2005:131-136.
    [93]Peh ECY, Liang Y. C, Zeng Y. H. Optimization of Cooperative Sensing in Cognitive Radio Networks:A sensing throughput tradeoff View[J]. IEEE Transactions on Vehicular Technology,2009,58(9):5294-5299.
    [94]Zhang Wei, Letaief K. B. Cooperative Spectrum Sensing with Transmit and Relay Diversity in Cognitive Radio Networks[J], IEEE Transactions on Wireless Communications, Dec.2008, 7(12):4761-4766.
    [95]Chen Yun-fei. Optimum number of secondary users in collaborative spectrum sensing considering resources usage efficiency[J]. IEEE Communications Letters, Dec.2008,12(12): 877-879.
    [96]You C., Kwon H., Heo J. Cooperative TV Spectrum Sensing in Cognitive Radiofor Wi-Fi Networks[J]. IEEE Transactions on Consumer Electronics, February 2011,57(1):62-67.
    [97]NA H, KIM S. Optimum number of secondary users in cooperative spectrum sensing using adaptive threshold[C],2010 2nd IEEE International Conference on Network Infrastructure and Digital Content, pp 52-56.
    [98]Peh E, Liang Y. C. Optimization for cooperative sensing in cognitive radio networks[C], IEEE Wireless Communications and Networking Conference,2007:27-32.
    [99]Federal Communications Commission (FCC), Notice of proposed rule making [J]. ET Docket no.04-113, May 25,2004.
    [100]www.ieee802.org/22/online document:PAR.
    [101]J. Benko, Y. Cheong, C. Cordeiro et al. A PHY/MAC proposal for IEEE802.22 WRAN systems. IEEE 802.22-06/0003r3, Mar.2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700