空间结构健康监测的理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间结构形式新颖丰富并且采用了大量的新材料、新技术,成为反映一个国家建筑科学技术水平的标志。空间结构所处环境状况复杂,发生损伤和破坏的潜在危险性较大,对空间结构在建设和运营期间的健康监测、诊断以及各种灾害影响下的损伤预测和识别进行研究,具有重要的理论价值和现实意义。
     本文结合结构健康监测和结构评估领域国内外发展现状,对空间结构健康监测问题,包括模型修正、传感器优化布置、损伤识别和信息融合等,进行了深入系统的研究,取得了如下成果:
     1.对小波理论在结构健康监测中基本应用的研究。对结构的动力方程进行小波灵敏度分析,得到以加速度表示的灵敏度。通过小波系数模极大值求得Lipschitz指数,将其作为衡量突变程度的指标,由此可以识别结构发生损伤的时间。不同损伤状态下的结构节点振动信号经小波包分解后在各频带上的投影是不同的,将其作为特征向量可以实现对结构的损伤程度的识别。
     2.对空间结构模型修正的研究。针对训练神经网络需要大量样本的情况,在结构损伤模拟的试验方案设计中,选用了均匀设计法构造样本以减少所需样本数量。用遗传算法优化BP网络的初始权值,提高神经网络的运算速度。针对空间结构的特点,提出基于子结构和神经网络的递推模型修正方法,该方法将结构分解成多层次的子结构,选取适当的损伤因素实现逐步逐级的修正。提出采用小波频带能量作为损伤因素的修正方法。
     3.对传感器优化布置的研究。根据结构系统可观性,给出具有重频的一般空间结构前若干阶模态所需要的最少传感器数目的估计方法。提出一种选用Frobenius范数求最大化Fisher信息矩阵的方法,在此基础上并考虑传感器优化布置的多重标准,提出基于节点能量和模态保证准则的传感器优化布置方法。针对小波智能方法的特点,运用图论理论,将空间结构或其一部份抽象为有向图;根据各杆件的连接关系确定距离矩阵,运用Floyd算法并综合考虑结构模态动能和模态变形能等参数,提出一种概念新颖的传感器优化布置方法。
Large space structure are the symbol of the national building science and technology for not only its novel and prolific style but also plenty of new material and new technology have been adopted. Space structures are inevitable to suffer from environmental corrosion, long term fatigue effects or natural disasters, and then the damage accumulates during long service period. Therefore, intelligent heath monitoring and damage diagnosis for structures become an important technology to study.
     Detailed research are carried out for space structure heath monitoring by combining the status quo of structural health monitoring and structural condition assessment. The related important problems about structural health monitoring, such as model update, optimal placement of sensors, damage detection and information fusion, are lucubrated and a series of new methods are proposed. The main contents of this dissertation are described as follows:
     1. Sensitivity analysis is carried out for structural dynamic equation by wavelet, and the accelerate signal sensitivity is solved. Damage time for a structure can be detected by Lipschitz index, which is gained by module maximum of wavelet transform and is viewed as an index for identifying mutational degree of signals. Damage degree for a structure can be detected by energy spectrum at different frequency bands for the signal decomposed by wavelet packets.
     2. Model update for space structure is studied. Because too much samples for training Artificial Neuron Network are demanded, uniform design method is used to produce samples in order to reduce the amount of samples in the process of structural damage simulation. Genetic Algorithm is used to optimize the initial weight of back propagation network and the operation efficiency is enhanced. A recurrence update method based on substructures and ANN is presented especially for spatial structures. A structure is divided into multilayer substructures, the updating is realized step by step and a proper damage factor is
引文
1. Housner G. W., Bergman L. A., Caughey T. K. et al. Structural Control: Past, Present, and Future. Journal of Engineering Mechanics. 1997, 123(9):897~971
    2. Charles R. Farrar, Hoon Sohn. Condition and Damage Monitoring Methodologies. Invited Talk, The Consortium of Organizations for Strong Motion Observation Systems (COSMOS) Worksh, Emeryville, CA November 14-15, 2001, LA-UR-01-6573.
    3. 李宏男, 李东升. 土木工程结构安全性评估、健康监测及诊断述评. 地震工程与工程振动. 2002, 22(3):82~90
    4. 雷宏刚. 钢结构事故分析与处理. 中国建材工业出版社, 2003:5~31
    5. 尹德钰, 赵红华. 网架质量事故实例及原因分析. 建筑结构学报. 1998, 19(1):15-23
    6. P. Friebele, et al. Fiber Bragg Grating Strain Sensor: Present and Future Applications in Smart Structures. Optics and Photonics News. 1998, 9:33~37
    7. Wu Z S, Takahashi T, Sudou K1. An Experimental Investigation on Continuous Strain and Crack Monitoring with Fiber Optic Sensors. Concrete Research and Technology. 2002, 13(2): 139~148
    8. Wun-Fogle M, Savage H T, Clark A E. Ultrasensitive, Wide Frequency Range Magnetoelastic strain Gauge. Journal of Applied Physics. 1987, 61(8):3803
    9. Spencer B F. Opportunities and Challenges for Smart Sensing Technology. Tokyo: 1st International Conference on Structural Health Monitoring and Intelligent Infrastructure, 2003. 65~71
    10. Guyan R J. Reduction of Stiffness and Mass Matrices. AIAA Journal. 1965, 3(2):380~387.
    11. J. O'callahan A Procedure for an Improved Reduced System (IRS) Model. Proceedings of the 7th International Modal Analysis Conference. Union College Press, Schenectady, NY, 1989: 17~21
    12. D. Zhang et al. Succession-Level Approximate Reducing (SAR) Technique for Structural Dynamic Model. Proceedings of the 13th International Modal Analysis Conference. Union College Press, Schenectady, NY. 1995:435~441
    13. Breitfeld T. A Method for Identification of a Set of Optimal Measurement Points for Experimental Modal Analysis. Modal Analysis: The International Journal of Analytical and Experimental Modal Analysis. 1996, 11:254~273
    14. Chung Y T, Moore D. On-orbot Sensor Placement and System Identification of Space Station with Limited Instrumentations. In: MacDonald K L ed. Proceedings of 11th IMAC conference. 1993:41~46
    15. Heo, M. L. Wang, D. Satpathi. Optimal Transducer Placement for Health Monitoring of Long Span Bridge. Soil Dynamics and Earthquake Engineering.1997, 16: 495~502
    16. Larson C B, Zimmerman D C, Marek E L. A Comparison of Modal Test Planning Techniques: Excitation and Sensor Placement Using the NASN 8-bay Truss. In: Allemang R ed. Proceedings of the 12th IMAC conference. 1994:205~211
    17. Clerck J P, Avitabale P. Development of Several New Tools for Modal Pretest Evaluation. In: Wick A L ed. Proceedings of 14th IMAC conference. 1996:1527~1532
    18. D.C. Kammer. Sensor Placement for On-orbit Modal Identification and Correlation of LargeSpace Structures. Journal of Guidance, Control and Dynamics. 1991, 14(2):251~259
    19. H. B. Kim, Y. S. Park. Sensor placement Guide for Structural Joint Stiffness Model Improvement. Mechanical Systems and Signal Processing. 1997, 11(5):651~672
    20. Rao S S, Pan Tzong-shii. Optimal Placement of Actuators in Actively Controlled Structures Using Genetic Algorithm AIAA Journal, 1991, 29(5): 942~943
    21. Yao L, Sethares A, Kammer D C. Sensor Placement for On-orbit Modal Identification with A Genetic Algorithm. AIAA Journal, 1993, 31(10); 1922~1928
    22. 李戈, 秦权, 董聪. 用遗传算法选择悬索桥监测系统中传感器的最优布置. 工程力学. 2000, 17(1):25~34
    23. 黄维平, 刘娟, 李华军. 基于遗传算法的传感器优化配置. 工程力学. 2005, 22(1): 113~117
    24. Berman A, Nagy E J. Improvement of a Large Analytical Model Using Test Data. AIAA Journal 1983, 21(8):1168~1173
    25. Kabe A M. Stiffness Adjustment Using Mode Data.AIAA Journal, 1985,1431~1436
    26. Wu X, Ghaboussi J, Garrett J H. Use of Neural Networks in Detection of Structural Damage. Computers and Structures,1992, 42(4):649~659
    27. Tsou P, Shen M H. Structural Damage Detection and Identification Using Neural Networks. AIAA Journal, 1994,32(1):176~183
    28. Chang C C. Adaptive Neural Networks for Model Updating of Structures. Smart Materials and Structures, 2000, 9(1):59~68
    29. Yun C B, Bahng E Y. Substructural Identification Using Neural Networks. Computers and Structures, 2000, 77(1):41~52
    30. Zhu H P. The Characteristic Receptance Method for Damage Detection in Large Mono-coupled Periodic Structures. Journal of Sound and Vibration, 2002, 25(2):241~259
    31. Cawley, R.D.Adams. The Location of Defects in Structures from Measurements of the Natural Frequencies. Journal of Strain Analysis. 1979, 14(2):49~57
    32. Norris Stubbs, Taft H.Broome, Roberto osegueda. Nondestructive Construction Error Detection in Large Spaces Structures. AIAA, 1990, 28(11):146~152
    33. G .Heam, R.B.Testa. Modal Analysis for Damage Detection in Structures. Journal of Structural Engineering. 1991, 117(10):3042~3061
    34. S. Hassiotis, G.D. Jeong. Assessment of Structural Damage from Natural Frequency Measurement. Computers and Structures. 1993, 49(4):679~691
    35. S. Hassiotis. Identification of Damage Using Natural frequencies and Markov Parameters. Computers and Strutures. 2000, 74:365~373
    36. 王德明. 近似估计裂缝部位的折线图谱. 振动与冲击,1987, 2:32~36
    37. M. Biswas, A.K.Pandey, M.Msamman. Diagnostic Experimental Spectral Modal Analysis of Highway Bridge. The International Journal of Analytical and Experimental Modal Analysis, 1990, 5(l):33~42
    38. Charbel Farhat, Francois M.Hemez. Updating Finite Element Dynamic Models Using an Element-by-element Sensitivity Methodology. AIAA, 1993, 31(9):1702~1711
    39. A.K.Pandy, M.Biswas, M.Msamman. Damage Detection from Changes in Curvature Mode Shapes. Journal of Sound and Vibration. 1991, 145(2): 321~332
    40. 袁向荣. 梁的破损对频率、振型及振型曲率的影响. 振动、测试与诊断. 1994, 14(2):40~44
    41. 徐宜桂, 史铁林, 杨叔子. 基于神经网络的结构动力模型修改和破损诊断研究. 振动工程学报. 1997, 10(l):8~12
    42. 郭国会. 钢筋混凝土结构破损评估的神经网络方法. 湖南大学硕士学位论文. 1998, 50~80
    43. J.M. Ricles, J.B.Kosmatka. Damage detection in Elastic Structures Using Vibratory Residual Forces and Weighted Sensitivity. AIAA, 1992, 30(9): 2310~2316
    44. H. Batuth, S.Ratan. Damage Detection in the Flexible Structures. Journal of Sound and Vibration. 1993, 166(l): 21~30
    45. 周先雁. 混凝土平面杆系结构破损评估理论及试验研究. 湖南大学博士学位论文. 1996, 32~80
    46. Y. S. Park, H. S. Park, S. S. Lee. Weighted-error-matrix Application to Detect Stiffness Damage by Dynamic-characteristic Measurement. The International Journal of Analytical and Experimental Modal Analysis. 1988, 3(3): 101~107
    47. A. K. Pandy, M. Biswas. Damage Detection in Structures Using Changes in Flexibility. Journal of Sound and Vibration. 1994, 169: 3~17
    48. A. K. Pandy, M. Biswas. Experimental Verification of Flexibility Difference Method for Locating Damage in Structures. Journal of Sound and Vibration. 1995, 184(2): 311~328.
    49. 綦宝晖, 邬瑞锋, 蔡贤辉. 一种桁架结构损伤识别的柔度阵法. 计算力学学报. 2001, 18(l): 42~47
    50. G .C.Yao, K.C.Chang, G.C.Lee. Damage Diagnosis of Steel Frame Using Vibration Signature Analysis. Journal of Engineering Mechanics. 1992, 118(9): 1949~1961
    51. 李德葆. 实验应变模态分析原理和方法. 清华大学学报. 1990, 30(2): 22~26
    52. 徐丽. 框架结构损伤诊断理论及实验研究. 湖南大学硕士学位论文. 2000:32-52.
    53. Jay-Ching Chen, John A.Garba. On-orbit Damage Assessment for Large Space Structures. AIAA, 1988, 26(9): 1098~1126
    54. Tae W Lim. Structural Damage Detection Using Modal Test Data. AIAA Journal, 1991, 29(12): 2271~2275
    55. Jiann-Shium Lew. Using Transfer Function Parameter Changes for Damage Detection of Structures. AIAA Journal. 1995, 33 (11):2189~2193.
    56. David C,Zimmerman et al. Structural Damage Detection Using Frequency Response Function. Proceedings of 13th IMAC, 1995, 179~184
    57. Maia N M M. Location of Damage Using Curvature of the Frequency Response Functions. Proceedings of 15th IMAC, Florida, 1997, 942~946
    58. Mark J S et al. Detecting Structural Damage Using Transmittance Function. Proceedings of 15th IMAC, Florida. 1997, 638~644.
    59. 易伟建, 刘霞. 基于遗传算法的结构损伤诊断研究. 工程力学, 2001, 18(2): 64~71.
    60. 刘霞. 非数值优化算法应用研究. 湖南大学硕士学位论文. 2000:40~62.
    61. M.I.Friswell, J.E.T. Penny, S.D.Garvey. A Combined Genetic and Eigensensitivity Algorithm for the Location of Damage in Structures. Computers and Structures. 1998, 69(5): 547~556.
    62. Trendfilove I et al. Two Statistical Pattern Recognition Methods for Damage Localization. Proceedings of 17th IMAC, 1999, 1380~1386
    63 Hermans L et al. Health Monitoring and Detection of a Fatigue Problem of a Sports Car. Proceedings of 15th IMAC. 1999, 42~48
    64 Hoon Sohn. A Bayesian Probabilistic Approach for Structural Damage Detection. Earthquake Engineering and Structural Dynamics, 1997, 1259~1281
    65 VanicM W. A Bayesian Probabilistic Approach to Structural Health Monitoring. Proceedings of 17th IMAC, 1999, 342~348
    66 Hoon Sohn et al. Continuous Structural Health Monitoring Using Statistical Process Control. Proceedings of 18th IMAC, 2000, 660~667
    67 Ko H, Baran R and Arozullah M. Neural Network Based Novelty Filtering for Signal Detection Enhancement. Proceedings of the 35th Midwest Symposium on Circuits and Systems, IEEE, Washington D. C., 1992. 252~255
    68 Wu X, Ghaboussi J and Garrett J H. Use of Neural Networks in Detection of Structural Damage. Computers and Structures, 1992, 42: 649~659
    69 Povich C R and Lim T W. An Artificial Neural Network Approach to Structural Damage Detection Using Frequency Response Functions. Proceedings of the 1994 AIAA/ASME Adaptive Structures Forum, 1994. 151~159
    70 Kaminski P C. The Approximate Location of Damage through the Analysis of Natural Frequencies with Artificial Neural Networks. Journal of Process Mechanical Engineering. 1995, 209: 117~123
    71 瞿伟廉, 陈伟. 多层及高层框架结构地震损伤诊断的神经网络方法. 地震工程与工程振动. 2002, 22 (1)
    72 Segawa R, et al. System Identification of MDOF Structures by Wavelet Transform. Proceedings of the U. S.-Japan Joint Workshop and Third Grantees Meeting, Monbu – Kagaku - Sho and NSF, 15~16 August, 2001.
    73 Hou Z, Noori M, Amand R St .Wavelet-based Approach for Structural Damage Detection. Journal of Engineering Mechanics, ASCE, 2000, 126(7):677~683.
    74 Hou Z and Noori M. Wavelet-based Approach for ASCE Structural Health Monitoring Benchmark Studies. Proceedings of the 3 rd International Workshop on Structural Health Monitoring, Stanford University, Stanford, CA, September 12~14, 2001.
    75 Amaravadi V, Rao V, Kovai L R. Structural Health Monitoring Using Wavelet Transforms. Proceedings of SPIE, 2001, 4327:258~269
    76 Amaravadi V et al. Structural Integrity Monitoring of Composite Patch Repairs Using Wavelet Analysis and Neural Network. NED for Health Monitoring and Diagnostics, San Diego, 2002, 4701~4718.
    77 Wang P and Vachtsevanos G. Fault Prognosis Using Dynamic Wavelet Neural Networks. Maintenance and Reliability Conference, MARCON 99, Gatlinburg, May 10 ~12, 1999.
    78 Vachtsevanos Gand Wang P. A Wavelet Neural Network Framework for Diagnostics of Complex Engineered Systems Maintenance and Reliability Conference, MARCON 98, Knoxville , May 12~14 , 1998.
    79 Vachtsevanos G, Wang P, Khiripet N. Prognostication. Algorithms and Performance Sssessment Methodologies. ATP Fall National Meeting Condition-Based Maintenance Workshop, San Jose, California, 1999. November 15~17
    80 Sun Z, Chang C C. Structural damage Assessment Based on Wavelet Packet Transform. Journal of Structural Engineering, ASCE, 2002, 128 (10):1354~1361
    81 Myroll F, Dibiagio E. Instrumentation for Monitoring the Skarnsunder Cable-stayed Bridge. Krokeborg J Proceedings of the 3rd Symposium on Strait Crossing. Rotterdam:Balkema, 1994: 207~215
    82 Andersen E Y. Structural monitoring of the Great Belt East Bridge. Krokeborg J Proceedings of the 3rd Symposium on Strait Crossing. Rotterdam:Balkema,1994. 54~62
    83 Curran P,Tilly G. Design and Monitoring of the Flintshire Bridge. U K. Structural Engineering International, 1999, 3: 225~228
    84 Chueng M S, Tadros G S, Brown T G, et al. Field Monitoring and Research on Performance of the Confederation Bridge. Canadian Journal of Civil Engineering. 1997, 24 (6):951~962.
    85 欧进萍, 肖仪清, 黄虎杰等. 海洋平台结构实时安全监测系统. 海洋工程. 2001,19(2):1~6
    86 Pervizpour M., Curt J, Qin X. et al. Data Processing and Quality Assurance in Health Monitoring of Constructed System. SP IE’s6th International Symposium on NDE for Health Monitoring and Diagnostics,4~8 March,2001
    87 Aftab A., Mufti. Structural Health Monitoring of Innovative Canadian Civil Engineering Structures. Structural Health Monitoring, 2002, 1 (1): 89~103.
    88 Iwak H, Yamakaw H, Shiba K. et al. Structural Health Monitoring System Using FBG-Based Sensors for a Damage Tolerant Building. Smart Structures and Materials, San Diago, 2002. 469~220. CD Version.
    89 Habel W. R.,Hofmann D.,Kohlhoff H. et al. Complex Measurement System for Long-Term Monitoring of Prestressed Railways Bridges in the New Lehrter Bahnhof in Berlin. Smart Structures and Materials, San Diago, 2002. 4694-31. CD Version.
    90 杨 杰, 吴中如. 大坝安全监控的国内外研究现状与发展. 西安理工大学学报,2002,18 (1):26~30
    91 顾冲时, 吴中如. 大坝安全监测专家系统的结构及知识工程. 水利技术监督. 1998, 6(1): 36~40
    92 瞿伟廉, 滕军, 项海帆等. 风力作用下深圳市民中心屋顶网架结构的智能健康监测. 建筑结构学报. 2006, 27(1):1~8
    93 S. Sumitro, M. L. Wang. Sustainable Structural Health Monitoring System. Structural Control and Health Monitoring. 2005:12:445~467
    94 程正兴. 小波分析算法与应用. 西安交通大学出版社,1998:15~50
    95 SUN Zhi, CHANG Chih-Chen. Wavelet Packet Signature: A Novel Structural Condition Index. China-Japan Workshop on Vibration Control and Health Monitoring of Structures and Third Chinese Symposium on Structural Vibration Control, Shanghai, China, Dec, 2002:1~10
    96 胡广书. 现代信号处理教程. 清华大学出版社, 2004:371~396
    97 薛祥, 霍达, 滕海文. 桥梁损伤识别的小波空间变换及基函数选取的理论探讨. 河南科学. 2005, 23(6):918~922
    98 程正兴. 小波分析算法与应用. 西安交通大学出版社,1998:341~347
    99 Yen G G, Lin K C .Wavelet Packet Feature Extraction for Vibration Monitoring. IEEE Trans. Industrial Electronics. 2000, 47 (3): 650~667
    100 陈长征, 罗跃纲等. 结构损伤检测与智能诊断. 科学技术出版社, 2001:30~120
    101 蔡自兴. 智能控制. 电子工业出版社, 2004: 80~105
    102 李国勇 智能控制仿真与MATLAB实现, 电子工业出版社, 2005: 1~88
    103 Peter J A, Gregory M S, Jordan B P. An Evolutionary Algorithm that Constructs Recurrent Neural Networks. IEEE Transactions on Neural Network works, 1994, 5: 54~64.
    104 王小平, 曹立明. 遗传算法-理论、应用与软件实现. 西安交通大学出版社, 2002:58~96
    105 陈国良, 王煦法等. 遗传算法及其应用. 人民邮电出版社, 1996:5~39
    106 Ramasamy J V,Rajasekaran S. Artificial Neural Network and Genetic Algorithm for the Design Optimization of Industrial Roofs-a comparison. Computers and Structures. 1996, 58(4):747~755
    107 吴大宏, 赵人达. 基于遗传算法与神经网络的桥梁结构健康监测系统研究初探. 四川建筑科学研究. 2002, (3): 4~6
    108 高允彦. 正交及回归试验设计方法. 冶金工业出版社, 1988:5~36
    109 栗军. 现代试验设计优化方法. 上海交通大学出版社, 1995:55~85
    110 方开泰, 王元. 均匀设计与均匀设计表. 中国科学出版社, 1994:35~72
    111 张毅刚, 薛素铎等. 大跨空间结构. 机械工业出版社, 2005:138~141
    112 Bendat J S, Piersol A G. Engineering Applications of Correlation and Spectral Analysis. 2nd edition. New York: John Wiley and Sons, 1993
    113 Brincher R,Zhang L M,Andersen P. Modal Identification of Output Only Systems Using Frequency Domain Decomposition. Smart Material and Structures, 2001, 10(3):441~445
    114 Andersen P, Brincker R, Kirkegaard P H. Theory of Covariance Equivalent ARMAV Model of Civil Engineering Structures. Proceedings of IMAC 14, the 14th international modal analysis conference.1996, 518~524
    115 James G H, Camer T G, Lauffer J P. The Natural Excitation Technique (NExT) for Modal Parameter Extraction from Operating Structures, International Journal of Analytical and Experimental Modal Analysis, 1995, 10(4):260~277
    116 Van Oerschee P. De Moor B. Subspace Identification for Linear Systems: Theory, Implementation and Applications, Dordrecht: Kluwer Academic Publishers, 1996
    117 S. R. Ibrahim and E. C. Mikulcik, A Method for the Direct Identification of Vibration Parameters from the Free Response, Sounds and Vibrations Bulle in, 1977, 183~198
    118 Juan J.N. and Pappa. R. S. An Eigensystem Realization Algorithm for Modal Parameter identification and Model Reduction, Journal of Guidance, Control and Dynamics. 1985, 8(5): 620~627
    119 温之建. 多变量系统辨识的研究与应用. 北京化工大学硕士学位论文. 2004:1~54
    120 刘中生,于民等. 模态参数识别中的激振点和测量点的布局. 宇航学报. 1995, 16(2):26~32
    121 蓝天, 张毅刚. 大跨度屋盖结构抗震设计. 中国建筑工业出版社. 2000:61~140
    122 秦仙蓉, 张令弥. 一种基于QR分解的逐步累积法传感器配置. 振动、测试与诊断. 2001, 21(3): 168~173
    123 J E T Penny, M I Friswell, S D Garvey. Automatic Choice of Measurement Location for Dynamic Testing. AIAA Journal. 1994, 32(2): 407~414
    124 王柏生, 倪一清, 高赞明. 青马大桥桥板结构损伤位置识别的数值模拟. 土木工程学报. 2001, 34(3):67~72
    125 三田 彰著. 薛松涛, 陈镕 译. 结构健康监测动力学. 西安交通大学出版社. 2004: 114~125
    126 卢开澄. 图论及其应用. 清华大学出版社, 1984:1~80
    127 边肇祺. 模式识别. 清华大学出版社, 1988:1~60
    128 孙即祥. 现代模式识别. 国防科技大学出版社, 2002:1~12
    129 虞和济, 陈长征. 基于神经网络的智能诊断. 冶金工业出版社, 2000:1~66
    130 冯新, 李国强, 周晶. 土木工程结构健康诊断中的统计识别方法综述. 地震工程与工程振动. 2005, 25(2):105~113
    131 Vapnik VN. The Nature of Statistical Learning Ttheory. New York: Springer; 1995.
    132 V.Vapnik. An Overview of Statistical Learning Theory. IEEE Traps Neural Networks, 1999 10(5):988~999
    133 V .Vapnik and Chervoknenkis A Y. The Necessary and Sufficient Conditions for Consistency in the Empirical Risk Minimization Method. Patternition and Image Analyis, 1991, 1(3): 283~305
    134 V.Vapnik, E.Levin and Y.L.Cun .Measuring the VC-Dimension of a Learning Machine. Neural Computation, 1994, 16(5):851~876
    135 Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge, UK: Cambridge University Press. 2000:1~82
    136 J.J.Hopfield, Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proceedings of the National Academy of Sciences the U.S.A .79, 2554~2558, 1982.
    137 D.E. Rumelhart, G.E. Hinton. Learning Representations by Back Propagation Errors. Nature (London). 1986, 323:533~536
    138 B. Samanta, K.R. Al-Balushi, S.A. Al-Araimi. Artificial Neural Networks and Support Vector Machines with Genetic Algorithm for Bearing Fault Detection. Engineering Applications of Artificial Intelligence. 2003,16:657~665
    139 Daniel J. Strauss, Gabriele Steidl. Hybrid Wavelet-support Vector Classification of Waveforms. Journal of Computational and Applied Mathematics 2002, 148:375~400
    140 Kressel U. Pairwise. Classification and Support Vector machines. In B. Scholkopf, ed. A dvances in Kernel Methods Support Vector Learning, MIT Press, Cambridge, Massachusetts, 1999:255~268.
    141 Z.Pawlak. Rough Sets. International Journal Information and Computer Science. 1982,11(5): 341~356
    142 Z. Pawlak. Rough Sets Theoretical Aspects of Reasoning about Data. The Netherlands Kiuwer Academic Publishers. 1991,1~16
    143 Z. Pawlak. Intelligent Decision Support- Handbook of Applications of the Rough Sets Theory. The Netherland, Kluwer Academic Publishers,1992,1~23
    144 Jolliffe I T. Principal component analysis. New York: Springer-Verlag, 1986
    145 Jutten C, Herault J. Independent Component Analysis Versus PCA. In: Proceeding of European Signal Processing Conf, 1988. 287~314
    146 吴耀军, 陶宝祺, 陈进, 徐敏. 小波基特征提取的复合材料损伤检测. 振动工程学报.1998, 11(1):116~120
    147 邱颖, 任青文, 朱建华. 基于小波奇异性的梁结构损伤诊断. 2005,22(增刊):146~151
    148 曹茂森. 基于动力指纹小波分析的结构损伤特征提取与辨识基本问题研究.河海大学博士学位论文.2005:90~120
    149 Yen, G. G. and Lin, K. C. Wavelet Packet Feature Extraction for Vibration Monitoring. IEEE Trans. Industrial Electronics. 2000, 47 (3) :650~667
    150 李洪泉, 董亮, 吕西林. 基于小波变换的结构损伤识别与试验分析. 土木工程学报, 2003, 35(5):52~57
    151 夏炎. 南京奥体中心体育场空间结构损伤识别初探. 东南大学硕士学位论文. 2004:20~60
    152 吴金志, 张毅刚. 基于BP神经网络的网格结构损伤识别与试验研究. 世界地震工程. 2005, 21(4):71~76
    153 刘开国. 大跨度张弦梁式结构的分析. 空间结构. 2001, 7(2):39~43
    154 孙文波. 广州国际会展中心大跨度张弦梁的设计探讨. 建筑结构. 2002. 32(2):54~56.
    155 丁阳, 岳增国, 刘锡良. 大跨度张弦梁结构的地震响应分析.地震工程与工程振动. 2003, 23(5):163~168
    156 夏循. 张弦梁结构的动力性能研究. 浙江大学硕士学位论文. 2004:5~12
    157 Kroneberger Stanton KJ, Hartsough B R. A Monitor for Indirect Measurement of Cable Vibration Frequency and Tension. Transaction of the ASCE. 1992, 35(3):341~346
    158 刘志军, 党志杰等. 振动法测定缆索张力的研究. 桥梁建设. 2002, 15(2):26~29
    159 任伟新, 陈刚. 由基频计算拉索拉力的实用公式. 土木工程学报. 2005, 38(11):26~31.
    160 Ren C. L. Multi-sensor Integration and Fusion in Intelligent System. IEEE Trans. On System, Man and Cybernetics, 1989, (15): 901~931
    161 康耀红.数据融合理论与应用. 西安电子科技大学出版社. 1997:15~32
    162 刘同明.数据融合技术及其应用. 国防工业出版社. 1998:20~30.
    163 李圣怡.多传感器融合理论及在智能制造系统中的应用. 国防科技大学出版社. 1998:1~5.
    164 滕召胜.智能检测系统与数据融合. 机械工业出版社. 2000:1~20.
    165 Zadeh L A. Soft Computing and Fuzzy Logic. IEEE Trans. Software, 1994, 11(6): 48~56
    166 Zadeh L A. Fuzzy Logic, Neural networks, and Soft Computing. Communications of ACM , 1994, 37 (3):77~84
    167 吕大刚, 王光远. 结构智能健康诊断的信息融合原理. 哈尔滨建筑大学学报. 2002 35(4):1~5
    168 Z. Chair, P. K. Varshney. Distributed Bayesian Hypothesis Testing with Distributed Data Fusion. IEEE Trans. SMC., 1988, 18(5):695~699
    169 马俊, 孙即祥. 基于多传感器系统的分布式检验航空电子技术. 1996, 84(3):35~42
    170 苏惠敏, 张明廉. 多传感器检测系统的分布式数据融合. 北京航空航天大学学报. 1999, 25(3):347~350.
    171 傅祖芸. 信息论—基础理论与应用. 电子工业出版社. 2001:1~38
    172 姜丹等. 信息理论与编码. 中国科技大学出版社. 1992:10~50
    173 贺仲雄. 模糊数学及其应用. 天津:天津科学技术出版社,1983:64~72
    174 王光远. 工程软设计理论. 北京: 科学出版社. 1992:22~85
    175 高赞明, 孙宗光, 倪一清. 基于振动方法的汲水门大桥损伤检测研究. 地震工程与工程振动. 2001, 21(4):117~124
    176 李公宇, 郑华文. 损伤结构的曲率模态分析. 振动、测试与诊断. 2002, 22(2):136~141.
    177 蔡文. 物元模型及其应用. 科学技术文献出版社. 1994:1~50
    178 王惠勇, 陈宇亮, 芮勇勤. 基于物元模型分析方法的路面状况综合评价. 交通运输工程学报. 2004, 4(2): 6~9
    179 荀志远, 申建红. 基于物元分析理论的建筑产品完损度评估. 土木工程学报. 2003, 36(9):100~105
    180 李晓忠, 汪培庄, 罗承志. 模糊神经网络. 贵阳科技出版社. 1994:15~63
    181 张乃尧, 阎平凡. 神经网络与模糊控制. 清华大学出版社. 1998:1~25
    182 Takagi T, Sugeno M,Fuzzy Identification of Systems and Its Application to Modeling and Control,IEEE Trans Syst Man,and Cybern. 1985 (1): 116~132.
    183 李爱群, 缪长青, 李兆霞. 润扬长江大桥结构健康监测系统研究. 东南大学学报. 2003, 33(5):544~548
    184 裴强, 郭迅, 张敏政. 桥梁健康监测及诊断研究综述. 地震工程与工程振动. 2003, 23(2): 61~67
    185 Hjelmstad KD, Shin S. Damage Detection and Assessment of Structures from Static Response. Journal of Engineering Mechanics. 1997, 123(6):568~576
    186 史立刚. 可持续建筑的全寿命周期评价策略研究. 低温建筑技术. 2003, 7(5):96~97
    187 张爱林. 基于功能可靠度的结构全寿命设计理论研究综述. 北京工业大学学报. 2000,26(3):55~58
    188 季天健, 王光远, 张鹏. 抗震结构全寿命预期总费用最小优化设计土木工程学报. 2003, 36(6):1~6
    189 Grimaldi Domenico. Java Based Distributed Measurement Systems. IEEE Transactions on Instrumentation and Measurement. 1998, 47(1): 85~89
    190 Ruiz-Sandoval. Smart Sensors for Civil Infrastructure Systems. University of Notre Dame. 2004:20~96
    191 Wooldridge MJ. Agent-based Software Engineering. IEEE Trans on Software Engineering. 1997, 144 (1): 26~27
    192 史忠植. 智能主体及其应用. 科学出版社,2000:180~200
    193 吴伟蔚, 杨叔子, 吴今培. 故障诊断Agent研究. 振动工程学报. 2000, 13(3):393~399
    194 Pope A. The CORBA Reference Guide: Understanding the Common Object Request Broker Architecture. Reading Mass: Addison Wesley. 1998. 62~66
    195 Yannis Labrou, Tim Finin. A Proposal for a New KQML Specification. ARPA Knowledge Sharing Initiative, External Interfaces Working Group Working Paper. Berlin: springer verlag. 1997:54~78
    196 Etzioni, D Weld. A Softbot-Based interface to the Internet. CACM. 1994,27(7):35~44
    197 唐平, 刘洁. Multi-Agent的协作模型及其应用.计算机应用. 2001,21(2):8~11
    198 王怀明, 陈火旺. 面向智能主体的程序设计.计算机学报. 1994,17(5):367~375
    199 秦树人等. 智能控件化虚拟仪器系统-原理与实现.科学出版社, 2004:1~16
    200 杨乐平, 李海涛等. 虚拟仪器技术概论.电子工业出版社, 2003:1~23
    201 杨乐平, 李海涛等. LabVIEW高级程序设计.清华大学出版社, 2003:15~21
    202 周文松, 李惠, 欧进萍. 滨州黄河公路大桥健康监测系统软件系统设计与实施. 第三届中日美结构健康监测与控制学术研讨会暨第四届中国结构控制年会. 2004.10, 大连
    203 李惠, 周文松, 欧进萍, 杨永顺. 大型桥梁结构智能健康监测系统集成技术研究. 土木工程学报. 2006, 39(2):46~52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700