考虑气膜冷却孔涡轮叶片持久寿命预测的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镍基高温合金用于制造航空发动机的高压涡轮叶片。为了提高涡轮叶片持久寿命设计参数选取和设计方法的可靠性,从涡轮叶片代表性部位取材并设计、加工试验试件,其中包括有孔(气膜冷却孔)、直孔和斜孔试件。
     对无孔试件和有孔试件在不同温度和应力下分组进行持久拉伸试验,记录试件断裂时间和拉伸过程中的蠕变变形量。试验结果表明,与标准试件比较,13个无孔试件持久寿命时间大为缩短,即使同一名义应力下,不同试件试验数据也存在着一定的离散性,但是每组(三个)试件中至少有两个数据是比较接近的;6个带孔试件的断裂时间较为接近,与标准试件比较相同名义应力下,持久寿命大为降低,由于应力集中效应的影响,其降低幅度大于无孔试件,降低幅度最大约为88%。气膜孔为直孔或斜孔,其对持久寿命的影响差别不大。
     为了解释上述试验结果,对试件进行有限元数值模拟和断口分析。通过采用θ法和非线性回归方法得到Norton蠕变规律参数,再将Norton参数转化成ANSYS所支持的格式,进而在ANSYS下进行有限元数值模拟。求得应力集中最大节点的应力值,进而算出其持久寿命,并与标准试件进行比较。模拟结果显示,气膜冷却孔的应力集中效应将大大降低试件的持久寿命,寿命预测时应该充分考虑其影响。断口分析表明,持久寿命数据离散是因为有些试件断口处存在较大尺寸的第二相粒子,其可能成为潜在的裂纹源,导致试件寿命大为降低。
     本文还将测得的试件变形值,换算成蠕变应变值,再对相同应力条件下的应变取平均,用修正θ法得到模拟试件的持久寿命预测方程,并且验证其可靠性。
The directionally crystal nickel-based high-temperature alloy is used for the turbine blade of some advanced engines recently. In order to enhance the reliability of design parameters and design method for the endurance life of the turbine blade, the endurance life experiments are made on the specimens cut from the typical part of the turbine blades with film cooling hole including perpendicular-hole and nonperpendicular-hole.
     For each specimen, its endurance life and creep deformation values at different time are recorded during the endurance life experiment, and creep strains are gained. The experimental results show that the film cooling holes have a significant influence on endurance life compared with standard specimens' one. For 13 non-hole specimens, their endurance lives are much shorter than those of standard specimens. Their experimental results are very different even though at same nominal stress, but at least two data in every group (three specimens) are relatively close. For 6 specimens with holes, their endurance lives are very close, but all of them are even shorter than non-hole specimens, where the largest difference compared with standard specimens is up to 88%.
     To validate these experimental results, FEA simulation and fracture analysis is carried out. Since the number of the specimens is limited, the Norton creep law parameters which are transformed to the parameters in software ANSYS are gained usingθ-Project Concept method and nonlinear regression method. Moreover, the endurance life is obtained by computing the maximum stress value, then is compared with standard specimens' endurance life. The numerical simulation analysis demonstrates that the endurance life has significantly been influenced by the film cooling hole' Stress Concentration Effects, which should be adequately taken into account when predicting the turbine blade's endurance life. Additionally, fracture analysis shows that the second-phase particles which may become the source of crack make experimental data very different and the endurance life decreases very much.
     In this paper, the predicting equation is also obtained using modifiedθ-Project Concept, and its reliability is proved.
引文
[1]陈荣章.航空铸造涡轮叶片合金和工艺发展的回顾与展望.航空制造技术,2002,(2):3.
    [2]孔详鑫.第四代战斗机及其动力装置.航空科学技术,1994,(5):21-25.
    [3]Mclean M.Directionally Solidified Materials For High-Temperature Services.Landon:The Meals Society,1983:169.
    [4]Sims C T,Stoloff N S and Hagel W C.Superalloy Ⅱ.New York:John wiley and Sons Inc,1987:123
    [5]Cetel A D and Duhul D N.In:Proc 7th Inter Symp on Superalloys.Seven Spring,PA:TMS,1992:287
    [6]程礼,吴家辉,李宁.预测涡轮叶片蠕变疲劳寿命的模糊评判方法.1997,176-179
    [7]饶寿期.航空发动机的高温蠕变分析.航空发动机,2004,30(1):10-13
    [8]穆霞英.蠕变力学.西安:西安交通大学出版社,1990.
    [9]GJB/218-19金属材料力学性能数据表达准则(中华人民共和国国家军用标准)[S].北京:国防科工委军标发行部.
    [10]北京航空材料研究所,材料数据手册(第五版),北京:国防工业出版社,2004.
    [11]Lewis B L,Beckwith L R.A unified approach to turbine blade life prediction.SAE Tech.Paper Scr.No.821439.1983:4496-4512.
    [12]Bodner S R,Partom I,Partom Y.Uniaxial cyclic loading of elastic-viscoplastic materials,ASME J Appl Mech.1979,46:805-810
    [13]陈立杰,江铁强,谢里阳.涡轮叶片蠕变-疲劳交互作用下寿命预测方法综述.航空制造技术,2004,12:61-64.
    [14]岳珠峰,郭一,郑长卿等.Ni基高温单晶合金结构强度与寿命研究方法分析.机械强度.1994,16(2):63-71.
    [15]桂忠楼.俄罗斯单晶高温合金各向异性的研究现状.航空工程与维修,1997,1:20-21.
    [16]平修二.金属材料的高温强度理论、设计.北京:科学出版社,1983.
    [17]岳珠峰,吕震宙,郑长卿.镍基定向结晶合金蠕变损伤的细观模型.应用数学和力学,1999,20(2):175-180.
    [18]尹泽勇,岳珠峰,杨治国等.各向异性单晶合金结构强度与寿命.北京:国防工业出版社,2003.
    [19]周柏卓.各向异性高温涡轮叶片材料本构关系研究,[学位论文],北京:北京航空航天大学,1999
    [20]孟春玲,饶寿期.涡轮叶片蠕变寿命预测方法研究.北京工商大学学报(自然科学版),2002,20(2):52-55.
    [21]田爱梅,饶寿期,孟春玲.定向结晶气冷叶片的蠕变分析方法.燃气涡轮试验与研究.1998,11(2):47-50.
    [22]赵爱红,饶寿期.涡轮叶片的循环蠕变分析.航空动力学报,1995,10(11):5-8.
    [23]孟春玲,吴斌,饶寿期.单晶叶片材料试验研究.北京航空航天大学学报,1998,24(1):21-23.
    [24]丁志平,刘义伦,尹泽勇.镍基单晶高温合金蠕变-疲劳寿命评估方法进展.机械强 度,2003,25(3):254-259.
    [25]Yin Ze yong,Cheng Xiao ming etc.Study on Strength and Life of Anisotropic Single Crystal Blade—Part:Experimental Research.Chinese Journal of Aeronautics,2001,14(1):24
    [26]王开国,李家荣,刘世忠.DD6单晶高温合金760℃的蠕变性能研究.材料工程,2004,5:7-11.
    [27]王开国,李家荣,刘世忠.DD6单晶高温合金980℃的蠕变性能研究.材料工程,2004,8:7-11.
    [28]袁超,郭建亭.定向凝固镍基高温合金DZ17G的持久寿命.材料工程,2002,5:11-13.
    [29]张晓霞,周柏卓.正交各向异性材料的弹性本构关系分析.航空发动机,1996,1:20-25.
    [30]王勖成.有限单元法.北京:清华大学出版社,2003.
    [31]Evans R W,Wilshire B.Creep of Metals and Alloys.London:The Institute of Metals,1985.
    [32]Evans R W,Parker J D,Wilshire B.Recent Advance in Creep and Fracture of Engineering Materials and Structures.Wilshire B,Owen D R J,eds.Swansea:Pineridge Press,1982.
    [33]陈国良,郭宏,孙继跃等.耐热钢12Cr1MoV蠕变性能的描述和外推.北京科技大学学报,1997,19(2):157-160.
    [34]Oikawa H,Maruyama K.Prediction of Long-Term Creep Curves.Fusion Engineering and Design,1992,19(4):321-328.
    [35]Maruyama K,Oikawa H.An Analysis of High Temperature Creep as Relaxation Processes With Specal Reference to CrMoV steels.Transactions of the Japan Institute of Metals,1987c,28:191-298.
    [36]Maruyama K,Harada C,Oikawa H.A Strain-Time Equation Applicable up to Tertiary Creep Stage.Zairyo,1985,34:1289-1295.
    [37]HB5150-80《金属高温拉伸持久试验方法》.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700