玻璃纤维/碳纤维混杂增强复合材料电缆芯老化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了实验室模拟环境(湿热、化学介质、盐雾、紫外光)下,玻璃纤维/碳纤维混杂增强环氧树脂复合材料电缆芯的环境老化行为,测定了复合材料电缆芯在多种化学介质中的吸湿特性,分析了环境因素对其静态、动态力学性能的影响以及该复合材料在不同介质中的老化机理,并基于湿热老化对复合材料电缆芯进行了寿命预估。
     通过测量吸湿率研究了复合材料电缆芯在不同介质中的吸湿特性。结果表明,在蒸馏水和10wt% NaCl水溶液中,复合材料电缆芯在吸湿初期符合Fick扩散定律,吸湿后期偏离了Fick扩散定律;在10wt% H2SO4水溶液中,浸泡前期复合材料电缆芯的吸湿与Fick扩散相似,但后期表观吸水率稍有下降;在5wt% NaOH水溶液中,复合材料电缆芯的表观吸水率先线性增加,而后略有下降,最后又随浸泡时间的增加而单调增加;另外,升高温度加快了水在复合材料电缆芯中的扩散速率,增大了复合材料电缆芯的饱和吸水率。
     通过动态机械热分析(DMA)考察了湿热老化对复合材料电缆芯动态力学性能的影响。结果表明,复合材料电缆芯的储能模量( )随老化时间的推移而下降,力学损耗因子(taE'
     nδ)随老化时间的推移而增大,且温度越高影响越大;水的增塑作用使复合材料电缆芯的玻璃化转变温度(Tg)下降,且随吸湿达到饱和,Tg趋于一定值;由未吸湿试样和吸湿后又重新干燥试样的DMA结果得知,复合材料电缆芯在湿热老化过程中未发生明显的水解反应。
     采用万能试验机测定了复合材料电缆芯的弯曲强度和剪切强度,考察了环境条件对其静态力学的影响。结果表明,环境条件造成了复合材料电缆芯弯曲、剪切强度的下降,但性能降低的幅度逐渐减小;在不同温度下,复合材料电缆芯的力学性能下降趋势基本相同,只是性能下降的速率和幅度不同,温度高的下降快幅度大。
     扫描电镜(SEM)和红外光谱(IR)分析结果表明,在蒸馏水和10wt% NaCl水溶液中复合材料电缆芯有着相同的老化机理,即复合材料的性能变化是由树脂基体的溶胀塑化、界面脱粘及基体、界面的形貌变化引起的,未发生化学反应;而在10wt% H2SO4和5wt% NaOH水溶液中,除上述物理老化外,复合材料还发生了化学老化。
     基于加速湿热老化,采用B基值方程得到了混杂复合材料电缆芯加速老化的高置信度、高可靠度寿命预测方程及相关参数,确定了环境当量,预测了混杂复合材料电缆芯的工作寿命。
Aging behaviors of glass/carbon hybrid fibers reinforced epoxy resin composite cable core were studied in various simulated environments respectively. Absorption characteristics of the composites in distilled water, 10wt% NaCl aqueous solution, 10wt% H2SO4 aqueous solution and 5wt% NaOH aqueous solution were investigated. Moreover, effects of the environments on static and dynamic mechanical properties and aging mechanisms were analyzed. The service life of the cable core was also predicted on the basis of experimental hygrothermal aging data.
     The experimental results of moisture absorption ratio show that the absorption characteristics of the hybrid composite cable core obey the Fick’s law in the early period, however, large deviations arise for the cable core in distilled water and 10wt% NaCl aqueous solution in the following time of the experiment. In 10wt% H2SO4 aqueous solution, the absorption behavior agrees with the Fick’s law at the early stage, while the nominal moisture content decreases a little at the later stage. The moisture content of the cable core in 5wt% NaOH aqueous solution increases linearly at first and thereafter decreases, and then increases with the prolongation of immersion time. Moreover, the increase of environmental temperature leads to a faster diffusion of water in the composites and a higher equilibrium moisture content.
     Effects of the hygrothermal aging on the dynamic mechanical properties of the hybrid composite cable core were studied by dynamic mechanical analysis (DMA). The results show that the storage modulus ( ) of the composites decreases with increasing immersion time, while the loss factor (tanE'δ) increases simultaneously. Furthermore, the higher the temperature the more remarkable the effects. The glass transition temperature (Tg) of the composite is relative to the moisture content.
     The flexural and shear properties of the hybrid composite cable core were measured on an universal testing instrument to study effects of the environments on the static mechanical properties of the composites. Results indicate that environmental aging results in the decrease in the flexural and shear properties of the hybrid composite cable core. The decrease amplitude minishs gradually. Under different temperatures, the decrease of mechanical properties of the composites was uniform, and higher temperature accelerates the composites aging.
     Results of infrared spectrometer (IR) and scanning electron microscope (SEM) show that the composites in distilled water and 10wt% NaCl aqueous solution have the same aging mechanisms, which consists of the swelling and plasticization of matrix, interfacial debonding and resultant microstructure changes of matrix and interface. No chemical reactions can be observed. While in 10wt% H2SO4 aqueous solution and 5wt% NaOH aqueous solution, chemical aging is found.
     Based on accelerated hygrothermal aging test of the hybrid composite cable core, a service-life prediction equation for the composite cable core with high confidence and reliability was developed in the paper. Furthermore, the service life of the cable core was estimated according to the environment equivalence.
引文
[1] Czigany T. Effect of Hygrothermal Aging on the Fracture and Failure Behavior in Short Glass Fiber Reinforced Toughened PBT Composites[J]. Polymer Composite, 1996,17(6):900~902
    [2] Akay M. Moisture Absorption and Its Influence on the Tensile Properties of Glass Fiber Reinforced Polyamide[J]. Polymer and Polymer Composite, 1994,2(6):349~350
    [3] Michael B. Challenges for Composites Into the Next Millennium-a Reinforcement Perspective[J]. Composites:Part A, 2001,32:901~903
    [4] Mijovic J, Lin K F. The Effect of Hygrothermal Fatigue on Physical/Mechanical Properties and Morphology of Neat Epoxy Resin and Graphite/Epoxy Composite[J]. Journal of Applied Polymer Science, 1985,30(6):2527~2549
    [5] 沈惠平, 裴红, 高旭东等. 玻璃钢光缆增强芯快速拉挤工艺研制[J]. 玻璃纤维, 2004(1):18~20
    [6] 张玉龙. 先进复合材料制造技术手册[M]. 北京:机械工业出版社, 2002
    [7] 吴人洁. 复合材料[M]. 天津:天津大学出版社, 2002
    [8] 鲁博, 张林文, 曾竟成等. 天然纤维复合材料[M]. 北京:化学工业出版社, 2005,10
    [9] J. M. Hodgkinson 主编, 白树林, 戴兰宏等译. 先进纤维增强复合材料复合材料性能测试[M]. 北京:化学工业出版社, 2005
    [10] Zhong Y, Zhou J R. Study of Thermal and Hygrothermal Behaviour of Glass/Vinyl Ester Composites[J]. Journal of Reinforced Plastics and Composites, 1999,18(17):1619
    [11] Selzer S, Friedrich K. Mechanical Properties and Fatigue Behaviour of Carbon Fiber Reinforced Polymer Composites under the Influence of Moisture[J]. Composites, 1997,28A(6):595
    [12] Ghorbed I, Valentin D. Hygrothermal Effects on the Physico-Chemical Properties of Pure and Glass-Fiber Reinforced Polyester and Vinylester Resins[J]. Polymer Composites, 2003,14(4):324
    [13] Wright W W. The Effect of Diffusion of Water into Epoxy Resins and Their Carbon Fiber Reinforced Composites[J]. Composites, 1981,12(3):201~205
    [14] Joannie W, Tinh Nguyen. Effects of Water,Salt Solution and Simulated Concrete Pore Solution on the Properties of Composite Matrix Resins Used in Civil Engineering Applications[J]. Polymer Composites,2001,22(2):282~297
    [15] 周晓东, 戴干策. 玻璃纤维毡增强聚丙烯复合材料的湿热稳定性[J]. 玻璃钢/ 复合材料, 1999,1:16~19
    [16] Xu Z R, Ashbee K H. Photoelastic Study of the Durability of Interfacial Bonding of Carbon Fiber-Epoxy Resin Composite[J]. Journal of Material Science, 1994,29(2):394~403
    [17] 陈绍杰. 复合材料设计手册[M]. 北京:航空工业出版社, 1990
    [18] Ori Ishai. Environmental Effects of Deformation,Strength and Degradation of Unidirectional Glass-Fiber Reinforced Plastics Survey[J]. Polymer Engineering and Science, 1975,15(1):486~490
    [19] Bradley W L. The Effect of the Moisture Absorption on the Interfacial Strength of Polymeric Matrix Composites[J]. Journal of Materials Science, 1995,30(21):5537~5542
    [20] Lawrence C, Bank, Gentry T R. Accelerated Test Methods to Determine the Long-Term Behavior of FRP Composite Structures:Environmental Effects[J]. Journal of Reinforced Plastics and Composites, 1995,14(6):559~587
    [21] Abeysinghe H P, Edwards W, Pritchard G. Degradation of Crosslinked Resins in Water and Electrolyte Solutions[J]. Polymer Composites, 1982,23(12):1785~1790
    [22] Pomies F,Carlsson L A. Analysis of Modulus and Strength of Dry and Wet Thermoset and Thermoplastic Composites Loaded in Transverse Tension[J]. Journal of Composite Materials, 1994,28(1):22~35
    [23] Rita R, Sarkar B K, Bose N R. Effects of Moisture on the Mechanical Properties of Glass Fiber Reinforced Vinylester Resin Composites[J]. Bullitin of Material Science, 2001,24(1):87~94
    [24] 过梅丽, 肇研. 航空航天结构复合材料湿热老化机理研究[J]. 宇航材料工艺, 2002(4):51~54
    [25] 过梅丽, 肇研, 许凤和等. 先进聚合物基复合材料的老化研究[J]. 航空学报, 2002,21(4):62~65
    [26] 范欣愉. 航空结构复合材料湿热老化研究[硕士学位论文]. 北京航空航天大学, 2000
    [27] Zheng Q, Morgan R J. Synergistic Thermal-Moisture Damage Mechanisms of Epoxy and Their Carbon Fiber Composites[J]. Journal of Composite Materials, 1993,27(15):1465~1478
    [28] Morgan R J, Fanter D I. The Effect of Moisture on the Physical and Mechanical Integrity of Epoxies[J]. Journal of Material Science, 1980,15(3):751~764
    [29] Dae-Won Suh, Mi-Kyung Ku, Jae-Do Nam. Equilibrium Water Uptake of Epoxy/Carbon Fiber Composites in Hygrothermal Environmental Conditions[J]. Journal of Composite Materials,2001,35(3):264~275
    [30] Kaushal S. Some Hygrothermal Effects on the Mechanical Behaviour and Fractography of Glass-Epoxy Composites with Modified Interface[J]. Journal of Materials Science, 1991,26(23):6293~6299
    [31] David A, Gerald P, Deslandes Y. Application of the Microbond Technique:Effects of Hygrothermal Exp- osure on Carbon-Fiber/Epoxy Interfaces[J]. Composites Science and Technology, 1993,46(3):293~301
    [32] Umosh G, Bernard Miller. Effects of Environmental Exposure on Fiber Epoxy Interfacial Shear Strength[J]. Polymer Composites, 1990,11(4):217~222
    [33] Alamieda D. Effect of Distilled Water and Saline Solution on the ILSS of an Aramid/Epoxy Composite[J]. Composites, 1991,22(6):448~450
    [34] Walff E G. Moisture Effects on Polymer Matrix Composites[J]. SAMPE Journal, 1993,29(3):11~19
    [35] Apicella A, Nicolais L. Environmental Aging of Epoxy Resins:Synergistic Effect of Sorbed Moisture, Temperature and Applied Stress[J]. Industrial & Engineering Chemistry Product Research and Development, 1981,20(1):138~144
    [36] Apicella A, Nicolais L, Astarita G, Drioli E. Hygrothermal History Dependence of Equilibrium Moisture Sorption in Epoxy Resins[J]. Polymer, 1981,22(8):1064~1067
    [37] Alamieda J R. Statistical Changes during the Corrosion of Glass Fiber Bundles[J]. Journal of Material Science, 1988,23(8):2926~2930
    [38] Liao K, Schultheis C R, Hunston D L. Effect of Environmental Aging on the Properties of Pultruded CFRP[J]. Composites, 1999,30(1):485~493
    [39] Jones F R, Rcok J W, Wheatley A R. Degradation of Composite Material[J]. Journal of Material Science Letter, 1983,14:213~232
    [40] Sonawala S P, Spontak R J. Degradation Kinetics of Glass-Reinforced Polyesters in Chemical Enviro- nments. Part ΙOrganic Solvents[J]. Journal of Material Science, 1996,31(18):57~65
    [41] Sonawala S P, Spontak R J. Degradation Kinetics of Glass-Reinforced Polyesters in Chemical Environ- ments. Part ΙΙOrganic Solvents[J]. Journal of Material Science, 1996,31(18):45~56
    [42] 宋焕成, 张佐光. 混杂纤维复合材料[M]. 北京:北京航空航天大学出版社, 1989
    [43] 张汝光. 湿态环境下聚合物基复合材料的吸水[J]. 玻璃钢, 2000(3):41
    [44] Adams R D, Singh M M. The Dynamic Properties of Fiber Reinforced Polymers Exposed to Hot,WetConditions[J]. Composites Science and Technology, 1996,56:977~997
    [45] Zhou J, Lucas J P. The Effects of a Water Environment on Anomalous Absorption Behavior in Graphite/Epoxy Composites[J]. Composites Science and Technology, 1995,53: 57~64
    [46] Paplham W P, Brown R A, Salin I M, Seferis J C. Absorption of Water in Polyimide Resins and Composites[J]. Journal of Applied Polymer Science, 1995,57:133~137
    [47] Shen C H, Springer G S. Moisture Absorption and Desorption of Composite Materials[J]. Journal of Composite Material, 1976,10(1):2~20
    [48] D.W.范克雷维伦著, 许元泽, 赵德禄, 吴大城译. 聚合物的性质-性质的估算及化学结构的关系[M]. 北京:科学出版社, 1981
    [49] Antoon M K, Koening J L. The Structural and Moisture Stability of the Matrix Phase in Glass-Reinforced Epoxy Composites[J]. Journal of Macromolecular Science-Review Macromolecular Chemistry, 1980,C19(1):135~173
    [50] 方旭东, 杨鸿昌, 安章荣. 碳纤维/钛超混杂复合材料老化性能研究[J]. 宇航材料工艺,2002,(2):35~37
    [51] 迟倩萍. S2/TDE85 复合材料耐自然库存与加速湿热老化的性能研究[J]. 纤维复合材料,2002,(3):32~34
    [52] Madhukar, Drzal L T. Fiber-Matrix Adhesion and Its Effects on Composite Mechanical Properties[J]. Journal of Composite Materials, 1992,26(7):936~968
    [53] Materials Science Monographs 1. Dynamic Mechanical Analysis of Polymeric Material[J]. TAKAYUK MURAYAMA Elservier Scientific Publishing Company, 1978:113~115
    [54] Wolff E G. Polymer Matrix Composite:Moisture Effects and Dimensional Stability[M]. New York:VCH Publishers Inc, 1990
    [55] Jovan M, Lin K F. The Effect of Hygrothermal Fatigue on Physical/Mechanical Properties and Morphology of Neat Epoxy Resin and Graphite/Epoxy Composite[J]. Journal of Applied Polymer Science, 1985,30(6):2517~2549
    [56] Moy P, Karasz F E. Epoxy-Water Interactions[J]. Polymer Engineering and Science, 1980,20(4): 315~319
    [57] Zhou J M, James P L. Hygrothermal Effects of Epoxy Resin:the Nature of Water in Epoxy[J]. Polymer, 1999,40(20):5505~5512
    [58] Antoo M K, Koening J L. Fourier-Transform Infrared Study of the Reversible Interaction of Water and a Crosslinked Epoxy Matrix[J]. Journal of Polymer Science:Polymer Physics, 1981,19(10):1567~1575
    [59] 冼杏娟, 李端义. 复合材料破坏分析及微观图谱[M]. 北京:科学出版社, 1993
    [60] 肖迎红, 汪信, 陆路德等. 玻纤增强热塑性聚酯复合材料湿热老化性能[J]. 工程塑料应用, 2001, 29(9):35~37
    [61] 钱春香, 陈世欣. 纤维表面处理对复合材料力学性能的影响[J]. 高科技纤维与应用,Vol.28,No.3,2003(6):36~42
    [62] 焦剑, 雷渭媛. 高聚物结构、性能与测试[M]. 北京:化学工业出版社,2003(5)
    [63] 肇研, 梁朝虎. 聚合物基复合材料自然老化寿命预估方法[J]. 航空材料学报, 2001,21(2):55~58
    [64] 叶宏军, 詹美珍, Γ. M.古尼耶夫等. T300/4211 复合材料的使用寿命预估[J]. 材料工程, 1995, (10):3~5
    [65] 傅惠民. 百分回归分析[J]. 航空学报, 1994,15(2):141~148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700