芯片尺寸封装(CSP)的热应力及热失效分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子器件封装以尺寸最小化和电互连密度最大化为特征,被誉为新一代封装—芯片尺寸封装(CSP)的产生,虽然间距尺寸和体积很小,但也存在一些问题。当前国内外关于芯片尺寸封装的试验研究还很少,基本还处于计算机模拟阶段。
     本文首先总结了芯片尺寸封装几种结构类型和常见的失效机理,据此选择一种特定的芯片尺寸封装产品—CSP-SOC,利用ANSYS软件分别建立CSP-SOC有限元2D 1/2截面模型和3D 1/4模型,模拟CSP-SOC封装在标准工业热循环温度—40℃~125℃条件下,并运用APDL程序命令实现周期温度载荷的控制,得到上述温度循环条件下产生的热应力应变情况。然后从材料、设计等方面进行参数分析,同时对2D和3D结果进行线性和非线性分析比较,结合当前已有类似封装参考实验结果作热失效、寿命预测分析,改进并得到一种新的简化寿命预测方程,为今后的高密度封装奠定良好的基础。
     研究结果表明封装本身由于各材料之间的热膨胀系数(CTE)不同,会产生热应力和应力集中现象,当强度低于热应力时候就会发生失效。封装整体变形位移最大在PCB板上。对焊球来说,应力应变最大发生在靠近外侧焊球上。对3D模型,由于多考虑了一个方向,发现整体弹性应变最大靠近焊球与基板结合处,填胶应变最小。整体封装应力应变最大发生在芯片边缘区域,靠近环氧树脂填充物和填胶,这也证明了CSP-SOC焊球放四周,避免放置芯片的下面的优点和结构的合理性。从应力应变分布结果和已有类似封装热循环试验对比,结果基本一致。对2D模型,虽不能看出另一方向应力应变,但从变形位移随时间变化图上,清晰的看出焊球最大变化位移随时间在X方向平稳上升,Y方向变化由于温度影响比较明显,出现陡增陡减后,第三个循环后趋于平稳。PCB应力应变在温度变化开始时随时间变化较大,后趋于平稳,这也验证PCB在工作时能为焊球和基板提供良好的支撑作用。
     借助以能量为基础的疲劳模型和一种简化模型对焊球和封装整体寿命分析计算,结果对比表明,前者计算过程较复杂,但和后者寿命预测差别不是很大。改进并得到一种简化寿命预测方程,对比分析寿命预测结果和已有类似寿命试验表明,误差在10%,符合要求。
The new generation computers and electronic devices are characterized with minimized package profile and maximum interconnect density. Be praised as the new generation package-chip scale package, with small pitch and little volume, but also exists some problems. The test study on chip scale package is little, also in a computer simulative analysis phase.
     The paper firstly summarizes the different types and normal invalidation of chip scale package. Hereby, the paper selects a special CSP product-chip scale package-substrate on chip, using the ANSYS builds the two dimension 1/2 model of cross section and three dimension 1/4 model of whole package, then on the condition of the standard industry thermal cycle temperature-40℃~125℃, combining APDL command language, completing the control of thermal cycle temperature load, simulating the thermal stress and strain of CSP-SOC under the above-mentioned condition. Then completed the parameters analysis from the materials and design, and compared the two dimension and three dimension analysis results, then compare with the precedent test result, analysize the invalidation and life prediction, bring forward a new formula on life prediction, establish a good base for the high density package in future.
     The results show that the package, due to different coefficient of thermal expanded(CTE), engenders thermal stress and strain, it will make the package disabled when theintension is low than thermal stress. And the maximum deformed displacement of the wholepackage occurs in PCB. To solder balls, the maximum stress and strain occurs in the outersolder ball. To the three dimension model, additional direction is considered, it is found thatthe maximum elastic strain exists in the interface of the solder balls and PCB, and theminimum strain exsits in the underfill tape, the whole package stress occurs in the edge areaof chip, it is also proved that the solder balls are placed around the chip better than under thechip, it is more reasonable and advanced. Comparing the stress and strain distribution resultswith the similar package test results, it is consistent. For all, the stress and strain isn't reflectedin the 2D model, but from the figure of the deformed displacement opposite to time, we cansee that the maximum displacement on solder joint is increasing along X direction nolinearly,and is fluctuant along Y direction due to suffering from temperature impact but is invariably after three cycle of temperature. The stress variation is bigger along with time in the temperature cycling moment, but it is balanced subsequently. This may say the PCB provides a good sustentation for the solder joint and substrate when is normally Woking.
     In virtue of the energy-based fatigue model and a simplified model to calculate the life of solder joint and the whole package respectively. Comparing the result, former model calculating process is complicated, and the two results are consistent. A new simple model is mended and gained, comparing the previous similar test life with the calculated life; the error is 10% only lower than standard deviation.
引文
[1] 微电子封装技术.中国电子学会生产技术学分会丛书编委会.合肥:中国科学技术大学出版社,2003.
    [2] Jurgen Wilde, Elena Zukowski. Probabilistic Analysis of the Influences of Design Parameter on the Reliability of Chip Scale Packages. Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE 2006: 1-8
    [3] 李桂云.微电子封装的发展趋势.电子与封装,2003,3(2):12-14.
    [4] 谢恩恒.新世纪IC封装的回顾和发展趋势展望.电子与封装,2003,3(4):1-5.
    [5] 张增年.微电子产品的可靠性分析.宁夏大学学报(自然科学版),1998,19(3):248-249.
    [6] Lall, P, Singh, N, Suhling, J.C, Strickland, et al. Thermo-mechanical reliability tradeoffs for deployment of area array packages in harsh environments joints.IEEE Transactions on Components and Packaging Technologies, 2005, 28(3):457-466.
    [7] W. Engelmaier, Reliability of leadfree solder joints revisited, Global SMT & Packaging, 2003.
    [8] Lau, J.H., Lee, S.W. Microvias for Low Cost, High Density Interconnects. New York: 2001.
    [9] 刘于,黄大贵.微电子封装技术的现状及发展.现状·趋势·战略,2002,40(460):18-20
    [10] 李枚.微电子封装技术的发展与展望.半导体技术,2000,25(5):1-3.
    [11] Ikuo Shohjia, Hideo Morib, Yasumitsu Orii et al. Solder joint reliability evaluation of chip scale package using a modified Coffin-Manson equation. Microelectronics Reliability, 2004(44):269-274.
    [12] 高尚通.微电子封装与设备.电子与封装,2002,2(6):1-5.
    [13] 杜晓松,杨邦朝.芯片尺寸封装技术.微电子学,2000,30(6):25-29.
    [14] Horatio Quinones, Alec Babiarz. Chip scale packaging reliability. Int'l symp on electronic materials & packaging, 2000:398-405.
    [15] 田民波 编著.电子封装工程.北京:清华大学出版社,2003.
    [16] Horatio Quinones, Alec Babiarz, Jim Klocke et al. Reliability of encapsulated CSP and DCA packages. Productronica, Munich, Germany, 1999(12):1-8.
    [17] 贾松良,王水弟,蔡坚等译.芯片尺寸封装一设计、材料、工艺、可靠性及应用.北京:清华大学出版社,2003.
    [18] www.yesky.com/key/2495/7495.html
    [19] 洪立群.1C封装元件翘曲分析的研究.国立成功大学博士论文,2004:1-132.
    [20] Dr. Kevin Becker. Printable die attach adhesives for Chip-on-Substrate packaging, 2003:250-255.
    [21] Paul T.Lin. A High Power CSP with Optimized Design and materials. Electronic Components and Technology Conference, 1999: 645-652.
    [22] Yi-Shao Lai, Tong Hong Wang, Chang-Chi Lee.Thermal-Mechanical Coupling Analysis for Coupled Power and Thermal Cycling Reliability of Chip-scale Packages. 6th. Int. Cons on Thermal, Mechanical and Multiphysics Simulation and merimnts in Micro-Electronics and Micro-System, EuroSimE, 2005:539-544.
    [23] C.Basaran a, H.Tang b, S.Nie et al. Experimental damage mechanics of microelectronic solder joints under fatigue loading. Mechanics of Materials, 2004(36):1111-1121.
    [24] 王谦,Shi-Wei Ricky Lee,汪刚强等.电子封装中的焊点及其可靠性.电子元件与材料,2000(4):24-26.
    [25] 陈国海,马莒生.热循环过程中焊点残余应变的研究.电子元件与材料,2004,23(11):37-39.
    [26] 周德俭,潘开林等PBGA焊点德热疲劳寿命分析.机械强度,1999,121(3):212-214.
    [27] 张礼季,王莉等.塑料封装球栅阵列器件焊点的可靠性.中国有色金属学报,2002,12(1):227-231
    [28] 褚卫华,陈循等.焊点热应力应变分析与HALT热循环温度剖面图优化.焊接学报,2003,24(6):37-42.
    [29] Yeong-Jyh Lin. Board Level Reliability of Chip Scale Package Under Cyclic Thermo mechanical Loading. Advanced Packaging, 2004(123):326-330.
    [30] Reza Ghaffarian. Accelerated Thermal Cycling and Failure Mechanisms for BGA and CSP Assemblies. Journal of Electronic Packaging, 2000(122):335-340.
    [31] Xiaowu zhang, S-w.Ricky Lee and Yi-Hsin Pao. A Damage Evolution Model for Thermal Fatigue Analysis of Solder Joints. ASME J. Electron. Package, 2000(112):200-206
    [32] L. Zhang, R. Sitaraman, V. Patwardhan, L. Nguyen, et al. Solder Joint Reliability Model with Modified Darveaux's Equations for the micro SMD Wafer Level-Chip Scale Package Family. Electronic Components and Technology Conference, 2003:572-577.
    [33] Ikuo Shohji, Hideo Moil, Yasumitsu Orii et al. Solder joint reliability evaluation of chip scale package using a modified Coffin-Manson equation. Microelectronics Reliability, 2004(44):269-274
    [34] Xiaowu Zhang, E.H. Wong, Charles Lee, et al. Thermo-mechanical finite element analysis in a multichip build up substrate based package design. Microelectronics Reliability, 2004(44):611-619.
    [35] P.Towashiraporn,K.Gall,,and B.Sullivan. Power cycling thermal fatigue of Sn-Pb Solder joints on a chip scale package.International Journal of fatigue, 2004(26):497-510.
    [36] Satish C. Chaparala, Brian D. Roggeman, James M. Pitarresi, et al. Effect of Geometry and Temperature Cycle on the Reliability of WLCSP Solder Joints. Component and packaging technologes, 2005, 28(3):441-448.
    [37] Zane E. Johnson, Nathan R. Schneck, Andrew R. Thoreson, et al. Thermo-mechanical simulation of stack chip scale package with moiré interferometry validation, 2006:1120-1125.
    [38] Saeed Moaveni著,欧阳宇,王崧等译.有限元分析—ANSYS理论与应用.北京:电子工业出版社.2004
    [39] 平修二 主编.郭廷玮,李安定 译.热应力与热疲劳(基础理论与设计应用.北京:国防工业出版社.1984.
    [40] Murty K. L., Turlik I.Deformation Mechanisms in Lead-Tin Alloys, Application to Solder Reliability in Electronic Packages.Proceedings 1st Joint Conference on Electronic Package, 1992:309-318.
    [41] M. Amagai. Chip Scale Package (CSP) solder joint reliability and modeling. Microelectronics Reliability, 1999(39):463-477.
    [42] John H. Lau. Reliability of Wafer Level Chip Scale Package (WLCSP) with 96.5Sn-3.5Ag Lead-Free Solder Joints on Build-up Microvia Printed Circuit Board. Int'l Symp on Electronic Materials & Packaging, 2000:55-63.
    [43] Lau John J. Ball Grig Array Technology. McGraw-Hill, Inc. 1995.
    [44] Weber, G. G., Lush, A. M., Zavaliangos et al. An objective time-integration procedure for insotropic rate independent elastic plastic constitutive equations. International Journal of Plasticity, 1990(6):701-749.
    [45] John H.L.Pang, D.Y.R.Chong, T.H.Low. Thermal Cycling Analysis of Flip-chip Solder Joint Reliability. Component and package technologies, 2001, 21(4):705-711.
    [46] Rao R. Tummala. Fundamentals of Microsystems Packaging. New York: McGraw-Hill.
    [47] S. S. Manson. Thermal Stress and Low-Cycle Fatigue.New York: McGraw-Hil, 1966:125-192.
    [48] M. A. Palmer, P. E. Redmond, R. W. Messler, Jr.Thermomechanical Fatigue Testing and Analysis of Solder Alloys.Transactions of the ASME, Journal of Electronic Packaging, 2000(122): 48-54.
    [49] C. G. Schmidt, J. W. Simons, C. H. Kanazawa.Thermal Fatigue Behaviour of J-Lead SolderJoints. IEEE Transactions on components, Packaging, and Manufacturing Technology-Part A, 1995,19(3): 124-128.
    [50] T. J. Kilinski, J. R. Lesniak, B. I. Sandor. Modem Approaches to Fatigue Life Prediction of SMT Solder Joints in Solder Joint Reliability-Theory and Application, Ed. J. H. Lau, New York:.1991:384-405.
    [51] Hao Yu, Toni T. Mattila, Jorma K. Kivilahti et al.Thermal Simulation of the Solidification of Lead-Free Solder Interconnections. IEEE Transaction on Components and Packaging Technologies, 2006, 29(3):475-485.
    
    [52] Engelmaier W. Fatigue life of leadless chip carrier solder joint during powering cycling.IEEE Transactionson on Components, Hybrids, and Manufacturing Technology, 1983,6(3):232-237.
    [53]T. E. Wong, L. A. Kachatorian, H. M. Cohen. J-Lead Solder Joint Thermal Fatigue Life Model. Journal of Electronic Packaging, 1999(121): 186-190.
    
    [54]J.D. Solomon. Fatigue of 60/40 solders. IEEE Transaction on Component, Hybrids, and Manufacturing Technology, 1986(9):423-433.
    
    [55] H. D. Solomon, V. Brzozowski, D.G Thompson. Predictions of Solder Joint Fatigue Life in Proceedings, 40thElectronic Components and Technology Conference, 1990(11):351-359.
    [56] J. H. L. Pang, C. W. Seetoh,Z. P. Wang.CBGA Solder Joint Reliablity Evaluation Based on Elastic-Plastic-Creep Analysis.Transaction of ASME, Journal of Electronic Packaging, 2000(122):255-261.
    [57] J. P. Clech.Tools to Assess the Attachment Reliability of Modern Soldered Assemblies (BGA, CSP) in Course Notes.Solder Joint Reliability of Surface Mount Assemblies, 2001:1-8.
    [58] D.S.Liu, D.Y.Chiou, C.H.Lin.A hybrid 3D thermo-elastic infinite element modeling for area-array package solder joints. Finite Elements in Analysis and Design, 2004:1703-1727.
    
    [59] Lee W. W., Nguyen L. T., Selvaduray G. S.Solder Joint Fatigue Models: Review and Applicability to chip Scale Package.Microelectronics Reliability, 2000(40): 142-156.
    
    [60] Liang J, Gollhardt N, Lee PS, Heinrick S, Schroeder S. An integrated fatigue life prediction methodology for optimum design and reliability assessment of solder interconnections.Proceedings of the Pacific Rim/ASME International Intersociety Electronic and Photon Packaging Conference INTER pack, 1997(2):1583-1592.
    
    [61] Wu SX, Chin J, Grigorich T, Wu X, Mui G, Yeh C. Reliability analysis for fine pitch BGA package. Proceedings of Electronic Components and Technology Conference, 1998:737-741.
    [62] Jung W, Lau JH, Pao YH.Nonlinear analysis of full-matrix and perimeter plastic ball grid array solder joints, 1997:1076-1095.
    
    [63] L. Zhang, R. Sitaraman, V. Patwardhan, L. Nguyen, et al. Solder Joint Reliability Model with Modified Darveaux's Equations for the micro SMD Wafer Level-Chip Scale Package Family. Electronic Components and Technology Conference, 2003:572-577.
    
    [64] J. H. Lau, C. Chang,S.-W. R. Lee. Solder Joint Crack Propagation Analysis of Wafer-Level Chip Scale Package on Printed Circuit Board Assemblies.IEEE Transactions on Components and Packaging Technologies, 2001, 24(2):285-292.
    [65] Y.Akiyama, A.Nishimura, I., Anjoh. Chip scale packaging for memory devices. Proceedings of Electronic Components and Technology Conference, 1998:477-481.
    [66] 祝效华,余志祥等编著.ANSYS高级工程有限元分析范例精选.北京:电子工业出版社.2004.
    [67] 邵蕴秋 编著.ANSYS 8.0有限元分析实例导航.北京:中国铁道出版社.2004.
    [68] Wang J., Qian Z., Liu S.Process Induced Stress of a Flip-chip Packaging by Sequential Processing Modeling Technology,Journal of Electronic Packaging, ASME, 1999(120):309-313.
    [69] Jinwon Joo, Seungmin Cho, Bongtae Han.Characterization of flexural and thermo-mechanical behavior of plastic ball grid package assembly using moire'interferometry Microelectronics Reliability, 2005(45): 637-646.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700