日像仪天线阵系统设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文紧密围绕由国家天文台首席研究员颜毅华教授负责的国家重点基础研究项目《厘米-分米波高分辨频谱日像仪》的研制展开。日像仪是一个对太阳进行射电成像的大规模天线阵系统,其成功研制将填补目前国际上分米波段高分辨率太阳射电成像观测的空白,在国内属于首创,在国际上也具有绝对竞争力。因此,本文所述工作均具有开创意义,我对能够成为项目组一员而深感自豪。
    论文根据日像仪的工作原理,综合运用了制造系统工程、虚拟设计方法、计算机仿真、拓扑优化设计、误差分析、数值分析方法和图像恢复等多学科协同交叉研究方法,集中研究了天线阵系统的设计,具体包括天线阵单元天线设计、天线阵拓扑优化设计、天线阵定标和误差校准以及日像仪成像性能仿真(在探究日像仪成像性能的同时,也用以检验天线阵拓扑结构的优劣)等内容。
    本文创造性的工作主要有:
    (1)在天线阵的单元天线设计中,明确了日像仪天线阵单元天线的性能指标;确定了马蹄式结构的座架型式;提出了闭式蜗轮加螺旋推杆结构的传动方案;采用虚拟设计方法对单元天线的机械结构进行了详细设计,其中首次使用了双壳背架结构方案;并对反射体做了结构变形分析和动力学分析。
    (2)在天线阵的拓扑优化设计中,综合考虑地形限制、性能指标和施工难度,本文研制的日像仪拟建成“螺旋型”轮廓的天线阵。Boone的压力算法只能得到不规则的天线阵拓扑,通过对压力算法改进,本文提出的加速压力算法不但可以得到满足要求的天线阵拓扑结构,而且有更好的优化结果和更高的计算效率。利用此算法所获得的天线阵拓扑方向图在工作频率为1GHz时,自然加权下的最高分辨率为20.5角秒,最大旁瓣为0.15,此性能明显优于标准螺旋阵。
    (3)在天线阵的误差校准部分,自校准是保证精确定标的关键过程,其中主要涉及复可见度函数逼近模型的建立和求解问题。针对最小二乘逼近模型处理粗差数据并不理想的现状,假定各种误差服从高斯分布,建立了最大似然估计的复可见度函数逼近模型。模型显示,最小二乘逼近模型只是其增益误差较大时的一个特例。而对于模型的求解,一般采用矩阵求逆的迭代法。由于本文所研制的日像仪约束方程规模大,该方法存在求逆不稳定的弊端。故本文提出了嫁接遗传算法来求解新模型,该算法不但可以稳定快速收敛,而且可以抗早熟。仿真结果表明:在自校准过程中,利用嫁接遗传算法求解最大似然估计逼近模型所获得的脏图优于利用矩阵求逆迭代法求解最小二乘逼近模型所获得的脏图。
This dissertation is the synchronous academic achievement and memorandum ofthe National Great Scientific Project “Cm-dm Band high resolution spectrum radioheliograph”led by professor Yan Yihua, the chief scientist of National AstronomicalObservation Center, CAS. Radio heliograph is a large scale antenna array to image theradio sun, its successful reseach and construction will supply the internationalobservation gap of solar imaging in dm band. It has not only the title of pioneer inhomeland, but also has the strong international competitive power.
    Guided by the heliograph working principle, the dissertation employed themulti-subject co-operational research methods synthetically such as manufacture systemengineer, virtual design method, computer simulation, topology optimization design,error analysis, numerical analysis and image reconstruction, and conducted the researchof cell antenna design, the performance-determining factors of antenna array, antennaarray topology optimization design, array calibration and image reconstructionsimulations.
    The main creative results are as follows:
    1.In the part of cell antenna structure design, according to the performancedemand of radio heliograph, confirmed the performance specification of cell antenna.Determined the pedestal style of horse-hoofed structure. Proposed the general structurescheme of closed worm wheel plus spiral handspike. Designed the cell antennamechanical structure using the virtual design method. Conducted the finite elementmechanical analysis and mode analysis of reflector whose structure of two-lamella wasfirst used. Analysised the pointing error caused by structure error and axis system error.
    2.In the part of array topology optimization design, the antenna array of our radioheliograph developed tended to have the spiral profile resulted in the limited budgetwhile the Boone's Pressure Algorithm could only used for irregularly arrayconfiguration. The Accelerated Pressure Algorithm (APA) proposed not only could getthe regular array, but also had the higher computing efficiency. The synthesis beam ofoptimized spiral array achieved by the APA has the resolution of 20.5 arcseconds, thefield-of-view maximum side-lobe of 0.15 when working in the frequency of 1GHz andnatural weighting, which is superior obviously to that of standard spiral array
    3.In the part of array calibration and error correction, aim at the limitation of leastsquare model to deal with observed data with unexpected values, a new model ofmaximum probability density function to fit the complex visibility was proposed on theassumption that the error had a gauss distribution. It could conclude that the least squaremodel was only one especial case of the proposed model. The fit model of visibilityfunction was commonly solved by iterative method of Matrix Inversion. For our radioheliograph, this method had the limitation of unstable stability as the result of thelarge-scale constraint functions. Therefore, a grafted genetic algorithm was presented tosolve the gain during the self-calibration process, which featured the rapid speed ofevolution and its strong ability to avoid premature convergence. Simulation indicatedthat the dirty map obtained by grafted genetic algorithm based on the new proposed fitmodel was excellent than the one obtained by iterative method of Matrix Inversionbased on the least square model.
    4.In the part of heliograph imaging simulation, clean algorithm has the limitationof iterative dithering and convergence instability when applied to extend sources
    processing. Inspired by the ability of Maximum Entropy Method to proceed the extendsources, the paper proposed a clean algorithm with smooth constraint by modifying thedirty beam. Finally the simulation was conducted of radio heliography solar image atlow band. Results show superiority of the improved algorithm in both image quality andresolution. For images reconstructed at high band, the paper inherited and developed theSkilling Maximum Entropy Method (SMEM). An Improved Skilling Maximum EntropyMethod (ISMEM) was presented through the innovation in search directions of SMEM.Both the two directions, one came from the large amount of simulation experiments andthe other reasoned out from Newton-Raphson algorithm, combines the speed withexactness harmoniously as the result of error adjustment.
引文
[1-1] KristaWest, 吴荆卉, 赵庚新. 侦测太阳风暴. 科学, 2004(5): 11-12
    [1-2] 唐天明. 太阳活动,磁暴与震前大气电气异常关系研究. 地震地磁观测与研究,1999,20(4):35-39
    [1-3] 焦维新. 当代空间红外天文观测技术的发展.国际太空,2003(8):1-4
    [1-4] Murdin P. Aperture Synthesis. Encyclopedia of Astronomy and Astrophysics, Bristol:Institute of Physics Publishing, 2001
    [1-5] Kahler S W, Sheeley N R, Howard R A et al. Associations between coronal mass ejectionsand solar energetic proton events. Journal of Geophysical Research, 1984, 89(1):9683-9693
    [1-6] Gosling J T. The solar flare myth. Journal of Geophysical Research, 1993, 98(A11):18937-18950
    [1-7] Ryan J M, Aikin A C, Cliver E W et al. Solar-Terrestrial and Terrestrial Science, Themany faces of the sun : a summary of the results from NASA's Solar Maximum Mission,Edited by Keith T, New York : Springer, 1999
    [1-8] Balmaceda L A, Gonzalez W D, Vieira L E A et al. Relationship between CMEs, coronalholes and geomagnetic storms, 35th COSPAR Scientific Assembly, Paris, 2004, 3625
    [1-9] Kurth W S. THE GREAT SOLAR STORMS OF 1989. Nature, 1991,353 :705-706
    [1-10] Béquignon J, Briggs S. The "Space and Major Disasters" International Charter. ESABulletin, 2001, 107:82-83
    [1-11] 张和祺. 空间天文学发展的现状与展望. 天文爱好者, 1996(4):2-4
    [1-12] Lindley D. Hubble Space Telescope -a Pictorial Progress Report. NATURE, 1990,347:505-508
    [1-13] Colavita M, Wizinowich, Peter L. Keck Interferometer: progress report. Proc. SPIE,Interferometry in Optical Astronomy, Pierre J. Andreas Quirrenbach, 2000, 4006:310-320
    [1-14] Bedding, T. R. The VLT Interferometer. Very high angular resolution imaging;Proceedings of the 158th International Astronomical Union (IAU) Symposium, held atthe Women's College, University of Sydney, Australia, Dordrecht: Kluwer, c 1994, editedby J. G. Robertson and William J. Tango, 1993: 143-149
    [1-15] Kodaira K. Subaru, The Japanese 8-m Telescope. American Astronomical Society, 180thAAS Meeting, #31.04;Bulletin of the American Astronomical Society, 1992, 24 :779-783
    [1-16] 吴盛殷, 南仁东. 射电望远镜的发展和前景. 天文学进展, 1998,16(3):169-176
    [1-17] Campbell D B, Davis M M, Goldsmith P F et al. The New Arecibo Telescope: Status and Performance, American Astronomical Society, 191st AAS Meeting, #57.01;Bulletin of
    the American Astronomical Society, 1997, 29: 1305-1311
    [1-18] Fuerst, Ernst. The 100-m Effelsberg Telescope and the Milky Way. Proceedings of Sino-Germany Radio Astronomy Conference Radio Studies of Galactic Objects, Galaxies and AGNs, held 18-25 July, 2002 in Xi'an, China. Edited by J.L. Han, X.H. Sun, J. Yang, and R. Wielebinski. Acta Astronomica Sinica, 2003, 44: 5-12
    [1-19] Montmerle T. The world's largest radiotelescope -The 'Very Large Array'. Astronomy, 1985, 99 : 487-504
    [1-20] Swarup G. Giant metrewave radio telescope (GMRT) -Scientific objectives and design aspects. Indian Journal of Radio and Space Physics, 1990, 19:493-505
    [1-21] Lovell J E J, Hirabayashi H, Kobayashi H et al. Overview and current status of the VSOP mission. New Astronomy Reviews, 1999, 43(9) : 515-518
    [1-22] Su Hongjun, Cui Xiangqun. LAMOST project and its Current status. Large Ground-based Telescopes. Edited by Oschmann, Jacobus M.;Stepp, Larry M. Proceedings of the SPIE, Volume 4837,2003, 26-35
    [1-23] Ai Guoxiang. New progress on space solar telescope. Advances in Space Research, 2002, 29(12):2051-2054
    [1-24] Peng B, Nan R, Su Y. et al. Five-hundred-meter Aperture Spherical Telescope project. Astrophysics and Space Science, 2001, 278(1):219-224
    [1-25] Reber G. Cosmic Static. Astrophysical Journal, 1994, 100: 279-287
    [1-26] Bastian T S. Low-frequency solar radiophysics with LOFAR and FASR. Planetary and Space Science, 2004, 52(15):1381-1389
    [1-27] Kerdraon Alain, Delouis Jean-Marc. The Nan?ay Radioheliograph. Coronal Physics from Radio and Space Observations;Proceedings of the CESRA Workshop held in Nouan le Fuzelier, France 3-7 June 1996, edited by Gerard Trottet, Published by Springer, 1997,192-209
    [1-28] Takano T, Nakajima H, Enome S et al. An Upgrade of Nobeyama Radioheliograph to a Dual-Frequency (17 and 34 GHz) System. Coronal Physics from Radio and Space Observations;Proceedings of the CESRA Workshop held in Nouan le Fuzelier, France 3-7 June 1996, edited by Gerard Trottet, Published by Springer, 1997, 183-195
    [1-29] Gary D E, Bastian T S, White S M et al. The Frequency-Agile Solar Radiotelescope. 2001 Asia-Pacific Radio Science Conference AP-RASC '01, Proceedings of a conference held 1-4 August, 2001 at Chuo University, Tokyo, Japan, 2001,236-251
    [1-30] Wang Shouguan. Miyun metre-wave Aperture Synthesis Radio Telescope. Chin.Astron.Astrop, 1986, 10: 3-15
    [1-31] 王绶琯. 密云16 面天线干涉仪总体及技术方案报告, 1966(内部)
    [1-32] 王绶琯. 密云多天线复合干涉仪总体及技术方案报告, 1971(内部)
    [1-33] Ai G X. The Solar Magnetic Telescope at Huairou Solar Observing Station. Publicationsof yunnan observatory, 1989, SUPP : 5-10
    [1-34] http://solar.physics.montana.edu/YPOP/Nuggets/2002/020510/020510.html
    [2-1] 王绶琯,吴盛殷等. 射电天文方法. 北京:科学出版社,1998
    [2-2] 王绶琯. 射电天文方法讲义, 内部资料,2003
    [2-3] Zensus J A, Diamond P J, Napier P J. Very Long Baseline Interferometry and the VLBA,A.S.P. Conf. Ser., 82, 1995
    [2-4] Perley R A, Schwab F R, Bridle A H. Synthesis Imaging in Radio Astronomy, A.S.P.Conf. Ser., 6, 1989
    [2-5] Thompson A R, Moran J M, Swenson G W. Interferometry and Synthesis in RadioAstronomy, 1991
    [2-6] Christiansen W N, H?gbom J A. Radiotelescopes, 2nd Ed., Cambridge University Press,Cambridge, 1985
    [2-7] Rohlfs K, Wilson T L, Huettemeister S. Tools of Radio Astronomy, Springer-Verlag, NewYork, 2000
    [2-8] 王绶琯,郭成光. 大型射电望远镜的设计原则及一种新方案的建议,天文学报,1964,12:154-159
    [2-9] 颜毅华,张坚等. 厘米-分米波高分辨频谱日像仪项目建议书,内部资料,2003
    [2-10] 姬国枢. 关于日像仪的几个技术问题,内部资料,2005
    [3-1] Constantine A B. Antenna Theory: Analysis and Design, 2nd Edition. New York : HohnWiley & Sons, Inc, 2003
    [3-2] 段宝岩.天线结构分析优化与测量.西安:西安电子科技大学出版社,1998程景全.天文望远镜原理与设计.北京:中国科学技术出版社,1998
    [3-3] 中国航天机电集团二十三所.五十米口径射电望远镜天线概念书.2002
    [3-4] Brown A K, Aitmehdi R. Implementation of numerical surface fitting techniques inreflector antenna design and manufacture. Antennas and Propagation, 1997, 1:452 -455
    [3-5] Beurden M C, Smolders A B, Jeuken M E J. Design of Wide-Band Phased ArrayAntennas. Perspectives on Radio Astronomy: Technologies for Large Antenna Arrays,Proceedings of the Conference. 2000, 347-353
    [3-6] 林海梁. 带预载的双齿轮消隙减速箱. 制造技术与机床, 2000,11:17-17
    [3-7] 寿建军.日像仪天线阵动力系统分析. 杭州电子科技大学.硕士论文.2005
    [3-8] Richard C J. Antenna Engineering Handbook. New York : McGraw-Hill Inc, 2003
    [3-9] 叶尚辉,李在贵.天线结构设计.西安:西北电讯工程学院出版社,1998
    [3-10] Shou Jianjun, Shi Huli, Zhang Juyong. Modeling and Design of the Radio HeliographAntenna with High Resolution Frequency Spectrum. Mechatronics Thory, Method andApplication. 2004, 156-160
    [4-1] Holdaway M A & Tamara T H. Interferometric Array Design. Synthesis Imaging in RadioAstronmy II. ASP Conference Series, 1999, 180: 537-563
    [4-2] Nakajima T. Sensitivity of a Ground-based Infrared Interferometer for Aperture SynthesisImaging. The Publications of the Astronomical Society of the Pacific, 2001, 113(788):1289-1299
    [4-3] Wolter A, Gioia I M, Maccacaro T. The Extended Medium Sensitivity Survey. Bulletin ofthe American Astronomical Society, 1988, 20:1034-1041
    [4-4] Welch W J. Choices of Antenna Size and Number for the Atacama Compact Array.ALMA Memo 354, 2001
    [4-5] Wrobel J M, Walker R C. Sensitivity. Synthesis Imaging in Radio Astronmy II. ASPConference Series, 1999, 180: 171-186
    [4-6] 王绶琯,密云综合孔径射电望远镜总体方案(初稿),20-20,内部资料
    [4-7] Briggs, D S, Schwab, F R, Sramek R A. Imaging. Synthesis Imaging in Radio AstronomyII A.S.P. Conf. 1999, 180: 127-148
    [4-8] Briggs DS. High Fidelity Deconvolution of Moderately Resolved Sources[D], NewMexico Institute of Mining and Technology, Socorro, NM, 1995
    [4-9] Kogan L. Level of Negative Sidelobes in an Array Beam. Publications of theAstronomical Society of the Pacific, 1999,111:510-511
    [4-10] David W. Radio Interferometer Array Point Spread Functions I: Theory and Statistics.ALMA MEMO 389, 2001
    [4-11] Boone F. Interferometric array design: Distributions of Fourier samples for imaging.Astronomy and Astrophysics, 2002, 386: 1160-1171
    [4-12] Murdin P. Westerbork Synthesis Radio Telescope. Encyclopedia of Astronomy andAstrophysics, Paul M. Bristol: Institute of Physics Publishing, 2001
    [4-13] Cornwell T J. Crystaline Antenna Arrays, MMA Memo 38, 1986
    [4-14] Keto, The Shapes of Cross-Correlation Interferometers, ApJ, 1997, 475, 843 -852
    [4-15] Kogan, L. A, B, C, and D configurations in the shape of concentric circles. MMA Memo217, 1998
    [4-16] Holdaway. Hour Angle Ranges for Configuration Optimization, MMA memo 201, 1998
    [4-17] Wright. Image Fidelity, BIMA memo 73, 1999
    [4-18] Wright. Image Fidelity: Implications for ALMA, memo 272, 1999
    [4-19] Kogan. Optimization of an Array Configuration Minimizing Side Lobes, memo 171, 1997
    [4-20] Boone. Interferometric array design: Optimizing the locations of the antenna pads. A&A,2001, 377: 368-376
    [4-21] Holdaway M A, Helfer T T. Interferometric Array Design, A.S.P. Conference Series,1999, 180: 537-564
    [4-22] 玄光男,程润伟.遗传算法与工程设计.北京:科学出版社, 2000, 166~177
    [5-1] Fomalont E B, Perley R A. Calibration and Editing. A.S.P. Conference Series, 1999, 180:79-110
    [5-2] Ekers R D. Error Recognition. A.S.P. Conference Series, 1999, 180: 321-334
    [5-3] Cornwell T, Fomalont E B. Self-Calibration. A.S.P. Conference Series, 1999, 180:187-200
    [5-4] Cornwell T, Wieringa M. The Design and Implementation of Synthesis Calibration andImaging in AIPS++. A.S.P. Conference Series, 1997, 125:10-17
    [5-5] Torres R. Pattern Synthesis From Calibration Mode Measurements. Proceedings of CEOSWorking Group on Calibration 2003, 12-18
    [5-6] Lestrade, J.F. Tropospheric and ionospheric phase calibration. The Role of VLBI inAstrophysics, Astrometry and Geodesy. 2004,135:383-397
    [5-7] Ruffini G, Cardellach E, Flores A, et al. Ionospheric calibration of radar altimeters usingGPS tomography. Geophysical Research Letters, 1998, 25(20): 3771-3774
    [5-8] Monnier J D. Astrophysics with Closure Phases. EAS Publications Series, 2003, 6,213-226
    [5-9] Branham R L. Alternatives to least squares. Astronomical Journal, 1982, 87 : 928-937
    [5-10] Schwab F R. Robust Solution for Antenna Gains. VLA Memo Series 136, 1983
    [5-11] Soonjoo H, Williams D B. A constrained total least squares approach for sensor positioncalibration and direction finding. IEEE National Radar Conference, 1994, 155 –159
    [5-12] Sprzeczak P, Morawski R Z. Calibration of a Spectrometer Using a Genetic Algorithm.IEEE Transactions on Instrumentation and Measurement, 2000, 49(2): 449 –454
    [5-13] Brown E C, Sumichrast R T. Impact of the Replacement Heuristic in a Grouping GeneticAlgorithm. Computers and Operations Research, 2003, 30(11):1575-1593
    [5-14] Andre J, Siarry P & Dognon T. An Improvement of the Standard Genetic AlgorithmFighting Premature Convergence in Continuous Optimization. Advances in EngineeringSoftware, 2000,32 (1):49-61
    [5-15] Readhead A C S, Walker R C, Pearson T J et al. Mapping Radio Sources withUncalibrated Visibility Data, Nature, 1980, 285: 137-140
    [5-16] Lombardi M. Interpolation and Smoothing. Astron. Astrophy, 2002, 395:733-745
    [5-17] Sha L W, Guo H. An Improved Gridding Method for Spiral MRI Using Nonuniform Fast Fourier Transform, Journal of Magnetic Resonance, 2003, 162(2): 250-258
    [6-1] Frieden B R. Restoring with Maximum Likelihood and Maximum Entropy. J. Opt. Soc. Am., 1972, 62 : 511-518
    [6-2] Gull S F, Daniell JG. Image Reconstruction from Incomplete and Noisy Data, Nature,,1978, 272 : 686-690
    [6-3] Cornwell T J, Evans K F. A Simple Maximum Entropy Deconvolution Algorithm, Astronomy and Astrophysics, 1985,143(1):77-83
    [6-4] Skiling J, Bryan R K. Maximum Entropy Image Reconstruction: General Algorithm, Mon. Not. R. Astr. Soc., 1984, 211:111-124
    [6-5] Wu N L. The Maximum Entropy Method. Springer Series in Information Sciences, 1997, 32:53-63
    [6-6] Arzner K, Magun A. Fast maximum entropy restoration of low-noise solar images. Astronomy and Astrophysics, 1997, 324:735-742
    [6-7] Bontekoe T R, Koper E, Kester D J.M. Pyramid Maximum Entropy Images of IRAS Survey Data, Astron. Astrophys., 1994, 284(3):1037-1053
    [6-8] Maisinger K, Hobson M P, Lasenby A N. Maximum-entropy image reconstruction using wavelets, Mon. Not. R. Astr. Soc., 2004, 347(1): 339-354
    [6-9] Cornwell T J, Evans K F. A Simple Maximum Entropy Deconvolution Algorithm, Astron. Astrophys.,1985,143:77-83
    [6-10] Hogbom. Aperture Synthesis with a Non-Regular Distribution of Interferometer Baselines. Astronomy & Astrophysics, 1974, 15(Suppl): 417-426
    [6-11] Clark B G. An Efficient Implementation of the Algorithm 'CLEAN'. Astronomy & Astrophysics, 1980,89(3): 377-378
    [6-12] Schwarz U J. The method `CLEAN'--use, misuse and variations. Image Formation from Coherence Functions in Astronomy,1979: 261-275
    [6-13] Segalovitz A, Frieden B R. A CLEAN-type Deconvolution Algorithm. Astronomy & Astrophysics, 1978,70(3): 335-343
    [6-14] Wright M C. Image fidelity:implications for ALMA, ALMA MEMO, 1999,272
    [6-15] Jung T H, Rhee M H, Roh D G et al. Imaging Simulations for the Korean VLBI Network. Journal of Astronomy and Space Sciences,2005, 22(1):1-12
    [6-16] Massey R, Refregier A, Conselice C et al. Image simulation with shapelets. Monthly Notices of the Royal Astronomical Society, 2004, 348(1):214-226

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700