微流控液滴液/液萃取和电化学检测系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学分析设备的微型化、集成化与便携化是当前分析仪器和分析科学发展的一大重要趋势。微流控芯片就是顺应这一时代背景发展起来的一种微系统。在微流控芯片上,可以集成常规分析实验室的进样、混合、反应、分离、检测等操作。通道尺寸结构的微型化使微流控芯片系统具有试样和试剂耗量低、物质扩散速度快、分析时间短等优势,非常适合贵重样品和微量样品的检测,也特别适合研制成便携式仪器进行各种现场分析。微流控液滴是近年来微流控领域迅速崛起的一种新技术。与常规连续流微流控系统相比,微流控液滴系统具有更高的比表面积,更快的传质和传热速率及更短的反应时间。微流控液滴可以做为单独的微反应器,用于超微量、高通量的平行实验。目前,微流控液滴系统的研究已引起广大研究者的关注。基于上述研究背景,本论文主要开展了微流控液滴液/液萃取和微流控液滴双极电极电化学检测新方法的研究。论文共分三部分。
     第一部分为第一章,简要介绍了微流控系统和微流控液滴系统的特征及应用,总结了微流控液/液萃取研究进展和微流控电化学检测发展现状。
     第二部分为第二章,采用纳升级取样探针-缺口管阵列试样引入平台,建立了界面电势差调控的微流控液滴液/液萃取系统。该萃取系统通过化学极化方式调控液/液界面电势差,实现分析物的萃取。以甲基橙阴离子为研究对象,1,2-二氯乙烷为萃取剂,考察了系统性能。当液/液界面电势差低于-0.2V时,5s内就可实现甲基橙阴离子从4nL水相溶液到等体积1,2-二氯乙烷液滴相的转移,萃取效率高于80%。通过改变两相溶液的离子组成和浓度,可以调节液/液界面电势差,借此实现不同程度的萃取。研究表明萃取结果与理论拟合结果相符。与通过外加电极调节液/液界面电势差的萃取方法相比,该系统省去了在微流控通道中加工电极的繁琐步骤,且在更短的时间内可以实现更高效率的萃取。
     第三部分包括第三章和第四章,建立了一种双极电极电化学-微流控液滴传感新方法。第三章对设计的双极电极电化学-微流控液滴传感器进行了优化,并将该传感器用于过氧化氢的检测。该传感新方法是在一块氧化铟锡导电玻璃-聚二甲基硅氧烷(ITO导电玻璃-PDMS)芯片上开展的。其中,ITO导电玻璃基片上加工有驱动电极和双极电极,PDMS盖片上制作有微液池,双极电极阳极端和阴极端分别置于两侧的微液池中。将含三联吡啶钌/二丁基氨基乙醇(Ru(bpy)32+/DBAE)体系的微升级液滴加入双极电极阳极端的微液池中,并向双极电极阴极端的微液池中加入分析物溶液,合适的驱动电压就会促使双极电极两端分别发生Ru(bpy)32+/DBAE的氧化反应和分析物的还原反应Ru(bpy)32+/DBAE的氧化反应伴随电化学发光信号的产生,利用捕捉到的电化学发光图像即可实现分析物的可视化检测。以Ru(bpy)32+/DBAE体系和含某一浓度铁氰化钾的氯化钾溶液为研究对象,优化了电极尺寸结构和双极电极阳极端及阴极端的电解质溶液条件。实验结果表明较宽的驱动电极、较窄和较短的双极电极及较短的双极电极与驱动电极间距,利于在更低的驱动电压条件下获得双极电极电化学发光信号;发光试剂溶液的最佳组成为1mM三联吡啶钌/0.1mM二丁基氨基乙醇。此外,双极电极阳极端的电化学发光强度易受其阴极端溶液组成及浓度的影响,因此,可以利用双极电极阳极端的电化学发光信号对其阴极端的分析物进行检测。在此基础上,在双极电极阴极端修饰金纳米粒子-辣根过氧化物酶复合物,将建立的双极电极电化学-微流控液滴生物传感器用于过氧化氢的检测。在合适的驱动电压条件下,双极电极阴极端修饰的辣根过氧化物酶就会催化过氧化氢发生还原反应,利用双极电极阳极端液池中Ru(bpy)32+/DBAE体系发出的电化学发光信号间接检测了这一过程。在成像检测过程中,同时采集流经双极电极的电流信号,即可实现安培-电化学发光成像双功能检测。实验结果表明,双极电极阳极端的电化学发光灰度对数与过氧化氢浓度对数在10-5~10-2M浓度范围内具有良好的线性关系;流经双极电极的电流对数与过氧化氢浓度对数在5×10-5~10-1M浓度范围内具有良好的线性关系。两种检测方法获得的检测结果之间具有良好的一致性(相关系数0.9952)。该传感器具有结构简单、样品和试剂耗量少、灵敏度高、分析速度快、线性范围宽、可避免待测样品与检测试剂之间的交叉污染等优点,有望在分析物传感检测等方面实现广泛应用。
     第四章在第三章工作的基础上,将研制的双极电极电化学发光成像-微流控液滴阵列传感器用于有机化合物的检测。以N,N-二甲基甲酰胺相中的四种醌类物质苯醌(BQ)、2,6-二氯-1,4-苯醌(DCBQ)、2,3,5,6-四氯-1,4-苯醌(TCBQ)、和7,7,8,8-四氰基对二次甲基苯醌(TCNQ)为研究对象,验证了系统的可行性。采用双极电极阳极端水相溶液中Ru(bpy)32+/DBAE体系发出的电化学发光对这四种醌类物质进行了测定。实验结果表明双极电极阳极端的电化学发光灰度对数与每种醌类物质的浓度对数之间具有良好的线性关系。BQ、DCBQ、TCBQ和TCNQ的检出限分别为220μM、70μM、250μM和200μM。该方法为电化学发光检测提供了一种新思路,拓宽了电化学发光检测法的应用范围。
The miniaturization, integration and portability of chemical-analysis equipments are one of the most important trends in the development of modern analytical apparatus and analytical science. Microfluidic chip based systems are such microsystems keeping up with the current trend. On a microfluidic chip, operations in traditional laboratory such as sample injection, mixing, reaction, separation and detection can be performed. With the miniaturization of the size of the microchannel, microfluidic chip possesses the advantages of low sample and reagent consumption, fast mass and heat transfer rate, short analysis time and so on, which are very suitable for expensive and small-volume sample testing and for manufacturing portable apparatus for analysis in various situations. Recently, microfluidic droplet has emerged as a novel technique in the field of microfluidics. Microfluidic droplet systems have higher surface to volume ratios, faster heat and mass transfer rate and shorter reaction times than those of continuous flow based microfluidic systems. The microfluidic droplet can be used as individual microreactor units for parallel ultramicroanalysis and high throughput experimentation. Currently, the study on microfluidic droplet systems has attracted the attention of many researchers. Based on the background, novel methods for liquid/liquid extraction and bipolar electrochemical detection based on microfluidic droplet systems had been developed in this thesis. This thesis had been divided into three Parts.
     In Part1, Chapter1, the characteristics and applications of microfluidic systems and microfluidic droplet systems had been briefly introduced. Recent development of liquid/liquid extraction and electrochemical detection based on microfluidic systems had been reviewed.
     In Part2, Chapter2, a microfluidic droplet liquid/liquid extraction system modulated by the interfacial Galvani potential difference had been developed. The system was based on a home-built sampling platform, which was consisting of a sampling probe at the nanoliter scale and a slotted-vial array. The interfacial Galvani potential difference that used for modulating the analyte extraction was chemically controlled by the distribution of different salts. The performance of the extraction system had been demonstrated using methyl orange anion as a model analyte and1,2-dichloroethane as an extractant. When the interfacial potential difference at equilibrium was below-0.2V, the methyl orange anion could transfer from water phase with the volume of4.0nL into1,2-dichloroethane droplet phase with the same volume within5s. And the extraction efficiency was higher than80%. Moreover, the extraction efficiency could be modulated by adjusting the interfacial potential difference at equilibrium via changing the ionic component and its concentration in both phases. And the correlation between the extraction and the interfacial potential difference at equilibrium followed the classical Nernst equation. Compared with the extraction modulated by the interfacial potential difference via external electrodes, the complex process for electrode fabrication in microchannel was omitted in the proposed system but with a higher extraction efficiency and faster response.
     In Part3, including Chapter3and Chapter4, a novel microfluidic droplet sensor based on bipolar electrochemistry had been developed. Chapter3, the proposed microfluidic droplet sensor based on bipolar electrochemistry had been optimized and then it was further used for the detection of hydrogen peroxide. This novel approach was performed on a indium tin oxide glass-poly(dimethylsioxane)(ITO glass-PDMS) microchip. ITO glass was selectively etched for patterning the driving electrodes and bipolar electrodes, and several microwells were punched on the PDMS. The anodic and cathodic end of each bipolar electrode was buried in the microwell that located at both sides of the electrode, respectively. Firstly, tris(2,2'-bipyridyl) ruthenium(II)/2-(dibutylamino)ethanol (Ru(bpy)3+/DBAE) system contained in microliter-sized microfluidic droplets and the analyte droplet were added into the microwell at the anodic and cathodic side of each bipolar electrode, respectively. Then an appropriate external voltage was imposed on the driving electrodes to induce the oxidation of Ru(bpy)32+/DBAE and the reduction of the analyte, respectively. During the oxidation process of Ru(bpy)3+/DBAE system, the electrochemiluminescence singals were emitted from anodic end of each bipolar electrode, which could be recorded for visual analyte detection. Ru(bpy)3+/DBAE system and a certain concentration of potassium ferricyanide dissolved in potassium chloride solution were used for optimizing the layout and dimension of electrodes and the component and concentration of the electrolyte at the anodic and cathodic side of bipolar electrode. The results indicated that a wide driving electrode, a narrow and short bipolar electrode and a short gap between driving electrode and bipolar electrode were benefit to obtain the bipolar electrochemiluminescence at a low external voltage. And the best composition of electrochemiluminescence detection solution was1mM Ru(bpy)32+/0.1mM DBAE. Moreover, the anodic electrochemiluminescence singal was closely related to the type and concentration of the redox substance at the cathodic side of the bipolar electrode. Therefore, it was possible to detect the redox substance at the cathodic side of bipolar electrode by its anodic electrochemiluminescence singal. Furthermore, the cathode end of the bipolar electrode was modified with the composites of gold nanoparticles and horseradish peroxidase, and the modified microfluidic droplet sensor based on bipolar electrochemistry was used for biosensing of hydrogen peroxide. With an appropriate external voltage, hydrogen peroxide was catalyzed reduction by horseradish peroxidase, which could be indirectly detected by the electrochemiluminescence singal of Ru(bpy)32+/DBAE emitted from anodic end of the bipolar electrode. During recording the electrochemiluminescence singal, the current passed through the bipolar electrode could also be collected for the detection of hydrogen peroxide. A good linear Log-Log relationship between the electrochemiluminescence singal and hydrogen peroxide concentration was obtained in the concentration range of10-5to10-2M. And a good linear Log-Log relationship between the current singal and hydrogen peroxide concentration was obtained in the concentration range of5×10-5to10-1M. The results obtained by amperometric detection were in good aggrement with that obtained by electrochemiluminescence imaging (Correlation coefficient0.9952). The proposed sensor had the advantages of simple in structure, highly sensitive, fast response, wide dynamic response, avoiding cross-contamination between sensing analyte and reporting reagent, etc, which might be widely used for analyte detection.
     In Chapter4, the microfluidic droplet array sensor based on bipolar electrochemiluminescence imaging developed in Chapter3had been used for detection of organic compounds. Four types of quinones, such as p-benzoquinone (BQ),2,6-dichloro-1,4-benzoquinone (DCBQ),2,3,5,6-tetrachloro-1,4-benzoquine (TCBO) and7,7',8,8'-tetracyanoquinodimethane (TCNQ) dissolved in dimethylformamide phase were selected as the model analytes to demonstrate the sensor performance. The electrochemiluminescence imaging of Ru(bpy)32+/DBAE system in water phase emitted from the anodic side of the bipolar electrode was used for detection of these types of quinones. A good linear Log-Log relationship between the electrochemiluminescence gray value and the concentration of each type of quinones was obtained. The limit of detection of BQ, DCBQ, TCBQ and TCNQ was220μM,70μM,250μM and200μM, respectively. This novel approach expanded the applications of electrochemiluminescence detection.
引文
[1]方肇伦,微流控分析芯片发展与展望,大学化学,2001,16(2):1-6.
    [2]Manz A, Graber N, Widmer H M, Miniaturized total chemical analysis systems:a novel concept for chemical sensing, Sens. Actuator B-Chem.,1990, 1(1-6):244-248.
    [3]Reyes D R, Iossifidis D, Auroux P A, Manz A, Micro total analysis systems.1. Introduction, theory, and technology, Anal. Chem.,2002,74(12):2623-2636.
    [4]Auroux P A, Iossifidis D, Reyes D R, Manz A, Micro total analysis systems.2. Analytical standard operations and applications, Anal. Chem.,2002,74(12): 2637-2652.
    [5]Tudos A J, Besselink G A J, Schasfoort R B M, Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry, Lab Chip,2001, 1(2):83-95.
    [6]Verpoorte E, Microfluidic chips for clinical and forensic analysis, Electrophoresis,2002,23(5):677-712.
    [7]Vilkner T, Janasek D, Manz A, Micro total analysis systems. Recent developments, Anal. Chem.,2004,76(12):3373-3385.
    [8]Dittrich P S, Tachikawa K, Manz A, Micro total analysis systems. Latest advancements and trends, Anal. Chem.,2006,78(12):3887-3907.
    [9]Chin C D, Linder V, Sia S K, Lab-on-a-chip devices for global health:Past studies and future opportunities, Lab Chip,2007,7(1):41-57.
    [10]West J, Becker M, Tombink S, Manz A, Micro total analysis systems:Latest achievements,Anal. Chem.,2008,80(12):4403-4419.
    [11]Arora A, Simone G, Salieb-Beugelaar G B, Kim J T, Manz A, Latest developments in micro total analysis systems, Anal. Chem.,2010,82(12): 4830-4847.
    [12]Kovarik M L, Gach P C, Ornoff D M, Wang Y L, Balowski J, Farrag L, Allbritton N L, Micro total analysis systems for cell biology and biochemical assays, Anal. Chem.,2012,84(2):516-540.
    [13]Jokerst J C, Emory J M, Henry C S, Advances in microfluidics for environmental analysis, Analyst,2012,137(1):24-34.
    [14]Teh S Y, Lin R, Hung L H, Lee A P, Droplet microfluidics, Lab Chip,2008, 8(2):198-220.
    [15]Song H, Chen D L, Ismagilov R F, Reactions in droplets in microflulidic channels, Angew. Chem. Int. Ed.,2006,45(44):7336-7356.
    [16]Kobayashi I, Uemura K, Nakajima M, Formulation of monodisperse emulsions using submicron-channel arrays, Colloids Surf. A,2007,296(1-3): 285-289.
    [17]Tokeshi M, Minagawa T, Kitamori T, Integration of a microextraction system on a glass chip:Ion-pair solvent extraction of Fe(II) with 4,7-diphenyl-1,10-phenanthrolinedisulfonic acid and tri-n-octylmethylammonium chloride, Anal. Chem.,2000,72(7):1711-1714.
    [18]Hisamoto H, Horiuchi T, Tokeshi M, Hibara A, Kitamori T, On-chip integration of neutral ionophore-based ion pair extraction reaction, Anal. Chem.,2001,73(6):1382-1386.
    [19]Hisamoto H, Horiuchi T, Uchiyama K, Tokeshi M, Hibara A, Kitamori T, On-chip integration of sequential ion-sensing system based on intermittent reagent pumping and formation of two-layer flow, Anal. Chem.,2001,73(22): 5551-5556.
    [20]Kim H B, Ueno K, Chiba M, Kogi O, Kitamura N, Spatially-resolved fluorescence spectroscopic study on liquid/liquid extraction processes in polymer microchannels,Anal. Sci.,2000,16(8):871-876.
    [21]Ueno K, Kim H B, Kitamura N, Channel shape effects on the solution-flow characteristics and the liquid/liquid extraction efficiency in polymer microchannel chips, Anal. Sci.,2003,19(3):391-394.
    [22]Sato K, Tokeshi M, Sawada T, Kitamori T, Molecular transport between two phases in a microchannel, Anal. Sci.,2000,16(5):455-456.
    [23]Tokeshi M, Minagawa T, Kitamori T, Integration of a microextraction system-Solvent extraction of a Co-2-nitroso-5-dimethylaminophenol complex on a microchip, J. Chromatogr. A,2000,894(1-2):19-23.
    [24]Minagawa T, Tokeshi M, Kitamori T, Integration of a wet analysis system on a glass chip:determination of Co(II) as 2-nitroso-l-naphthol chelates by solvent extraction and thermal lens microscopy, Lab Chip,2001,1(1):72-75.
    [25]Tokeshi M, Minagawa T, Uchiyama K, Hibara A, Sato K, Hisamoto H, Kitamori T, Continuous-flow chemical processing on a microchip by combining microunit operations and a multiphase flow network, Anal. Chem., 2002,74(7):1565-1571.
    [26]Aota A, Nonaka M, Hibara A, Kitamori T, Countercurrent laminar microflow for highly efficient solvent extraction, Angew. Chem. Int. Ed.,2007,46(6): 878-880.
    [27]Priest C, Zhou J F, Sedev R, Ralston J, Aota A, Mawatari K, Kitamori T, Microfluidic extraction of copper from particle-laden solutions, Int. J. Miner. Process.,2011,98(3-4):168-173.
    [28]Nagai H, Miwa N, Segawa M, Wakida S, Chayama K, Quantification of Ag(I) and kinetic analysis using ion-pair extraction across a liquid/liquid interface in a laminar flow by fluorescence microscopy, J. Appl. Phys.,2009,105(10): 1020151-1020157
    [29]Maruyama T, Kaji T, Ohkawa T, Sotowa K, Matsushita H, Kubota F, Kamiya N, Kusakabe K, Goto M, Intermittent partition walls promote solvent extraction of metal ions in a microfluidic device, Analyst,2004,129(11): 1008-1013.
    [30]Bowden S A, Monaghan P B, Wilson R, Parnell J, Cooper J M, The liquid-liquid diffusive extraction of hydrocarbons from a North Sea oil using a microfluidic format, Lab Chip,2006,6(6):740-743.
    [31]Xiao H, Liang D, Liu G C, Guo M, Xing W L, Cheng J, Initial study of two-phase laminar flow extraction chip for sample preparation for gas chromatography, Lab Chip,2006,6(8):1067-1072.
    [32]Miyaguchi H, Tokeshi M, Kikutani Y, Hibara A, Inoue H, Kitamori T, Microchip-based liquid-liquid extraction for gas-chromatography analysis of amphetamine-type stimulants in urine, J. Chromatogr. A,2006,1129(1): 105-110.
    [33]Shin D H, Kim J E, Shim H C, Song J W, Yoon J H, Kim J, Jeong S, Kang J, Baik S, Han C S, Continuous extraction of highly pure metallic single-walled carbon nanotubes in a microfluidic channel, Nano Lett.,2008,8(12): 4380-4385.
    [34]Berduque A, O'Brien J, Alderman J, Arrigan D W M, Microfluidic chip for electrochemically-modulated liquid vertical bar liquid extraction of ions, Electrochem. Commun.,2008,10(1):20-24.
    [35]Hibara A, Tokeshi M, Uchiyama K, Hisamoto H, Kitamori T, Integrated multilayer flow system on a microchip, Anal. Sci.,2001,17(1):89-93.
    [36]Surmeian M, Slyadnev M N, Hisamoto H. Hibara A, Uchiyama K, Kitamori T, Three-layer flow membrane system on a microchip for investigation of molecular transport, Anal. Chem.,2002,74(9):2014-2020.
    [37]Maruyama T, Matsushita H, Uchida J, Kubota F, Kamiya N, Goto M, Liquid membrane operations in a microfluidic device for selective separation of metal ions, Anal. Chem.,2004,76(15):4495-4500.
    [38]Tetala K K R, Swarts J W, Chen B, Janssen A E M, van Beek T A, A three-phase microfluidic chip for rapid sample clean-up of alkaloids from plant extracts. Lab Chip,2009,9(14):2085-2092.
    [39]Chen H, Fang Q, Yin X F, Fang Z L, Microfluidic chip-based liquid-liquid extraction and preconcentration using a subnanoliter-droplet trapping technique. Lab Chip,2005,5(7):719-725.
    [40]Shen H, Fang Q, Fang Z L, A microfluidic chip based sequential injection system with trapped droplet liquid-liquid extraction and chemiluminescence detection, Lab Chip,2006,6(10):1387-1389.
    [41]Shen H, Fang Q, Improved microfluidic chip-based sequential-injection trapped-droplet array liquid-liquid extraction system for determination of aluminium, Talanta,2008,77(1):269-272.
    [42]Aota A, Date Y, Terakado S, Sugiyama H, Ohmura N, Analysis of polychlorinated biphenyls in transformer oil by using liquid-liquid partitioning in a microfluidic device, Anal. Chem.,2011,83(20):7834-7840.
    [43]Kumemura M, Korenaga T, Quantitative extraction using flowing nano-liter droplet in microfluidic system, Anal. Chim. Acta,2006,558(1-2):75-79.
    [44]Marine N A, Klein S A, Posner J D, Partition coefficient measurements in picoliter drops using a segmented flow microfluidic device, Anal. Chem.,2009, 81(4):1471-1476.
    [45]Wang W H, Zhang Z L, Xie Y N, Wang L, Yi S, Liu K, Liu J, Pang D W, Zhao X Z, Flow-focusing generation of monodisperse water droplets wrapped by ionic liquid on microfluidic chips:from plug to sphere, Langmuir,2007, 23(23):11924-11931.
    [46]Mary P, Studer V, Tabeling P, Microfluidic droplet-based liquid-liquid extraction, Anal. Chem.,2008,80(8):2680-2687.
    [47]Nichols K P, Pompano R R, Li L, Gelis A V, Ismagilov R F, Toward mechanistic understanding of nuclear reprocessing chemistries by quantifying lanthanide solvent extraction kinetics via microfluidics with constant interfacial area and rapid mixing, J. Am. Chem. Soc.,2011,133(39): 15721-15729.
    [48]Fidalgo L M, Whyte G, Bratton D, Kaminski C F, Abell C, Huck W T S, From microdroplets to microfluidics:Selective emulsion separation in microfluidic devices, Angew.Chem. Int. Ed.,2008,47(11):2042-2045.
    [49]Zeng S J, Pan X Y, Zhang Q Q, Lin B C, Qin J H. Electrical control of individual droplet breaking and droplet contents extraction, Anal. Chem.,2011, 83(6):2083-2089.
    [50]Wang X Y, Saridara C, Mitra S, Microfluidic supported liquid membrane extraction, Anal. Chim. Acta,2005,543(1-2):92-98.
    [51]Kralj J G, Sahoo H R, Jensen K F, Integrated continuous microfluidic liquid-liquid extraction, Lab Chip,2007,7(2):256-263.
    [52]Alimuddin M, Grant D, Bulloch D, Lee N, Peacock M, Dahl R, Determination of log D via automated microfluidic liquid-liquid extraction, J. Med. Chem., 2008,51(16):5140-5142.
    [53]Petersen N J, Jensen H, Hansen S H, Foss S T, Snakenborg D, Pedersen-Bjergaard S, On-chip electro membrane extraction, Microfluid. Nanqfluid.,2010,9(4-5):881-888.
    [54]Petersen N J, Foss S T, Jensen H, Hansen S H, Skonberg C, Snakenborg D, Kutter J P, Pedersen-Bjergaard S, On-chip electro membrane extraction with online ultraviolet and mass spectrometric detection, Anal. Chem.,2011,83(1): 44-51.
    [55]Sun M, Du W B, Fang Q, Microfluidic liquid-liquid extraction system based on stopped-flow technique and liquid core waveguide capillary, Talanta,2006, 70(2):392-396.
    [56]Chabinyc M L, Chiu D T, McDonald J C, Stroock A D, Christian J F, Karger A M, Whitesides G M, An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications, Anal. Chem.,2001, 73(18):4491-4498.
    [57]Wang J, Electrochemical detection for microscale analytical systems:a review, Talanta,2002,56(2):223-231.
    [58]Pumera M, Merkoci A, Alegret S, New materials for electrochemical sensing VII. Microfluidic chip platforms, Trac-Trends Anal. Chem.,2006,25(3): 219-235.
    [59]Xu X L, Zhang S, Chen H, Kong J L, Integration of electrochemistry in micro-total analysis systems for biochemical assays:Recent developments, Talanta,2009,80(1):8-18.
    [60]Woolley A T, Lao K Q, Glazer A N, Mathies R A, Capillary electrophoresis chips with integrated electrochemical detection, Anal. Chem.,1998,70(4): 684-688.
    [61]Vandaveer W R, Pasas S A, Martin R S, Lunte S M, Recent developments in amperometric detection for microchip capillary electrophoresis, Electrophoresis,2002,23(21):3667-3677.
    [62]Wang J, Electrochemical detection for capillary electrophoresis microchips:A review, Electroanalysis,2005,17(13):1133-1140.
    [63]Ghanim M H, Abdullah M Z, Integrating amperometric detection with electrophoresis microchip devices for biochemical assays:Recent developments, Talanta,2011,85(1):28-34.
    [64]Vandaveer W R, Pasas-Farmer S A, Fischer D J, Frankenfeld C N, Lunte S M, Recent developments in electrochemical detection for microchip capillary electrophoresis, Electrophoresis,2004,25(21-22):3528-3549.
    [65]Wallenborg S R, Nyholm L, Lunte C E, End-column amperometric detection in capillary electrophoresis:Influence of separation-related parameters on the observed half-wave potential for dopamine and catechol, Anal. Chem.,1999, 71(3):544-549.
    [66]Martin R S, Ratzlaff K L, Huynh B H, Lunte S M, In-channel electrochemical detection for microchip capillary electrophoresis using an electrically isolated potentiostat, Anal. Chem.,2002,74(5):1136-1143.
    [67]Rossier J S, Ferrigno R, Girault H H, Electrophoresis with electrochemical detection in a polymer microdevice, J. Electroanal. Chem.,2000,492(1): 15-22.
    [68]Chen D C, Hsu F L, Zhan D Z, Chen C H, Palladium film decoupler for amperometric detection in electrophoresis chips, Anal. Chem.,2001,73(4): 758-762.
    [69]Galloway M, Stryjewski W, Henry A, Ford S M, Llopis S, McCarley R L, Soper S A, Contact conductivity detection in poly(methyl methacylate)-based microfluidic devices for analysis of mono-and polyanionic molecules, Anal. Chem.,2002,74(10):2407-2415.
    [70]Kaniansky D, Masar M, Bielcikova J, Ivanyi F, Eisenbeiss F, Stanislawski B, Grass B, Neyer A, Johnck M, Capillary electrophoresis separations on a planar chip with the column-coupling configuration of the separation channels, Anal. Chem.,2000,72(15):3596-3604.
    [71]Grass B, Neyer A, Johnck M, Siepe D, Eisenbeiss F, Weber G, Hergenroder R, A new PMMA-microchip device for isotachophoresis with integrated conductivity detector, Sens. Actuator B-Chem.,2001,72(3):249-258.
    [72]Guijt R M, Baltussen E, van der Steen G, Schasfoort R B M, Schlautmann S, Billiet H A H, Frank J, van Dedem G W K, van den Berg A, New approaches for fabrication of microfluidic capillary electrophoresis devices with on-chip conductivity detection, Electrophoresis,2001.22(2):235-241.
    [73]Prest J E, Baldock S J, Fielden P R. Brown B J T, Determination of metal cations on miniaturised planar polymeric separation devices using isotachophoresis with integrated conductivity detection, Analyst,2001,126(4): 433-437.
    [74]Guijt R M, Baltussen E. van der Steen G. Frank H, Billiet H, Schalkhammer T, Laugere F, Vellekoop M, Berthold A, Sarro L, van Dedem G W K, Capillary electrophoresis with on-chip four-electrode capacitively coupled conductivity detection for application in bioanalysis, Electrophoresis,2001,22(12): 2537-2541.
    [75]Wang J, Pumera M, Dual conductivity/amperometric detection system for microchip capillary electrophoresis, Anal. Chem.,2002,74(23):5919-5923.
    [76]Pumera M, Wang J, Opekar F, Jelinek I, Feldman J, Lowe H, Hardt S, Contactless conductivity detector for microchip capillary electrophoresis, Anal. Chem.,2002,74(9):1968-1971.
    [77]Tanyanyiwa J, Hauser P C, High-voltage capacitively coupled contactless conductivity detection for microchip capillary electrophoresis, Anal. Chem., 2002,74(24):6378-6382.
    [78]Lichtenberg J, de Rooij N F, Verpoorte E, A microchip electrophoresis system with integrated in-plane electrodes for contactless conductivity detection, Electrophoresis,2002,23(21):3769-3780.
    [79]Kuban P, Hauser P C, Effects of the cell geometry and operating parameters on the performance of an external contactless conductivity detector for microchip electrophoresis, Lab Chip,2005,5(4):407-415.
    [80]Tantra R, Manz A, Integrated potentiometric detector for use in chip-based flow cells. Anal. Chem.,2000,72(13):2875-2878.
    [81]Ferrigno R, Lee J N, Jiang X Y, Whitesides G M, Potentiometric titrations in a poly(dimethylsiloxane)-based microfluidic device, Anal. Chem.,2004,76(8): 2273-2280.
    [82]Ibanez-Garcia N, Mercader M B, da Rocha Z M, Seabra C A, Gongora-Rubio M R, Chamarro J A, Continuous flow analytical microsystems based on low-temperature co-fired ceramic technology. Integrated potentiometric detection based on solvent polymeric ion-selective electrodes, Anal. Chem., 2006,78(9):2985-2992.
    [83]Jang A, Zou Z W, Lee K K, Ahn C H, Bishop P L, Potentiometric and voltammetric polymer lab chip sensors for determination of nitrate, pH and Cd(Ⅱ) in water, Talanta,2010,83(1):1-8.
    [84]Han Z, Chang Y Y, Au S W N, Zheng B, Measuring rapid kinetics by a potentiometric method in droplet-based microfluidic devices, Chem. Commun., 2012,48(10):1601-1603.
    [85]Fahnrich K A, Pravda M, Guilbault G G, Recent applications of electrogenerated chemiluminescence in chemical analysis, Talanta,2001, 54(4):531-559.
    [86]Miao W J, Electrogenerated chemiluminescence and its biorelated applications, Chem. Rev.,2008,108(7):2506-2553.
    [87]Yan J L, Yang X R, Wang E K, Electrogenerated chemiluminescence on microfluidic chips, Anal. Bioanal. Chem.,2005,381(1):48-50.
    [88]Ge L, Yan J X, Song X R, Yan M, Ge S G, Yu J H, Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing, Biomaterials,2012, 33(4):1024-1031.
    [89]Martin R S, Gawron A J, Lunte S M, Henry C S, Dual-electrode electrochemical detection for poly(dimethylsiloxane)-fabricated capillary electrophoresis microchips. Anal. Chem.,2000,72(14):3196-3202.
    [90]Vazquez M, Frankenfeld C, Coltro W K T, Carrilho E, Diamond D, Lunte S M, Dual contactless conductivity and amperometric detection on hybrid PDMS/glass electrophoresis microchips, Analyst,2010,135(1):96-103.
    [91]Lapos J A, Manica D P, Ewing A G, Dual fluorescence and electrochemical detection on an electrophoresis microchip, Anal. Chem.,2002,74(14): 3348-3353.
    [92]Liu C, Mo Y Y, Chen Z G, Li X, Li O L, Zhou X, Dual fluorescence/contactless conductivity detection for microfluidic chip, Anal. Chim. Acta,2008,621(2):171-177.
    [93]Hsueh Y T, Smith R L, Northrup M A, A microfabricated, electrochemiluminescence cell for the detection of amplified DNA, Sens. Actuator B-Chem.,1996,33(1-3):110-114.
    [94]Fiaccabrino G C, de Rooij N F, Koudelka-Hep M, On-chip generation and detection of electrochemiluminescence, Anal. Chim. Acta,1998,359(3): 263-267.
    [95]Michel P E, Fiaccabrino G C, de Rooij N F, Koudelka-Hep M, Integrated sensor for continuous flow electrochemiluminescent measurements of codeine with different ruthenium complexes, Anal. Chim. Acta,1999,392(2-3): 95-103.
    [96]Arora A, de Mello A J, Manz A, Sub-microliter electrochemiluminescence detector-A model for small volume analysis systems, Anal. Commun.,1997, 34(12):393-395.
    [97]Zhan W, Alvarez J, Crooks R M, A two-channel microfluidic sensor that uses anodic electrogenerated chemiluminescence as a photonic reporter of cathodic redox reactions, Anal. Chem.,2003,75(2):313-318.
    [98]Zhan W, Alvarez J, Sun L, Crooks R M, A multichannel microfluidic sensor that detects anodic redox reactions indirectly using anodic electrogenerated chemiluminescence, Anal. Chem.,2003,75(6):1233-1238.
    [99]Du Y, Wei H, Kang J Z, Yan J L, Yin X B, Yang X R, Wang E K, Microchip capillary electrophoresis with solid-state electrochemiluminescence detector. Anal. Chem.,2005,77(24):7993-7997.
    [100]Qiu H B, Yin X B, Yan J L, Zhao X C, Yang X R, Wang E K, Simultaneous electrochemical and electrochemiluminescence detection for microchip and conventional capillary electrophoresis, Electrophoresis,2005,26(3):687-693.
    [101]Delaney J L, Hogan C F, Tian J F, Shen W, Electrogenerated chemiluminescence detection in paper-based microfluidic sensors, Anal. Chem.,2011,83(4):1300-1306.
    [102]Yan J X, Ge L, Song X R, Yan M, Ge S G, Yu J H, Paper-based electrochemiluminescent 3D immunodevice for lab-on-paper, specific, and sensitive point-of-care testing, Chem.-Eur.J.,2012,18(16):4938-4945.
    [103]Loget G, Kuhn A, Shaping and exploring the micro-and nanoworld using bipolar electrochemistry, Anal. Bioanal. Chem.,2011,400(6):1691-1704.
    [104]Mavre F, Anand R K, Laws D R, Chow K F, Chang B Y Crooks J A, Crooks R M, Bipolar electrodes:A useful tool for concentration, separation, and detection of analytes in microelectrochemical systems, Anal. Chem.,2010, 82(21):8766-8774.
    [105]Chow K F, Mavre F, Crooks J A, Chang B Y, Crooks R M, A large-scale, wireless electrochemical bipolar electrode microarray, J. Am. Chem. Soc., 2009,131(24):8364-8365.
    [106]Chow K F, Chang B Y, Zaccheo B A, Mavre F. Crooks R M. A sensing platform based on electrodissolution of a Ag bipolar electrode, J. Am. Chem. Soc.,2010,132(27):9228-9229.
    [107]Arora A, Eijkel J C T, Morf W E, Manz A, A wireless electrochemiluminescence detector applied to direct and indirect detection for electrophoresis on a microfabricated glass device, Anal. Chem.,2001,73(14): 3282-3288.
    [108]Zhan W, Alvarez J, Crooks R M, Electrochemical sensing in microfluldic systems using electrogenerated chemiluminescence as a photonic reporter of redox reactions, J. Am. Chem. Soc.,2002,124(44):13265-13270.
    [109]Chang B Y, Chow K F, Crooks J A, Mavre F, Crooks R M, Two-channel microelectrochemical bipolar electrode sensor array, Analyst,2012,137(12): 2827-2833.
    [110]Chow K F, Mavre F, Crooks R M, Wireless electrochemical DNA microarray sensor, J. Am. Chem. Soc.,2008,130(24):7544-7545.
    [111]Wu M S, Xu B Y, Shi H W, Xu J J, Chen H Y, Electrochemiluminescence analysis of folate receptors on cell membrane with on-chip bipolar electrode, Lab Chip,2011,11(16):2720-2724.
    [112]Wu M S, Qian G S, Xu J J, Chen H Y. Sensitive electrochemiluminescence detection of c-Myc mRNA in breast cancer cells on a wireless bipolar electrode, Anal. Chem.,2012,84(12):5407-5414.
    [113]Sentic M, Loget G, Manojlovic D, Kuhn A, Sojic N, Light-emitting electrochemical "swimmers", Angew. Chem. Int. Ed.,2012,51(45): 11284-11288.
    [114]Zhan W, Crooks R M, Microelectrochemical logic circuits, J. Am. Chem. Soc., 2003,125(33):9934-9935.
    [115]Chang B Y, Crooks J A, Chow K F, Mavre F, Crooks R M, Design and operation of microelectrochemical gates and integrated circuits,J. Am. Chem. Soc.,2010,132(43):15404-15409.
    [116]Lindsay S, Vazquez T, Egatz-Gomez A, Loyprasert S, Garcia A A, Wang J, Discrete microfluidics with electrochemical detection, Analyst,2007,132(5): 412-416.
    [117]Luo C X, Yang X J, Fu O, Sun M H, Ouyang Q. Chen Y, Ji H, Picoliter-volume aqueous droplets in oil:Electrochemical detection and east electroporation, Electrophoresis,2006,27(10):1977-1983.
    [118]Liu S J, Gu Y F, Le Roux R B, Matthews S M, Bratton D, Yunus K, Fisher A C, Huck W T S, The electrochemical detection of droplets in microfluidic devices, Lab Chip,2008,8(11):1937-1942.
    [119]Han Z Y, Li W T, Huang Y Y, Zheng B, Measuring rapid enzymatic kinetics by electrochemical method in droplet-based microfluidic devices with pneumatic valves, Anal. Chem.,2009,81(14):5840-5845.
    [120]Zhan Y H, Wang J, Bao N, Lu C, Electroporation of cells in microfluidic droplets, Anal. Chem.,2009,81(5):2027-2031.
    [121]Sassa F, Laghzali H, Fukuda J, Suzuki H, Coulometric detection of components in liquid plugs by microfabricated flow channel and electrode structures, Anal. Chem.,2010,82(20):8725-8732.
    [122]Wang F, Burns M A, Multiphase bioreaction microsystem with automated on-chip droplet operation, Lab Chip,2010,10(10):1308-1315.
    [123]Xiao K, Zhang M Y, Chen S Y, Wang L M, Chang D C, Wen W J, Electroporation of micro-droplet encapsulated HeLa cells in oil phase, Electrophoresis,2010,31(18):3175-3180.
    [124]Cahill B P, Land R, Nacke T, Min M, Beckmann D, Contactless sensing of the conductivity of aqueous droplets in segmented flow, Sens. Actuator B-Chem., 2011,159(1):286-293.
    [125]Moiseeva E V, Fletcher A A. Harnett C K, Thin-film electrode based droplet detection for microfluidic systems, Sens. Actuator B-Chem.,2011,155(1): 408-414.
    [1]Manz A, Graber N, Widmer H M, Miniaturized total chemical analysis systems:a novel concept for chemical sensing, Sens. Actuator B-Chem.,1990, 1(1-6):244-248.
    [2]Tokeshi M, Minagawa T, Kitamori T, Integration of a microextraction system on a glass chip:Ion-pair solvent extraction of Fe(II) with 4,7-diphenyl-1,10-phenanthrolinedisulfonic acid and tri-n-octylmethylammonium chloride, Anal. Chem.,2000,72(7):1711-1714.
    [3]Surmeian M, Slyadnev M N, Hisamoto H, Hibara A, Uchiyama K, Kitamori T, Three-layer flow membrane system on a microchip for investigation of molecular transport, Anal. Chem.,2002,74(9):2014-2020.
    [4]Minagawa T, Tokeshi M, Kitamori T, Integration of a wet analysis system on a glass chip:determination of Co(II) as 2-nitroso-1-naphthol chelates by solvent extraction and thermal lens microscopy, Lab Chip,2001,1(1):72-75.
    [5]Wang X Y, Saridara C, Mitra S, Microfluidic supported liquid membrane extraction, Anal. Chim. Acta,2005,543(1-2):92-98.
    [6]Alimuddin M, Grant D, Bulloch D, Lee N, Peacock M, Dahl R, Determination of log D via automated microfluidic liquid-liquid extraction, J. Med. Chem., 2008,51(16):5140-5142.
    [7]Aota A, Nonaka M, Hibara A, Kitamori T, Countercurrent laminar microflow for highly efficient solvent extraction, Angew. Chem. Int. Ed.,2007,46(6): 878-880.
    [8]Hisamoto H, Horiuchi T, Uchiyama K, Tokeshi M, Hibara A, Kitamori T, On-chip integration of sequential ion-sensing system based on intermittent reagent pumping and formation of two-layer flow, Anal. Chem.,2001,73(22): 5551-5556.
    [9]Tokeshi M, Minagawa T, Uchiyama K, Hibara A, Sato K, Hisamoto H, Kitamori T, Continuous-flow chemical processing on a microchip by combining microunit operations and a multiphase flow network, Anal. Chem., 2002,74(7):1565-1571.
    [10]Hibara A, Tokeshi M, Uchiyama K, Hisamoto H, Kitamori T, Integrated multilayer flow system on a microchip, Anal. Sci.,2001,17(1):89-93.
    [11]Chen H, Fang Q, Yin X F, Fang Z L, Microfluidic chip-based liquid-liquid extraction and preconcentration using a subnanoliter-droplet trapping technique, Lab Chip,2005,5(7):719-725.
    [12]Shen H, Fang Q, Fang Z L, A microfluidic chip based sequential injection system with trapped droplet liquid-liquid extraction and chemiluminescence detection, Lab Chip,2006,6(10):1387-1389.
    [13]Marine N A, Klein S A, Posner J D, Partition coefficient measurements in picoliter drops using a segmented flow microfluidic device, Anal. Chem.,2009, 81(4):1471-1476.
    [14]Kumemura M, Korenaga T, Quantitative extraction using flowing nano-liter droplet in microfluidic system, Anal. Chim. Acta,2006,558(1-2):75-79.
    [15]Wang W H, Zhang Z L, Xie Y N, Wang L, Yi S, Liu K, Liu J, Pang D W, Zhao X Z, Flow-focusing generation of monodisperse water droplets wrapped by ionic liquid on microfluidic chips:from plug to sphere, Langmuir,2007, 23(23):11924-11931.
    [16]Mary P, Studer V, Tabeling P, Microfluidic droplet-based liquid-liquid extraction, Anal. Chem.,2008,80(8):2680-2687.
    [17]Cunnane V J, Schiffrin D J, Beltran C, Geblewicz G, Solomon T, The role of phase transfer catalysis in two phase redox reactions, J. Electroanal. Chem., 1988,247(1-2):203-214.
    [18]Mendez M A, Partovi-Nia R, Hatay I, Su B, Ge P Y, Olaya A, Younan N, Hojeij M, Girault H H, Molecular electrocatalysis at soft interfaces, Phys. Chem. Chem. Phys.,2010,12(46):15163-15171.
    [19]Su B, Nia R P, Li F, Hojeij M, Prudent M, Corminboeuf C, Samec Z, Girault H H, H2O2 generation by decamethylferrocene at a liquid vertical bar liquid interface, Angew. Chem. Int. Ed.,2008,47(25):4675-4678.
    [20]Lee H J, Girault H H, Amperometric ion detector for ion chromatography, Anal. Chem.,1998,70(20):4280-4285.
    [21]Hill S S, Dryfe R A W, Roberts E P L, Fisher A C, Yunus K, Hydrodynamic study of ion transfer at the liquid/liquid interface:the channel flow cell, Anal. Chem.,2003,75(3):486-493.
    [22]Berduque A, Arrigan D W M, Selectivity in the coextraction of cation and anion by electrochemically modulated liquid-liquid extraction. Anal. Chem., 2006,78(8):2717-2725.
    [23]Berduque A, Sherburn A, Ghita M, Dryfe R A W, Arrigan D W M, Electrochemically modulated liquid-liquid extraction of ions, Anal. Chem., 2005,77(22):7310-7318.
    [24]Collins C J, Arrigan D W M, A review of recent advances in electrochemically modulated extraction methods, Anal. Bioanal. Chem.,2009,393(3):835-845.
    [25]Collins C J, Berduque A, Arrigan D W M, Electrochemically modulated liquid-liquid extraction of ionized drugs under physiological conditions, Anal. Chem.,2008,80(21):8102-8108.
    [26]Herzog G, Kam V, Berduque A, Arrigan D W M, Detection of food additives by voltammetry at the liquid-liquid interface, J. Agric. Food Chem.,2008, 56(12):4304-4310.
    [27]Berduque A, O'Brien J, Alderman J, Arrigan D W M, Microfluidic chip for electrochemically-modulated liquid vertical bar liquid extraction of ions, Electrochem. Commun.,2008,10(1):20-24.
    [28]Du W B, Sun M, Gu S Q, Zhu Y, Fang Q, Automated microfluidic screening assay platform based on droplab, Anal. Chem.,2010,82(23):9941-9947.
    [29]Su B, Abid J P, Fermin D J, Girault H H, Hoffmannova H, Krtil P, Samec Z, Reversible voltage-induced assembly of Au nanoparticles at liquid vertical bar liquid interfaces,J.Am. Chem. Soc.,2004,126(3):915-919.
    [30]Wandlowski T, Marecek V, Samec Z, Galvani potential scales for water-nitrobenzene and water-1,2-dichloroethane interfaces, Electrochim. Acta, 1990,35(7):1173-1175.
    [31]Sabela A, Marecek V, Samec Z, Fuoco R, Standard Gibbs energies of transfer of univalent ions from water to 1,2-dichloroethane, Electrochim. Acta,1992, 37(2):231-235.
    [32]Shao Y, Stewart A A, Girault H H, Determination of the half-wave potential of the species limiting the potential window. Measurement of gibbs transfer energies at the water/1,2-dichloroethane interface, J. Chem. Soc., Faraday Trans.,1991,87(16):2593-2597.
    [33]Ding Z F, Reymond F, Baumgartner P, Fermin D J, Brevet P F, Carrupt P A, Girault H H, Mechanism and dynamics of methyl and ethyl orange transfer across the water/1,2-dichloroethane interface, Electrochim. Acta,1998,44(1): 3-13.
    [34]Barikbin Z, Rahman M T, Parthiban P, Rane A S, Jain V, Duraiswamy S, Lee S H S, Khan S A, Ionic liquid-based compound droplet microfluidics for 'on-drop'separations and sensing, Lab Chip,2010,10(18):2458-2463.
    [35]Cheng D-H, Chen X-W, Shu Y, Wang J-H, Selective extraction/isolation of hemoglobin with ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate (BtmsimPF6), Talanta,2008,75(5):1270-1278.
    [1]Teh S Y, Lin R, Hung L H, Lee A P, Droplet microfluidics, Lab Chip,2008, 8(2):198-220.
    [2]Song H, Chen D L, Ismagilov R F, Reactions in droplets in microflulidic channels, Angew. Chem. Int. Ed.,2006,45(44):7336-7356.
    [3]Chabinyc M L, Chiu D T, McDonald J C, Stroock A D, Christian J F, Karger A M, Whitesides G M, An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications, Anal. Chem.,2001, 73(18):4491-4498.
    [4]Wang J, Electrochemical detection for microscale analytical systems:a review, Talanta,2002,56(2):223-231.
    [5]Han Z Y, Li W T, Huang Y Y, Zheng B, Measuring rapid enzymatic kinetics by electrochemical method in droplet-based microfluidic devices with pneumatic valves, Anal. Chem.,2009,81(14):5840-5845.
    [6]Luo C X, Yang X J, Fu O, Sun M H, Ouyang Q, Chen Y, Ji H, Picoliter-volume aqueous droplets in oil:Electrochemical detection and east electroporation, Electrophoresis,2006,27(10):1977-1983.
    [7]Zhan Y H, Wang J, Bao N, Lu C, Electroporation of cells in microfluidic droplets, Anal. Chem.,2009,81(5):2027-2031.
    [8]Lindsay S, Vazquez T, Egatz-Gomez A, Loyprasert S, Garcia A A, Wang J, Discrete microfluidics with electrochemical detection. Analyst,2007,132(5): 412-416.
    [9]Sassa F, Laghzali H, Fukuda J, Suzuki H, Coulometric detection of components in liquid plugs by microfabricated flow channel and electrode structures, Anal. Chem.,2010,82(20):8725-8732.
    [10]Han Z, Chang Y Y, Au S W N, Zheng B, Measuring rapid kinetics by a potentiometric method in droplet-based microfluidic devices, Chem. Commun., 2012,48(10):1601-1603.
    [11]Liu S J, Gu Y F, Le Roux R B, Matthews S M, Bratton D, Yunus K, Fisher A C, Huck W T S, The electrochemical detection of droplets in microfluidic devices, Lab Chip,2008,8(11):1937-1942.
    [12]Loget G, Kuhn A, Shaping and exploring the micro-and nanoworld using bipolar electrochemistry, Anal. Bioanal. Chem.,2011,400(6):1691-1704.
    [13]Mavre F. Anand R K, Laws D R, Chow K F, Chang B Y, Crooks J A, Crooks R M, Bipolar electrodes:A useful tool for concentration, separation, and detection of analytes in microelectrochemical systems, Anal. Chem.,2010, 82(21):8766-8774.
    [14]Chow K F, Chang B Y, Zaccheo B A, Mavre F, Crooks R M, A sensing platform based on electrodissolution of a Ag bipolar electrode, J. Am. Chem. Soc.,2010,132(27):9228-9229.
    [15]Arora A, Eijkel J C T, Morf W E, Manz A, A wireless electrochemiluminescence detector applied to direct and indirect detection for electrophoresis on a microfabricated glass device, Anal. Chem.,2001,73(14): 3282-3288.
    [16]Zhan W, Alvarez J, Crooks R M, Electrochemical sensing in microfluldic systems using electrogenerated chemiluminescence as a photonic reporter of redox reactions, J. Am. Chem. Soc.,2002,124(44):13265-13270.
    [17]Laws D R, Hlushkou D, Perdue R K, Tallarek U, Crooks R M, Bipolar electrode focusing:Simultaneous concentration enrichment and separation in a microfluidic channel containing a bipolar electrode, Anal. Chem.,2009,81(21): 8923-8929.
    [18]Sheridan E, Hlushkou D, Anand R K, Laws D R, Tallarek U, Crooks R M, Label-free electrochemical monitoring of concentration enrichment during bipolar electrode focusing, Anal. Chem.,2011,83(17):6746-6753.
    [19]Sheridan E, Hlushkou D, Knust K N, Tallarek U, Crooks R M, Enrichment of cations via bipolar electrode focusing, Anal. Chem.,2012,84(17):7393-7399.
    [20]Fosdick S E, Crooks R M, Bipolar electrodes for rapid screening of electrocatalysts, J. Am. Chem. Soc.,2012,134(2):863-866.
    [21]Wu M S, Qian G S, Xu J J, Chen H Y, Sensitive electrochemiluminescence detection of c-Myc mRNA in breast cancer cells on a wireless bipolar electrode, Anal. Chem.,2012,84(12):5407-5414.
    [22]Chang B Y, Chow K F, Crooks J A, Mavre F, Crooks R M, Two-channel microelectrochemical bipolar electrode sensor array, Analyst,2012,137(12): 2827-2833.
    [23]Wu M S, Xu B Y Shi H W, Xu J J, Chen H Y Electrochemiluminescence analysis of folate receptors on cell membrane with on-chip bipolar electrode, Lab Chip,2011,11(16):2720-2724.
    [24]Chow K F, Mavre F, Crooks R M, Wireless electrochemical DNA microarray sensor, J. Am. Chem. Soc.,2008,130(24):7544-7545.
    [25]Loget G, Kuhn A, Bipolar electrochemistry for cargo-lifting in fluid channels, Lab Chip,2012,12(11):1967-1971.
    [26]Sentic M, Loget G, Manojlovic D, Kuhn A, Sojic N, Light-emitting electrochemical "swimmers", Angew. Chem. Int. Ed.,2012,51(45): 11284-11288.
    [27]Suzuki M, Yasukawa T, Mase Y, Oyamatsu D, Shiku H, Matsue T, Dielectrophoretic micropatterning with microparticle monolayers covalently linked to glass surfaces, Langmuir,2004,20(25):11005-11011.
    [28]Duffy D C, McDonald J C, Schueller O J A, Whitesides G M, Rapid prototyping of microfluidic systems in poly(dimethylsiloxane), Anal. Chem., 1998,70(23):4974-4984.
    [29]Frens G, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nat. Phys. Sci.,1973,241(105):20-22.
    [30]Wang L, Wang E K, A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode, Electrochem. Commun.,2004,6(2):225-229.
    [31]Wang Y Qian W P, Tan Y, Ding S H, Zhang H Q, Direct electrochemistry and electroanalysis of hemoglobin adsorbed in self-assembled films of gold nanoshells, Talanta,2007,72(3):1134-1140.
    [32]He Y Q, Liu S P, Kong L, Liu Z F, A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering, Spectrochim. Acta Part A,2005,61(13-14): 2861-2866.
    [33]http://baike.baidu.com/view/123617.htm.
    [34]Yuan B Q, Du H W, You T Y, A novel tris(2,2 '-bipyridine)ruthenium(II)/tripropylamine cathodic electrochemiluminescence in acetonitrile for the indirect determination of hydrogen peroxide, Talanta, 2009,79(3):730-733.
    [35]Choi J P, Bard A J, Electrogenerated chemiluminescence (ECL) 79. Reductive-oxidation ECL of tris(2,2'-bipyridine)ruthenium(II) using hydrogen peroxide as a coreactant in pH 7.5 phosphate buffer solution, Anal. Chim. Acta, 2005,541(1-2):143-150.
    [36]Xiang C L, Zou Y J, Sun L X, Xu F, Direct electron transfer of horseradish peroxidase and its biosensor based on gold nanoparticles/chitosan/ITO modified electrode, Anal. Lett.,2008,41(12):2224-2236.
    [37]Wang J W, Wang L P, Di J W, Tu Y F, Electrodeposition of gold nanoparticles on indium/tin oxide electrode for fabrication of a disposable hydrogen peroxide biosensor, Talanta,2009,77(4):1454-1459.
    [1]Fahnrich K A, Pravda M, Guilbault G G, Recent applications of electrogenerated chemiluminescence in chemical analysis, Talanta,2001, 54(4):531-559.
    [2]Miao W J, Electrogenerated chemiluminescence and its biorelated applications, Chem. Rev.,2008,108(7):2506-2553.
    [3]Richter M M, Electrochemiluminescence (ECL), Chem. Rev.,2004,104(6): 3003-3036.
    [4]Hu L Z, Xu G B, Applications and trends in electrochemiluminescence, Chem. Soc. Rev.,2010,39(8):3275-3304.
    [5]Hercules D M, Chemiluminescence resulting from electrochemically generated species, Science,1964,145(363):808-809.
    [6]Visco R E, Chandross E A, Electroluminescence in solutions of aromatic hydrocarbons, J. Am. Chem. Soc.,1964,86(23):5350-5351.
    [7]Santhana.Ks, Bard A J, Chemiluminescence of electrogenerated 9,10-diphenylanthracene anion radical, J. Am. Chem. Soc.,1965,87(1): 139-140.
    [8]Rubinstein I, Bard A J, Electrogenerated chemiluminescence.37. Aqueous ECL systems based on ru(2,2'-bipyridine)32+ and oxalate or organic acids, J. Am. Chem. Soc.,1981,103(3):512-516.
    [9]Loget G, Kuhn A, Shaping and exploring the micro-and nanoworld using bipolar electrochemistry. Anal. Bioanal. Chem.,2011,400(6):1691-1704.
    [10]Mavre F, Anand R K, Laws D R, Chow K F, Chang B Y, Crooks J A, Crooks R M, Bipolar electrodes:A useful tool for concentration, separation, and detection of analytes in microelectrochemical systems, Anal. Chem.,2010, 82(21):8766-8774.
    [11]Arora A, Eijkel J C T, Morf W E, Manz A, A wireless electrochemiluminescence detector applied to direct and indirect detection for electrophoresis on a microfabricated glass device, Anal. Chem.,2001,73(14): 3282-3288.
    [12]Zhan W, Alvarez J, Crooks R M, Electrochemical sensing in microfluldic systems using electrogenerated chemiluminescence as a photonic reporter of redox reactions, J. Am. Chem. Soc.,2002,124(44):13265-13270.
    [13]Laws D R, Hlushkou D, Perdue R K, Tallarek U, Crooks R M, Bipolar electrode focusing:Simultaneous concentration enrichment and separation in a microfluidic channel containing a bipolar electrode, Anal. Chem.,2009,81(21): 8923-8929.
    [14]Dhopeshwarkar R, Hlushkou D, Nguyen M, Tallarek U, Crooks R M, Electrokinetics in microfluidic channels containing a floating electrode, J. Am. Chem. Soc.,2008,130(32):10480-10481.
    [15]Sheridan E, Hlushkou D, Knust K N, Tallarek U, Crooks R M, Enrichment of cations via bipolar electrode focusing, Anal. Chem.,2012,84(17):7393-7399.
    [16]Fosdick S E, Crooks R M, Bipolar electrodes for rapid screening of electrocatalysts, J. Am. Chem. Soc.,2012,134(2):863-866.
    [17]Wu M S, Xu B Y, Shi H W, Xu J J, Chen H Y, Electrochemiluminescence analysis of folate receptors on cell membrane with on-chip bipolar electrode, Lab Chip,2011,11(16):2720-2724.
    [18]Wu M S, Qian G S, Xu J J, Chen H Y, Sensitive electrochemiluminescence detection of c-Myc mRNA in breast cancer cells on a wireless bipolar electrode, Anal. Chem.,2012,84(12):5407-5414.
    [19]Chow K F, Mavre F, Crooks R M, Wireless electrochemical DNA microarray sensor,J.Am. Chem. Soc.,2008,130(24):7544-7545.
    [20]Loget G, Kuhn A, Bipolar electrochemistry for cargo-lifting in fluid channels, Lab Chip,2012,12(11):1967-1971.
    [21]Sentic M, Loget G, Manojlovic D, Kuhn A, Sojic N, Light-emitting electrochemical "swimmers", Angew. Chem. Int. Ed.,2012,51(45): 11284-11288.
    [22]http://wenku.baidu.com/view/d1b17c19c281e53a5802ffe0.html.
    [23]http://wenku.baidu.com/view/995b91fc910efl2d2af9e7d9.html.
    [24]Lee J N, Park C, Whitesides G M, Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices, Anal. Chem.,2003,75(23): 6544-6554.
    [25]Park H, Park J S, Shim Y B, Redox reaction of benzoquinone on a lipid coated glassy carbon electrode, J. Electroanal. Chem.,1997,438(1-2):113-119.
    [26]Salas M, Gomez M, Gonzalez F J, Gordillo B, Electrochemical reduction of 1,4-benzoquinone. Interaction with alkylated thymine and adenine nucleobases, J. Electroanal. Chem.,2003,543(1):73-81.
    [27]Monks T J, Hanzlik R P, Cohen G M, Ross D, Graham D G, Quinone chemistry and toxicity, Toxicol. Appl. Pharmacol.,1992,112(1):2-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700