三氯杀螨醇对泥鳅的生态毒性效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对食品安全的日益重视和食品国际贸易的增加,许多国家规定了水产品中杀虫剂残留限量,同时也更加关注渔业环境质量的保护和改善。三氯杀螨醇(dicofol, DCF)作为滴滴涕杀虫剂的替代品,自问世以来就受到了许多学者的极大关注。DCF尽管对啮齿动物的毒性较低,杀螨效果好,促进了农林作物的丰收,但越来越多的研究发现其在环境中残留时间长,对水生生物的毒性很强,对动物的潜在危害很大。
     利用生物化学指标预测污染物的危害或潜在影响,是当前国际环境研究的热点之一。谷胱甘肽转移酶(GST)和乙酰胆碱酯酶(AChE)等生物酶、卵黄蛋白原(Vtg)等雌性物质具有较好的生物指示作用,可在环境灾害暴发之前预警污染物的生态毒性效应。国内近年开展了DCF在一些环境介质中的含量调查,但极少像西方国家那样报道DCF对水生生物的毒性效应。
     泥鳅( Misgurnus anguillicaudatus )栖息在我国大部分地区的淡水及其沉积物中,是水环境质量重要指示鱼类之一,其肉质细嫩,营养丰富,味道鲜美。渔业环境和水产品中DCF的安全隐患越来越引起人们的疑虑和关注。因此,为探索沉积物中DCF对鱼类的生物化学效应,本研究选取泥鳅作为实验生物进行初步尝试。这对于阐明DCF在渔业生态系统内的迁移和转化规律,评价和预测DCF的生态危害具有重要的意义。
     本研究在实验室条件下,将泥鳅在DCF剂量分别为0(对照)、5、10、20、40 mg·kg~(-1)的人工沉积物中分别暴露24 h、48 h和96 h,然后测定其血清中Vtg浓度、GST活性和AChE活性,以及肌肉、皮、肝、肠和鳃等5种组织中DCF的残留量,此外通过实验建立了沉积物中DCF的气相色谱测定方法。主要实验结果如下:
     (1)在经DCF暴露后的泥鳅血清中,GST活性、Vtg浓度均高于空白对照,AChE活性低于空白对照;GST活性随DCF剂量加大而显著增强(相关系数r = 0.998~0.999,相关显著性p<0.01),AChE活性随DCF剂量加大而较显著地下降(r = - 0.906 ~ - 0.946, p<0.10);Vtg浓度与DCF暴露剂量正相关,暴露24 h、48 h和96 h的相关性分别为r =0.825(p < 0.10)、r =0.719(p > 0.10)和r =0.885(p < 0.10)。这表明DCF可诱导泥鳅血清的GST活性,抑制其AChE活性,并程度不同地增高雄性泥鳅的雌激素水平。
     (2)泥鳅组织中DCF的残留量大体随暴露时间的延长、DCF剂量的增大而增多,肝脏中DCF的残留量与作用剂量显著正相关(r = 0.976~0.994,p < 0.01),皮和肠中DCF的残留量与作用剂量较显著地正相关(r = 0.888~0.985,p < 0.05或p < 0.01);鳃和肌肉中DCF残留量与作用剂量的关系为实验24 h和48 h较显著或显著地正相关(r = 0.953 ~0.993,p < 0.05或p<0.01),实验96 h虽仍呈正相关但显著性降低(r = 0.566~0.831,p > 0.05或p >0.10)。
     (3)泥鳅5种组织对DCF的吸收能力:暴露24 h的吸收能力为肠>肝>皮>鳃>肌肉,暴露48 h的吸收能力为肠>皮>肝>鳃>肌肉,5 mg·kg~(-1)剂量下吸收能力为肠>皮>鳃>肝≈肌肉,10 mg·kg~(-1)剂量下为鳃>肠>皮>肌肉>肝,20 mg·kg~(-1)剂量下为肠>皮>鳃>肝>肌肉;暴露96 h或40 mg·kg~(-1)剂量下吸收能力均为肠>鳃>皮>肝>肌肉。DCF残留总体上表现为肠中较高,肌肉中较少,皮、鳃和肝中受DCF剂量和暴露时间的影响较大。
     (4)经DCF暴露后泥鳅可食用组织(皮和肌肉)中DCF残留量大多程度不同地超过欧盟、日本、加拿大、国际食品法典委员会关于畜禽肉中DCF的残留限量(0.05 mg·kg~(-1)~ 3 mg·kg~(-1)),远远超过日本对水产品中DCF的“一律限量”(0.01 mg·kg~(-1))。
     (5)沉积物试样中DCF的定量检出限为3μg·kg~(-1),3~50μg·kg~(-1)加标水平的回收率在80.8%~99.5%之间,平行双样测定的相对标准偏差为5.4%~7.2%。本方法的灵敏度、准确性、再现性、可操作性均可满足沉积物中痕量DCF的测定。
With the increasing of emphasis on food security and international trade in food, maximum residual limits of pesticides in aquatic products have been enforced in many countries. More attention was paid to improve and enhance the quality of fishery environment. As an alternative pesticide of DDT, dicofol (DCF) has been concerned by a lot of scholars since its initial production. DCF has low toxic to rodents, and can efficiently control acarid, and useful in promoting the harvest of agricultural crops. However, more and more reports suggested that DCF can exist in environment for a long time, it is hypertoxic to aquatic organisms and harmful to animals.
     The research on biochemical indexes which indicate the potential harm of pollutants was high lighted. Vitellogenin (Vtg), Glutathione S-transferase (GST) and Acetylcholinesterase (AChE) etc. are useful bio-indicators for predicting eco-toxicity of pollutants. Information on DCF concentrations in various environmental media was very limited. The bio-chemical effects of DCF on aqutic organisms were seldom reported in China compared with that in western countries.
     Loach (Misgurnus anguillicaudatus) is widely distributed in fresh water and sediment in China. It played an important role in the monitoring of water environment. Loach’s meat is delicate, eutrophy and delicious. Potential safety hazard of DCF in fishery environment and aquatic product have been doubted and worried by more and more people. Therefore, loach is selected as an experimental organism for preliminary study of the bio-chemical effects of DCF in sediment on fish. This experiment aimed to elucidate the moving and transformation of DCF in fishery environment, and to provide useful information for evaluating and forecasting the potential harm of DCF.
     This study was carried out in laboratory, loach samples were exposed to 0, 5, 10, 20 and 40 mg·kg~(-1) DCF,respectively, exposure time in each dosage last for 24 h, 48 h and 96 h respectively. Activities of GST and AChE, and Vtg concentration in the blood serum were examined, at the end of the experiment, DCF residue in the muscle, skin, liver, intestine and gill were determined. In addition, an analysis method for DCF residue in sediments by gas chromatography was developed.
     The results were as following:
     (1) The GST activities and Vtg concentrations in the blood serum of experimental loach were higher and AChE activities were lower than that of control, respectively. The GST activities were significantly increased with increasing DCF concentration (r=0.998~0.999, p<0.01). On the other hand, the AChE activities were significantly decreased (r= - 0.906~ - 0.946, p<0.10). A positive correlation between Vtg concentration and DCF level was observed. The correlation coefficient with significant level were 0.825 with p<0.10, 0.719 with p>0.10, 0.885 with p<0.10 for 24 h, 48 h and 96 h, respectively. These results indicated that the GST activity and estrogenic level of male loach could be increased by, but the AChE activity in blood serum could be decreased by DCF.
     (2) Generally, DCF residuals in the loach tissues increased with exposure time and DCF dosage. There was significantly positive correlation between DCF residuals in liver and DCF dosage (r= 0.976~0.994, p<0.01); Also, a positive correlation between DCF residuals in skin or intestine and DCF dosage was observed (r=0.888~0.985, p<0.05 and p<0.01, respectively). There was positive correlation between DCF residual in gills or muscle and DCF dosage was existed after 24 h or 48 h exposure (r = 0.953 ~0.993, p<0.05 or p< 0.01), but indistinctively positive for 96 h exposure (r= 0.566~0.831, p> 0.05 or p>0.10).
     (3) The absorption capacity for DCF was in the following order: intestine>liver>skin>gill>muscle after 24 h exposure, and intestine>skin>liver>gill> muscle after 48 h exposure, and intestine>skin>gill>liver≈muscle under the concentration of 5 mg·kg~(-1) DCF, gill > intestine > skin > muscle > liver under the concentration of 10 mg·kg~(-1) DCF, intestine>skin> gill > liver >muscle under the concentration of 20 mg·kg~(-1) DCF, and intestine> gill > skin > liver >muscle after 96 h exposure or under the concentration of 40 mg·kg~(-1) DCF. DCF levels were highest in intestine and lowest in muscle. The DCF levels in gill, skin and liver were affected by DCF concentration or exposure time.
     (4) After exposure to DCF, the DCF residuals in eatable tissues (skin and muscle) were higher than the limits for meat product prescribed in European Union, Japan, Canada and CAC (Codex Alimentarius Commission) which was 0.05 mg·kg~(-1)~3 mg·kg~(-1), and higher than the limit in Japan, which is 0.01 mg·kg~(-1) .
     (5) The detection limit of DCF in sediment sample is 3μg·kg~(-1).The recovery of this analysis method range from 80.8% to 99.5%, and the relative standard deviation (S.D.) of the two parallel samples is 5.4%~7.2%, when 3~50μg·kg~(-1) DCF was supplemented. The result suggested that this method is available to detect trace DCF in sediment sample, due to its relative high sensitivity, accuracy, repeatability and maneuverability.
引文
[1]华小梅,单正军.我国农药生产、使用状况及其影响因子分析[J].环境科学进展. 1996, 4(2): 32~45.
    [2] Grisolia C K. A comparison between mouse and fish micronucleus test using cyclophosphamide, mitomycin C and various pesticides [J]. Mutation Research, 2002. 518(2): 145~150.
    [3]傅群,黄珂,甘居利.环境激素与水产品质量安全[J].南方水产2005, 1(4): 64~68.
    [4]梁刚,唐超智.三氯杀螨醇的雌激素效应及其机制的研究进展[J].四川环境, 2004, 23(5): 54~56, 71.
    [5] Domagalski J. Occurrence of dicofol in the San Joaquin River, California [J]. Bullet. Environ. Contam. Toxicol., 1996, 57(3): 284~291.
    [6] Qiu X H, Zhu T, Yao B, et al. Contribution of dicofol to the current DDT pollution in China [J]. Environmental Science & Technology. 2005, 39(12): 4385~4390.
    [7] Safe S. Clinical correlation of environmental endocrine disruptors [J]. Trends Endocrinol. Metabol., 2005, 16(2): 139~144.
    [8] Lerche D, Plassche E. Selecting chemical substances for the UN-ECE POP protocol[J]. Chemosphere. 2002, 47(6): 617~630.
    [9] Okubo T, Yokoyama Y, Kano K, et al. Estimation of estrogenic and antiestrogenic activities of selected pesticides by MCF-7 cell proliferation assay[J]. Arch. Environ. Contam. Toxicol, 2004, 46(4): 445~453.
    [10] Hoekstra P F, Burnison B K, Garrison A W, et al. Estrogenic activity of dicofol with the human estrogen receptor: Isomer and enantiomer-specific implications[J]. Chemosphere, 2006, 64(1): 174~177.
    [11] Yang X L,Wang S S,Bian Y R,et al. Dicofol application resulted in high DDTs residue in cotton fields from northern Jiangsu province, China [J]. Journal of Hazardous Materials, 2008, 150(1): 92~98.
    [12]肖义夫,甘源,赵舰.气相色谱法同时测定食品中六六六、滴滴涕和三氯杀螨醇残留量[J].现代预防医学, 2006. 9(33): 1630~1635.
    [13]邢兆伍,刘存玉,毕立国.三氯杀螨醇提纯工艺[J].农药, 2006,5(10): 672~674.
    [14]楼东,谷树忠.中国渔业资源与产业的空间分布格局及演化[J].中国农业资源与区划, 2005, 1(26): 27~31.
    [15]陈经涛,田安祥,李克斌,等.我国含氯农药污染现状研究进展[J].延安大学学报(自然科学版), 2007, 3(26): 55~60.
    [16]王斌捷,高超.长江三角洲地区环境中的持久性有机污染物[J].江西科学, 2007, 1(25): 112~118.
    [17]谭亚军,李少南,孙利.农药对水生生态环境的影响[J].农药,2003,12(42):l2~l4.
    [18]林涛.饮用水水源有机污染研究综述[J].环境保护科学,2005,31(12):35~37.
    [19]张英武,易军,弓振斌.福建产区茶叶中农药残留现状及对策[J].泉州师范学院学报:自然科学版, 2004, 3(22): 78~82.
    [20]王长芳,胡进锋,王俊,等.柑桔园中胜红蓟对三氯杀螨醇的富集[J].农业环境科学学报, 2007, 26(6): 2334~2337.
    [21] Xue N D, Xu X B and Jin Z L. Screening 31 endocrine-disrupting pesticides in water and surface sediment samples from Beijing Guanting reservoir [J]. Chemosphere, 2005, 61(11): 1594~1606.
    [22] Tao S,Li B G,He X C,et al. Spatial and temporal variations and possible sources of dichlorodiphenyltrichloroethane (DDT) and its metabolites in rivers in Tianjin, China[J]. Chemosphere, 2007, 68 (1): 10~16.
    [23]刘存玉.三氯杀螨醇精制方法研究[J].精细石油化工进展, 2006, 7(7) : 32~36.
    [24] Cal A, Eljarrate E, Raldua D, et al. Spatial variation of DDT and its metabolites in fish and sediment from Cinca River, a tributary of Ebro River (Spain)[J]. Chemosphere, 2008, 70(7): 1182~1189.
    [25] Zhang H B, Luo Y M, Teng Y, et al. DDT residual in the typical soil types of Pearl River Delta region and its potential risk [J]. Soils, 2006, 38(5): 547~551
    [26] Zhou J L, Maskaoui K, Qiu Y W, et al. Polychlorinated biphenyl congeners and organochlorine insecticides in the water column and sediments of Daya Bay, China[J]. Environmental Pollution, 2001, 113(3): 373~384.
    [27] Lou X J, Mai B X, Yang Q S, et al. Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River Delta in South China [J]. Marine Pollution Bulletin, 2004, 48(11):1102~1115.
    [28]刘国卿,张干,李军,等.珠江口及南海北部近海海域大气有机氯农药分布特征与来源[J].环境科学, 2008,29(12):3320~3325.
    [29]史雅娟,王昕,吕永龙,等. DDT和三氯杀螨醇对蚯蚓的急性和亚急性毒性影响[J].环境科学学报,2006, 26(5):851~857.
    [30]唐超智,胡素霞,王坤英.三氯杀螨醇对中华蟾蜍的急性毒性[J].河南师范大学学报:自然科学版, 2007, 35(1): 210~212.
    [31]中国食品安全资源数据库[EB/OL]. (2009-11-18). http://www.fsr.org.cn/Search.asp?rp=pe2.
    [32]刘永梅,陈伟,李敦海,刘永定.三氯杀螨醇对大型蚤的毒性和环境雌激素效应[J].水生生物学报, 2004, 3(28): 330~332.
    [33]姚胜,席贻龙,赵兰兰,杨冬青.三氯杀螨醇浓度和食物密度对萼花臂尾轮虫种群增长的影响[J].生态学杂志, 2008, 27(4): 578~582.
    [34]胡启之. OECD新发布急性经口毒性试验方法简介[J].毒理学杂志, 2005, 19(4): 323~325.
    [35] Guillette L J,Gross T S,Masson G R,et al. Developmental abnormalities of the gonad and abnormal sex hormone concentrations in Juvenile alligators from contaminated and control lakes in Florida[J].Environ. Health Perspect, 1994,102(8): 680~688.
    [36]赵炳顺,邹继超,储少岗,等.小鼠子宫增重法检测国产三氯杀螨醇的雌激素生物活性[J].环境科学学报, 2000, 20(6): 244~247.
    [37] Jadaramkunti U C, Kaliwal B B. Dicofol formulation induced toxicity on testes and accessory reproductive organism albino rats[J]. Environmental contamination toxicology. 2002, 69(7): 741~748.
    [38] Maclellan K N,Bird D M, Shutt L J et al.Behavior of captive american kestrels hatched from o,p'-dicofol exposed females. Archives of Environmental Contamination and Toxicology[J]. 1997, 32(4): 411~415.
    [39] Bennett J K, Dominguez S E, Griffis W L. Effects of dicofol on mallard eggshell quality[J]. Arch. Environ. Contam. Toxicol. 1990, 19(8): 907~912.
    [40] Remi T, Cintas P. Effects of endocrine disrupters on sex steroid synthesis and metabolism pathways in fish. Journal of Steroid Biochemistry & Molecular Biology[J]. 2004, 92: 485~494.
    [41]唐超智,张文学,梁刚.三氯杀螨醇对雌性中华蟾蜍的生殖毒性[J].河南师范大学学报:自然科学版, 2009, 39 (1): 161~163.
    [42] Vanguard A M, Breinbolt V, Larsen J C. Screening of selected pesticides foroestrogen rcceptor activation in vitro [J]. Food Addit Contam. 1999, 16(12): 533~ 542.
    [43] National Cancer Institute,National Institutes of Health.Bioassay of dicofol for possible carcinogenicity [M].Washington D C: DHEW Publication, 1978, 90~96.
    [44]戴宗智,祝寿芬,张毓武,等.三氯杀螨醇的致畸性和致突变性研究[J].中华医学预防杂志, 1987, 21(4): 238~239.
    [45] Linley D W,Burroughs J,Hudson L et al.Role of environmental pollutants on immune functions,parasitic infections and limb malformations in marine toads and whistling frogs from Bermuda[J].Int J Environ. Health Res, 2003,13(2): 125~148.
    [46]梁刚,赵彩红.三氯杀螨醇对中华蟾蜍成体外周血红细胞的影响[J].西北农林科技大学学报, 2006, 34(6):25~30.
    [47] Lancas F M, Sa O R, Rissato S R, et al. GC-ECD Evaluation of dicofol toxicity to tropical Astyanax bimaculatus [J]. Schubarti.Chromatographia, 1996, 43(11/12): 663~667.
    [48] Denise M S, Buff K, Clausen E, et al. Bioaccumulation and enhanced persistence of the acaricide dicofol by Azospirillum lipoferum[J]. Chemosphere, 1996, 33(8): 1609~1619.
    [49] Schwarzbach S E, Michael F D, Rosson B E. Metabolism and storage of p,p' -Dicofol in American kestrels (Falco sparverius) with comparisons to Ring Neck Doves (Streptopelia risoria) [J]. Arch. Environ. Contam. Toxicol., 1991, 20(2): 206~210.
    [50] Schwarzbach S E. The role of dicofol metabolites in eggshell thinning response of Ring Neck doves[J]. Arch Environ. Contam. Toxicol. 1991, 20(2): 200~205.
    [51]刘志荣.“生物积累”等三个术语概念的探讨[J].中国科技术语, 2007(3): 52~53.
    [52]李天云,黄圣彪,孙凡,等.河蚬对太湖梅梁湾沉积物中HCHs和DDTs的生物富集[J].环境工程学报, 2008, 2(8): 1009~1016.
    [53] Milnes M R,Allen D,Bryan T A,et a1.Developmental effects of embryonic exposure to toxaphene in the American alligator ( Alligator mississippiensis ) [J].Comparative Biochemistry an d Physiology, Part C, 2004, 138: 81~87.
    [54]陈家长,孟顺龙,胡庚东,等.鲫鱼对除草剂阿特拉津的生物富集效应研究[J].农业环境科学学报, 2009, 28(6): 1313~1318.
    [55] Yelena Sapozhnikova,Ola Bawardi,Daniel Schlenk.Pesticides and PCBs in sediments and fish from the Sadon Sea, California,USA[J].Chemosphere,2004,55(6): 797~809.
    [56]王敏建,朗佩珍,龙凤山等.第二松花江中游鱼类有机污染的研究[J].中国环境科学, 1990, 10(2): 81~88.
    [57] Sardar M A J, Yusuf S A K, Saifur R.Levels of organ oehlorine pesticide residues in some organs of the ganges perch, lates ealearifer from the Ganges- Brahlnaputra-Meghna Estuary, Bangladesh[J].Marine Pollution Bulletin, 2001, 42(12): 1291~1296.
    [58] Franke C. How meaningful is the bioconcentration factor for risk assessment [J].Chemosphere, 1996, 32(10): 1897~1905.
    [59] Jacomini A E, Avelar W E P, Martinez A S, et a1. Bioaccumulation of a-trazine in freshwater bivalves Anodontites trapesialis (Lamarek, 1819) and Corbicula fluminea ( Mtiller,1774)[J].Arch Environ Contain Toxicol, 2006, 51: 387~391.
    [60]秦伟超,郭英娜,徐可进.水生生物(藻、水丝蚓、鱼)对硝基苯的富集与释放研究[J].东北师大学报(自然科学版), 2009, 41(1): 112~116.
    [61] Eljarrat E, Dela C A, Raldua D, et al . Occurrence and bioavailability of polybrominated diphenyl ethers and hexabromocyclododecane in sediment and fish from the Cinca River, a tributary of the Ebro River ( Spain ) [J].Environmental Science& Technology, 2004, 38(9): 2603~2608.
    [62] Eljarrat E, Dclacal A, Raidua D, et al. Brominated flame retardants in Alburnus alburnus from Cinca River Basin ( Spain ) [J].Environmental Pollution, 2005, 133(3): 501~508.
    [63] Hale R C, La Guardia M J, Harvey E P, et al. Polybrominated diphenyl ether flame retardants in Virginia freshwater fishes (USA) [J].Environmental Science & Technology,2001, 35(23): 4585~4591.
    [64] Manchester N J B, Valters K, Sonzogni W C.Comparison of polybrominated diphenyl ethers ( PBDEs ) and polychlorinated biphenyls ( PCBs ) in Lake Michigan salmonids [J].Environmental Science& Technology, 2001, 35(6): 1072~1077.
    [65] Kajiwara N,Kamikawa S,Anlano M,et al. Polybrominated diphenyl ethers ( PBDEs ) and organochlorines in melon-headed whales,Peponocephalaelectra,mass stranded along the Japanese coasts:Maternal transfer and temporal trend[J].Environmental Pollution, 2008, 156(1): 106~112.
    [66] Nyholm J R,Norman A,Norrgren L,Haglund P,Andersson P L. Matemal transferof bromi nated flame mtardants in zebrafish ( Danio rerio ) [J]. Chemosphere, 2008, 73(2): 203~208.
    [67] Buckman A H, Brown S B, Small J, et al.Role of temperature and enzyme induction in the biotransformation of polychlorinated biphenyls and bioformation of hydroxylated polychlorinated biphenyls by rainbow trout ( Oncorhynchus mykiss ) [J].Environmental Science& Technology,2007, 41(11):3856~3863.
    [68] Lancas F M, Sa O R, Rissato S R, et al. GC-ECD Evaluation of dicofol toxicity to tropical Astyanax bimaculatus Schubarti[J]. Chromatographia, 1996, 43(11/12): 663~667.
    [69]冯长君,沐来龙,杨伟华等.有机污染物的生物富集因子与拓扑指数的数学模型[J].物理化学学报, 2008, 24(6): 1053~1057.
    [70]屠豫钦.关于农药与环境问题的反思[J].农药科学与管理, 2001, 22(3): 32~36.
    [71] Czaja K,Jan K.Relationship between two consecutive lactations and fat level in persistent organochlorine compound concentrations in human breast milk[J]. Chenaosphere,2001, 43(4-7): 889~893.
    [72]张世义,伍玉明.水环境质量的常见指示鱼类[J].生物学通报, 2005, 40(4): 25~27.
    [73] Shao J,Shi G Q,Song M Y,et a1.Development and validation of an enzyme-linked immunosorbent assay for vitellogenin in Chinese loach ( Misgumus angailieaudatus ) [J].Environ. Inter.2005, 31: 763~770.
    [74]陈洁文,柯常亮,甘居利(通讯作者).气相色谱法测定水产品中三氯杀螨醇残留量.农业环境科学学报, 2009, 28(2): 416~419.
    [75]赵道辉,林国斌,林昇清.气相色谱法测定食品中三氯杀螨醇残留量的研究[J].中国食品卫生杂志, 2003, 15(3): 205~207.
    [76] George S G. Enzymology and molecular biology of phase:Ⅱ. Xenobiotic - conjugating enzymes in fish // Malins D C, Ostrander G K. Aquatic Toxicology; Molecular, Biochemical and Cellular Perspectives[C]. Washington D C: Lewis Publishers, CRC Press, 1994: 37~85.
    [77] Kathleen A M. The functions and regulation of gluta2thione s - transferases in plants [J]. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1996, (47) : 127 ~158.
    [78] Altuntas I, Delibas N, Doguc D K, et al. Roleof reactive oxygen species in organophosphate insecticide phosalone toxicity in erythrocytes in vitro[J]. Toxicology in Vitro, 2003, 17 :153~157.
    [79]吴伟,陈家长,冷春梅,等.溴氰菊酯对罗非鱼谷胱甘肽及S转移酶的影响[J].中国环境科学, 2006, 26(4): 474~477.
    [80]瞿建宏,陈家长,胡庚东,等.苯酚胁迫下罗非鱼组织中过氧化氢酶与谷胱甘肽-S-转移酶的动态变化[J].生态环境, 2006, 15(4): 687~692.
    [81]穆景利,王新红,林建清,等.苯并[a]芘对黑鲷肝脏GST活性的影响及其与肝脏代谢酶和胆汁代谢产物之间的变化关系[J].生态毒理学报, 2009, 4(4): 516~523.
    [82] Collier T K, Varanasi U. Hepatic activities of xenobiotic metabolizing enzymes and biliary levels of xenobiotics in English sole ( Parophrys vetulus) exposed to environmental contaminants[J]. Arch. Environ. Contam. Toxicol., 1991, 20: 462~473.
    [83] James M O, Heard C S, Hawkins W E. Effects of 3 -methylcholanthrene on monooxygenase, epoxide hydrolase and glutathione S-transferase activity in small estuarine and freshwater fish[J]. Aquat. Toxicol., 1988, 12: 1~15.
    [84]田志环,申保忠.废旧干电池污染液对泥鳅谷胱甘肽转移酶活性的影响[J].滨州学院学报, 2007, 23(3): 47~50.
    [85]张辰佳,王兰,王茜.3种酚类化合物对多刺裸腹溞GST和AChE活性的影响[J].生态毒理学报, 2009, 4(2): 258~264.
    [86]聂芳红,孔庆波,刘连平,等.两种二噁英类化合物对斑马鱼肝脏MDA、SOD和GST的影响[J].食品与生物技术学报, 2009, 28(2): 210~213.
    [87]郭晶,高菊芳,唐振华.乙酰胆碱酯酶的动力学机制及其应用[J].农药, 2007, 46(1): 18~28.
    [88] Jemec A, Drobne D, Tisler T, et al.The applicability of acetylcholinesterase and glutathione S-transferase in Daphnia magna toxicity test[J]. Comparative Biochemistry and Physiology. Toxicology Pharmacology, 2007, 144(4): 303~309.
    [89]张彬彬.乙草胺对泥鳅肝脏乙酰胆碱酯酶和谷胱甘肽硫转移酶的影响[J].淡水渔业, 2008, 38(4): 73~75.
    [90]赵兵,刘征涛,徐章法等.E2诱导的鲫鱼( Carassius auratus)幼鱼血清中卵黄蛋白原和钙含量相关性研究[J].环境科学研究, 2006, 19(2): 23~26, 30.
    [91] Utarabhand P, Bunlipatanon P. Plasma vitellogenin of grouper (Epinephelus malabaricus): isolation and properties[J]. Comp Bioehem Physiol, 1996, 115(2): 101~10
    [92] Nath P, Sahu R, Kabita S, et al.Vitellogenesis with special emphasis on Indian fishes[J]. Fish Physiology and Biochemistry, 2007, 33(4):359~366
    [93] Panter G H, Hutchinson T H, L?nge R, et al. Utility of a juvenile fathead minnow screening assay for detecting (anti) estrogenic substances[J]. Environ. Toxicol. Chem.,2002, 21 :319~326.
    [94] Zhong X P , Xu Y, Liang Y, et al. The Chinese rare minnow as an in vivo model for endocrine disruption in freshwater teleosts : a full life - cycle test with diethylstilbestrol [J]. Aquat. Toxicol ., 2005, 71 : 85~95.
    [95]赵岩,时国庆,孙春宝等.双酚A对泥鳅卵黄蛋白原的诱导[J].科学技术与工程, 2007, 7(9): 2156~2159.
    [96]徐亮,刘月雪,包维楷.生物体内有机氯农药的研究进展[J].四川环境, 2003, 22(5): 15~19.
    [97]李娟,甘居利.渔业环境三氯杀螨醇的污染与危害[J].南方水产, 2010, 6(3):68~73.
    [98]李天云,黄圣彪,孙凡,等.河蚬对太湖梅梁湾沉积物多环芳烃的生物富集[J].环境科学学报, 2008, 28(11):2354~2360.
    [99]陈洁文,柯常亮,甘居利.三氯杀螨醇对草鱼和南美白对虾的急性毒性[J].水生生物学报, 2010,34(4):877~879
    [100]刘锋章.农药对自然环境和人类社会的负面影响及危害[J].山东环境, 1998, (4): 70~71.
    [101]王子健,黄圣彪,马梅,等.水体中溶解性有机物对多氯联苯在淮河水体沉积物上的吸附和生物富集作用的影响[J].环境科学学报, 2005, 25(1):39~44.
    [102]孟祥周,余莉萍,郭英,等.滴滴涕类农药在广东省鱼类中的残留及人体暴露水平初步评价[J].生态毒理学报, 2006, 1(2): 116~122.
    [103]梁丹涛,严文杰,杨明丽.δ-六六六在斑马鱼体内的生物富集情况研究[J].上海环境科学, 2008, 27(2): 82~85, 89.
    [104] Dela C A. Spatial variation of DDT and its metabolites in fish and sediment from Cinca River, a tributary of Ebro River (Spain) [J]. Chemosphere, 2007, 08(36): 1~8.
    [105]孙媛媛,于红霞,沈骅,等. 2-硝基-4-羟基二苯胺(HC Orange No.1)在鲫鱼肝脏中的富集及其对肝脏抗氧化指标的影响[J].农业环境科学学报, 2005, 24(1): 26~30.
    [106] Pedlar R M, Klaverkamp J F. Accumulation and distribution of dietary arsenic in lake whitefish (Coregonus clupeaformis) [J]. Aquatic Toxicology, 2002, 57(3): 153~166.
    [107]中国标准出版社第一编辑室.茶叶标准汇编(第二版)[G].北京:中国标准出版社, 2005: 300~420.
    [108]郭少忠.日本《肯定列表制度》和中国对鳗鱼的药残基准比较分析[J].水产科技, 2008, (5): 16~23.
    [109] http://blog.china.alibaba.com/blog/fairreach/article/b-i6040014.html. quote time: 2009-06-25.
    [110]张百臻.欧盟几种农药的废止日期[J].农药科学与管理, 2009, 32(2): 12.
    [111]中华人民共和国化工行业标准HG 3699-2002.三氯杀螨醇原药[S].
    [112] Wiemeyer S N, Clark J R, Donald R, et a1. Dicofol residues in eggs and carcasses of captive American kestrel[J]. Environmental Toxicology and Chemistry, 200l, 20(12):2848~2851.
    [113]中华人民共和国国家标准GB/T5009.176—2003.茶叶、水果、食用植物油中三氯杀螨醇残留量的测定[S].
    [114]中华人民共和国水产行业标准SC/T 3040-2008.水产品中三氯杀螨醇残留量的测定-气相色谱法[S].
    [115]陈明,耿志明,王冉.蜂蜜中三氯杀螨醇残留量的检验方法[J].中国养蜂, 2005, 56(3): 7~8.
    [116]中华人民共和国国家标准GB/T 14550-2003.土壤中六六六和滴滴涕测定的气相色谱法[S].
    [117]陈卫明,邓天龙,张勤,等.土壤中有机氯农药的分析技术研究进展[J].岩矿测试, 2009, 28(2): 151~156.
    [118]丁曦宁.微波萃取土壤中有机氯农药条件优化研究[J].广东农业科技, 2009, 8: 216~217.
    [120]蒙冰君,刘煜,王文涛,等.提取土壤中23种有机氯农药:微波法与索氏法对比[J].环境化学, 2007, 26( 6): 854~856.
    [121]郎印海,蒋新,赵振华,等.土壤中13种有机氯农药超声波提取方法研究[J].环境科学学报, 2004, 24(2): 291~296.
    [122] Richter P, Sepúlveda B, Oliva R, et al. Screening and determination of pesticides in soil using continuous subcritical water extraction and gas chromatography- mass spectrometry [J]. J Chromatogr: A, 2003, 994(1 /2): 169~177.
    [123]奚旦立,刘裕生,刘秀英.环境监测[M].北京:高等教育出版社, 2004.
    [124]杨曼君.农药残留分析中的提取新技术[J].农药科学与管理, 2000, 21(1):13~15
    [125]胡冠九.色谱法测定固体样品中有机污染物中有机污染物的前处理方法[R].南京:江苏省环境监测中心, 2005.
    [126]郭凡乔.绿色食品基地环境质量与评价[D].北京:中国农业大学, 1994
    [127]苏建峰,陈晶,陈劲星,等.气相色谱一质谱法检测鳗鱼中三氯杀螨醇残留量[J].色谱, 2010, 28(1):84~88.
    [128]杨伟球,蒋宝南,姚剑亭.气相色谱法测定土壤中六六六残留的两种方法研究[J].现代农业科技, 2006, (11): 71~72.
    [129]谢湘云,沈爱斯,叶江雷,等.固相萃取小柱净化-气相色谱法测定土壤和沉积物中有机氯和拟除虫菊酯农药残留[J].环境化学, 2006, 25(3): 347~350.
    [130]许桂苹,欧小辉,梁柳玲,等.加速溶剂萃取-固相萃取及铜粉净化技术在土壤有机氯农药分析中的应用[J].环境科学学报, 2010, 30(11): 2250~2255.
    [131]陈伟琪,张路平.沉积物(土壤)中有机氯农药和多氯联苯的测定[J].福建环境, 1995, 12(3): 30~32
    [132]王玲玲,王潇磊,南淑清,等. ASE提取土壤中有机氯农药的方法研究[J].中国环境监测,2006, 22(5):19~22
    [133]汪雨,张玲金.常压微波技术萃取土壤中有机氯农药[J].岩矿测试, 2006, 25(1): 15~18.
    [134]宋春满,方敦煌,邓云龙,等.土壤中17种有机氯农药残留量的毛细管气相色谱测定法[J].分析试验室, 2007, 26(6): 41~43.
    [135]封棣,阎正,赵亚奎,等.固相萃取-毛细管气相色谱法测定中草药及其土壤中多种有机氯农药残留量[J].分析试验室, 2005, 24(10): 8~12.
    [136]高芸,朱晓兰,林辉,等.加速溶剂萃取-气相色谱法测定土壤中有机氯农药残留[J].安徽农业科学, 2006, 34(8): 1625~1626.
    [137]郭非凡,史雅娟,孟凡乔.气相色谱法测定土壤中BHCs和DDTs的残留[J].环境化学, 2005, 24(1): 94~96.
    [138]陈天文.超声波提取-气相色谱法测定土壤中有机氯农药残留[J].福建分析测试, 2008, 17(2): 15~17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700