生物质生产的生命周期模拟和优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生物质能研究和应用的不断深入,如何有效地管理和分析不断增加的生物能生产涉及的各种数据,评价其各个方面的影响,已经成为一个重要的课题。然而,我国目前还没有能够对特定区域内多个工厂的供应链进行全面评价的模型或系统。本文提出一个基于地理信息系统(GIS)的决策支持系统(DSS)来辅助生物质生产的决策。主要工作简述如下:
     1.描述了系统各个组成部分的结构、功能和在相互间的关系。系统从国家和地方两个层次上,采用生命周期的理论和方法,对生物质生产的经济性、环境和社会影响进行分析。系统包括四个主要的数据库:地理信息系统数据库、生物质原料数据库、后勤数据库和转化数据库。在数据库的基础上,系统通过定义单元过程对生物质生产供应链上的各个不同阶段进行了模拟和分析。
     2.利用地理信息系统提供的林业废弃物、道路交通网络和电网的分布数据,确定每个城市的收集点个数和分布,应用聚类分析的方法确定存储点和发电厂的位置和规模,从而优化了运输距离,减少由此导致的成本和排放。在聚类分析的结果上,进一步分析了各个阶段的成本、CO_2排放和需要的工人数。同时,系统分析了不同参数对于评价指标的影响程度和可能的改进措施。
     3.将环境影响评价模型和优化算法相结合,对我国燃料乙醇的生产和使用中的能量消耗和有害物质的排放设计了优化变量、目标函数和约束条件并用优化算法进行求解。优化的结果可以从环境影响的方面,对实际的乙醇生产过程提出建议。
With the research and exploitation of the bioenergy deepening, the problem of how to handle and analyze the growing data efficiently, and estimate its impacts on all aspects, has become an important issue. However, in our country, there is no model or system that can evaluate the supply chain of several plants in the special region at present. For that purpose, a Decision Support System (DSS) based on Geographical Information System (GIS) is built to help bioenergy decision making. The contents are as following:
     1. The structure, function and relationship of the components of the DSS are described in the paper. The system evaluates the economical, environmental and social influence of the bioenergy project using the theory and method of Life Cycle. It includes four main databases, i.e. the GIS database, the biomass material database, the logistic database and the conversion database. Then the Unit Processes are defined to simulate and analyze each stage in the supply chain.
     2. Using the data of the forest biomass, road net and electrical net provided by the GIS, the numbers and the positions of collection points in each city are known. Then the position and capacity of each plant are decided by clustering analysis. In this method, the transportation distance is optimized. Based on the results of the clustering, the costs, emissions and numbers of labor of each stage on the supply chain are calculated. Besides, system evaluates the impacts of different parameters, and then provides the possible improving means.
     3. For the energy use and regulated emissions in the fuel ethanol production and combustion process, the optimization variables, objective functions and restrict conditions are designed and then solved utilizing optimization algorithm. The results can give suggestions for the real fuel ethanol production process.
引文
[1] 徐华清.中国能源环境发展报告.北京:中国环境科学出版社,2006.
    [2] 姚向君,田宜水.生物质能资源清洁转化利用技术.北京:化学工业出版社,2005.
    [3] 马隆龙,吴创之,孙立.生物质气化技术及其应用.北京:化学工业出版社,2003.
    [4] 王伟,赵黛青,杨浩林等.生物质气化发电系统的生命周期分析和评价方法探讨.太阳能学报.2005,26(6):752:759.
    [5] 高洪深.决策支持系统(DSS).北京:清华大学出版社,2000.
    [6] 李书涛.决策支持系统原理与技术.北京:北京理工大学出版社,1996.
    [7] Mitchell C P, Hudson JB. Wood fuel supply strategies, Harwell, UK: ETSU, 1990.
    [8] Storry PG, Mitchell CP, Hudson JB. Harvesting Decision Support Systems. In: Aldhous JR. Wood for Energy: The implications for harvesting, utilization and marketing. Edinburgh: Institute of Chartered Foresters, 1991: 112-122.
    [9] Mitchell C P. New cultural treatments and yield optimization. Biomass and Bioenergy 1995,9: 11-34.
    [10] Mitchell C P, Keeping D J, Ramsay F J. CHDSS - Coppice harvesting decision support system. UK: University of Aberdeen, 1998.
    [11] Mitchell C P, Watters M P. BITES and integrated biomass to electricity model. In; Chartier Ph. Proceedings of the 8th European Biomass Conference: Biomass for energy, environment, agriculture, and industry. Oxford: Pergamon, 1995: 1023-1028.
    [12] Mitchell C P, Bridgwater A Y. Techno economic assessment of biomass to energy. Biomass and Bioenergy 1995, 9: 205-226.
    [13] Mitchell C P, Bridgwater A V. Techno economic assessment of biomass to energy - the BEAM report. Aberdeen University Forestry Research Paper. Oxford: Pergamon 1996.
    [14] Toft A J, Bridgwater A V, Mitchell C P. An evaluation of the performance of integrated bionergy systems. Proceedings 2nd Biomass Conference of the Americas: Energy, environment, agriculture and industry. Golden, CO: National Renewable Energy Laboratory, 1995: 1524-1533.
    [15] Bridgwater T, Toft A J, Mitchell C P, et al. The Bioenergy Assessment Model (BEAM). IEA Bioenergy, Integrated Bioenergy Systems, 1998: 152.
    [16] Bridgwater A V, Double J M. Economics of liquid fuels from biomass. Fuel. 1991,70: 1209-1224.
    [17] Bridgwater A V, Cottam M L. Costs and opportunities for biomass pyrolysis liquids production and upgrading. Grassi G. Proceedings of the 6th EC Conference on Biomass for Energy, Industry and the Environment. Oxford: Elsevier, 1992: 679-692.
    [18] 李建松.地理信息系统原理.武汉:武汉大学出版社,2006.
    [19] Noon C E. Daly M J. GIS-based resource assessment with BRAVO. Biomass and Bioenergy. 1996,10:101-109.
    [20] Voivontas D, Assimacopoulos D, Koukios E G. Assessment of biomass potential for power production: a GIS based method. Biomass and Bioenergy. 2001,43: 101-112.
    [21] 李书涛.决策支持系统原理与技术.北京:北京理工大学出版社,1996.
    [22] 黄杏元,马劲松,汤勤.地理信息系统概论.北京:高等教育出版社,2001.
    [23] Naka Y, Hirao M, Shimizu Y. Technological information infrastructure for product life cycle engineering. Proc. of 7th International Symposium on Process Systems Engineering. Keystone, Colorado, USA, 2000:665-670.
    [24] 杨建新,徐成,王如松.产品生命周期方法及应用.北京:气象出版社,2002.
    [25] Changdong Sheng, Azevedo J L T. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass and Bioenergy. 2005,28:499-507.
    [26] 袁振宏,吴创之,马隆龙等.生物质能利用原理与技术.北京:化学工业出版社,2004.
    [27] 钟珞,潘吴,封筠等.模式识别.武汉:武汉大学出版社,2006.
    [28] Margareta Wihersaari. Evaluation of greenhouse gas emission risks from storage of wood residue. Biomass and Bioenergy. 2005,28:444-453.
    [29] Antonio C. Caputo, Mario Palumbo, Pacifico M. Pelagagge. Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables. Biomass and gioenergy. 2005,28:35-51.
    [30] Margareta Wihersaari. Greenhouse gas emission s from final harvest fuel chip production in Finland. Biomass and Bioenergy. 2005,28:435-443.
    [31] Hondo H. Life cycle GHG emission analysis of power generation systems: Japanese case. Energy. 2005,30:2042-2056.
    [32] 孙振钧.中国生物质产业及发展取向.农业工程学报.2004,20(5):1-5.
    [33] 方芳,于随然,王成焘.中国玉米燃料乙醇项目经济性评估.农业工程学报.2004,20(3):239-242.
    [34] 浦耿强,胡志远,王成焘.木薯乙醇汽油混合燃料生命周期排放多目标优化研究.环境科学.2004,25(5):37-42.
    [35] 胡志远,浦耿强,王成焘.木薯乙醇汽油混合燃料生命周期能源消耗多目标优化研究.内燃机学报.2004,22(4):351-356.
    [36] 戴杜,刘荣厚,浦耿强等.中国生物质燃料乙醇项目能量生产效率评估.农业工程学报.2005,2l(11):121-123.
    [37] 黄洁,林雄,李开锦等.木薯施肥效应研究.广西热作科技,2000,(3):1-3.
    [38] Wang M Q. GREET1.5-transportation fuel-cycle model volume 1: methodogy, development, use, and results, http://www.transportation.anl.gov/software/GREET/,1999.
    [39] Wang M Q. GREET1.5-transportation fuel-cycle model volume 2: appendices of data and results.http://www.transportation.anl.gov/software/GREET/,1999.
    [40] 中国电力年鉴编委会.中国电力年鉴(2001).北京:中国电力出版社,2001:12-14.
    [41] 国家统计局.中国统计年鉴(2001).北京:中国统计出版社,2001:140-150.
    [42] 张治山.玉米燃料乙醇生命周期系统的热力学分析:(博士学位论文).天津:天津大学,2005.
    [43] 胡志远,戴杜,浦耿强.木薯燃料乙醇生命周期能源效率评价.上海交通大学学报.2004,38(10):1715-1718.
    [44] 郭飞.一类求解线性约束非线性规划问题的可行方向法.应用数学与计算数学学报.1997,11(1):19-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700