多孔介质中CO_2与油(水)两相渗流的MRI研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温室气体减排和能源的稳定供给是当今世界经济发展所面临的两个重大问题。开展CO2地质埋存与提高石油采收率的基础研究具有重要的理论和现实意义。
     本研究应用MRI技术分别得到了填砂、人造岩心和天然岩心等多孔介质试样的孔隙结构分布图像,并实现了量化分析,测量的岩心平均孔隙度结果与常规方法基本吻合,在“孔群级”尺度上清楚地观察到岩心内部的孔隙变化和非均质性特征,应用统计学方法,对不同截面上测量的孔隙度分布进行分析与表征。
     当多孔介质中油峰和水峰的谱线可以明显分开时,利用化学位移选择自旋回波成像法来实现多孔介质中油、水两相流体饱和度的定量分析是可行的。
     亲水天然储层砂岩岩心自发逆向渗析过程中,靠毛细管力作用的不平衡性,小孔隙吸水,大孔隙排油。渗析过程达到平衡后,剩余油主要被圈闭在大孔隙中,低孔隙区采收率比高孔隙区高。
     对地质埋存过程的C02在含水多孔介质内的两次运移过程研究发现,CO2从填砂底部注入后,由于浮力作用,窜流现象非常明显,CO2沿渗透性较高的某些孔隙通道迅速向上突破窜流,一旦窜流通道形成后,后续C02将一直沿着该通道窜流,波及范围很小。从填砂顶部注入C02,窜流现象减弱,驱替前缘分布不规律,波及范围较大。驱替前缘在整个填充管内基本保持匀速推进。
     利用MRI技术实现了对多孔介质内CO2驱油过程中的各相流体赋存位置变化、粘性指进、重力超覆和窜流现象,以及C02前缘及混相区的形成、发展及运移过程的动态可视化监测;并可通过MRI信号对驱替过程中各相流体的饱和度进行量化分析;可以确定驱替过程中各相流体的饱和度分布和采收率,与常规方法结果误差在10%以内。经过分析含油饱和度曲线的规律,可以确定驱替前缘的推进速度,应用岩心分析方法对MRI获得的多孔介质内“原位”饱和度数据进行分析,得到了多孔介质内各相流体的局部达西相速度,并对驱替过程中毛细管力、粘度及重力的影响进行了评估。
     超临界CO2混相驱的最终采收率比气态CO2非混相驱显著提高。束缚水的存在对驱替过程中饱和度变化规律影响不大。采收率除了受润湿性和孔隙度影响,还受到填充模型的孔隙结构及孔隙分布的均匀性的影响。对于中等偏亲油岩心的宏观均质人造岩心,水驱后注入超临界CO2混相驱,可进一步提高采收率。储层宏观平面非均质性和垂直裂缝的存在会导致CO2混相驱采收率下降较大,但驱替结束后,除裂缝外,残余油分布较均匀,说明CO2扫油波及范围较均匀,受岩心结构非均质性影响不大。
Greenhouse gases emission reduction and energy demand are the two significant issues for the world economy development. Thus, research on the CO2 geological sequestration and enhancing oil recovery is of great theoretical and realistic significance.
     In this study, quantitative analysis had been realized using MRI technique to obtain the pore structure distribution images of sand pack, artificial core and natural core, respectively. The measurement results of average core porosity based on MRI method agreed well with The measurement results based on the conventional material balance method. The porosity distributions and heterogeneity of those cores were observed clearly in the level of "pore group". The observed porosities at different section were analyzed and characterized quantitatively with the statistics method.
     It can quantitatively analyze the saturation of oil and water using chemical shift selective spin echo imaging sequence if the peaks of oil and water in porous media can be obviously distinguished.
     The water was imbibed through small pores and low permeability layer, at the same time, the oil was expelled through large pores and high permeability layer due to the effect of capillary forces during the spontaneous counter-current imbibition process in the water-wet natural reservoir sandstone core. When the imbibition process approaches the equilibrium, the residual oil is mainly trapped in large pores, while the recovery is higher in the small pores area than in the large pore area.
     Two CO2 migration processes in porous media saturated with water were visualized using the MRI technique. CO2 injection from the bottom caused obvious CO2 channeling along some high permeability parts of the core caused by buoyancy. Once the channeling formed, the CO2 followed along the channels and have no impact on the residual water. When the CO2 was injected from the upper side, the phenomenon of CO2 channeling weakened, but the CO2 front profile was irregular. The velocity of the CO2 front was uniform and the distribution curve of the water saturation in the FOV was regular.
     During CO2 flooding process, the phenomenon, such as onset of viscous fingering, gravity override, CO2 channelling, and the formation, progress and migration of the piston-like miscible regions and CO2 front can be visually detected using MRI technique.In addition, The measurement results of oil saturation based on MRI method were agreed well with the results based on conventional material balance method, the error rate for the MRI method was less than 10%, Through the analysis of the oil saturation profile, the velocity of the CO2 front has been evaluated. A special core analysis method was applied to in situ oil saturation data to directly evaluate the local Darcy phase velocity of the fluids, and the effect of viscosity, buoyancy, and capillary pressure on CO2 miscible displacement.
     CO2 miscible displacement enhance oil recovery evidently more than CO2 immiscible displacement. The irreducible water can scarcely change the oil saturation curves. Recovery rate can be determined by wettability, porosity, structure of the sand pack and the homogeneousness of the pore distribution. For the slightly oil-wet homogeneous artificial core plug, CO2 miscible displacement can enhance oil recovery after the water flooding. The heterogeneous of the reservoir and the vertically oriented fracture have a great influence on the oil recovery seriously in three stacked core plugs. Lower permeability causes lower recovery rate. When the displacement finishes, the residual oil spatial distribution is homogeneous in every piece of core.
引文
[1]Houghton J T, Ding Y, Griggs D J, et al. Climate Change 2001:The scientific basis contribution of working group I to the third assessment report of the intergovernmental panel on climate change[C].2001c. Cambridge University Press,2001.
    [2]Watson R T, Zinyowera M C, Moss R H. Technologies, policies, and measures for mitigating climate change[C]. IPCC Technical Paper I.1996b.
    [3]Metz B, et al. Climate Change 2001:Mitigation, the third assessment report of the intergovernmental panel on climate change[C].2001a. Cambridge University Press,2001.
    [4]Paul G. Wind Power:Renewable energy for home, farm, & business. USA. Chelsea Green Publishing Co[M],2004.
    [5]Goldemberg J, Johansson T B. United nations development programmer. World Energy Assessment, Overview:2004 Update[R]. United Nations,2004.
    [6]Metz B, et al. Climate Change 2001:Mitigation, The third assessment report of the intergovernmental panel on climate change[C].2001b. Cambridge University Press,2001.
    [7]Marchetti C. On geo-engineering and the CO2 problem [J]. Climate Change,1977,1:59-68.
    [8]Cole K H, Stegen G R, Spencer D. The capacity of the deep oceans to absorb carbon dioxide[J]. Spencer, Energy Conversion and Management,1993,34 (9-11):991-998.
    [9]Koide H, Tazaki Y, Noguchi Y, et al. Subterranean containment and long-term storage of carbon dioxide in unused aquifers and in depleted natural gas reservoirs[J]. Energy Conversion and Management,1992,33(5-8):619-626.
    [10]Blunt M, Fayers F J, Orr Jr F M. Carbon dioxide in enhanced oil recovery [J]. Energy Conversion and Management,1993,34(9-11):1197-1204.
    [11]Korbol R, Kaddour A. Sleipner vest CO2 disposal-injection of removed CO2 into the Utsira formation[J]. Energy Conversion and Management,1995,36(3-9):509-512.
    [12]Baklid A, Korbol R, Owren G. Sleipner vst C02 disposal:C02 injection into a shallow underground aquifer[C].1996 SPE Annual Technical Conference, Denver, Colorado, USA, SPE paper 36600,1996:1-9.
    [13]Gunter W D, Gentzis T, Rottengusser B. A, et al. Deep coalbed methane in Alberta, Canada: a fuel resource with the potential of zero greenhouse gas emissions[J]. Energy Conversion and Management,1997,38(Suppl):S217-222.
    [14]Stevens S H, Gale J. Geologic C02 sequestration [J]. Oil and Gas Journal,2000,15:40-44.
    [15]Gale J, Christensen N P, Cutler A, et al. Demonstrating the ptential for gological sorage of CO2,the Sleipner and GESTCO Projects[J]. Environmental Geosciences,2001, 8 (3):160-165.
    [16]Seifritz W. C02 disposal by means of silicates[J]. Nature,1990,345(6275):486.
    [17]Dunsmore H E. A geological perspective on global warming and the possibility of carbon dioxide removal as calcium carbonate mineral[J]. Energy Conversion and Management,1992, 33(5-8):565-572.
    [18]ArestaM. Carbon dioxide as a source of carbon; biochemical and chemical use[M]. Kluwer, the Hague:D. Reidel Publishing Company,1987.
    [19]Steinberg, M. The Carnol process for CO2 mitigation from power plants and the transportation sector[J]. Energy Conversion and Management,1996,37(6-8):843-848.
    [20]Seifritz W. The terrestrial storage of CO2-ice as a means to mitigate the greenhouse effect[C]. Hydrogen Energy Progress IX, California, USA,1992:59-68.
    [21]Uchida T, Hondo T, Mae S, et al. Physical data of CO2 hydrate[R]. In Direct Ocean Disposal of Carbon Dioxide. Terrapub,1995:45-61.
    [22]Moberg R, Stewart D B, Stachniak D. The iea weyburn CO2 monitoring and storage project [C]. Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Kyoto, Japan,2003:219-224.
    [23]Moritis, G. C02 sequestration adds new dimension to oil, gas production [J]. Oil and Gas Journal,2003,101(9):71-83.
    [24]Riddiford F A, Tourqui A, Bishop C D, et al. A cleaner development:The in salah gas project, Algeria[C]. Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Kyoto, Japan,2003:601-606.
    [25]Torp T A, Gale J. Demonstrating storage of CO2 in geological reservoirs:the Sleipner and SACS projects[C]. Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Kyoto, Japan,2003:311-316.
    [26]Moberg R, Stewart D B, Stachniak D. The IEA weyburn C02 monitoring and storage project [C]. Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Kyoto, Japan,2003,219-224.
    [27]Wilson M, Monea M. IEA GHG Weyburn Monitoring and Storage Project, Summary Report, 2000-2004[R]. Petroleum Technology Research Center, Regina SK, Canada. In:Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies,2005.
    [28]Yamaguchi S. Ohga K, Fujioka M, et al. Prospect of CO2 sequestration in Ishikari coal mine, Japan[C]. Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, Canada,2005,1:423-430.
    [29]Edward S R. IPCC Special Report on carbon dioxide capture and storage[R]. Tokyo, Japan: RITE International Workshop,2006.
    [30]韩培慧,姜言里,张景存.大庆油田二氧化碳驱油最小混合相压力预测[J].油田化学,1989,4:309-316.
    [31]Moritis G. Enhanced oil recovery[J]. Oil and Gas Journal,2002,100(15):43-47.
    [32]Krooss B M, van Bergen F, Gensterblum Y, et al. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals[J]. International Journal of Coal Geology,2002,51 (2):69-92.
    [33]Vinegar H J. X-ray CT and NMR imaging of rocks[J]. Journal of Petroleum Technology, 1986,38(3):257-259.
    [34]Wellington S L, Vinegar H J. CT studies of surfactant induced CO2 mobility control [C]. Paper SPE 14393. SPE Annual Technical Conference and Exhibition, Las Vegas, Nevada,1985.
    [35]Wellington S L, Vinegar H J. X-ray computerized tomography[J]. Journal of Petroleum Technology,1987,39(8):885-898.
    [36]肖立志.核磁共振成像测井与岩石核磁共振及其应用[M].北京:科学出版社,1998.
    [37]Coates G R, Xiao L Z, Prammer M G. NMR logging principles and applications[M]. Texas: Gulf Publishing Company,1999.
    [38]王为民.核磁共振成像在多孔介质中的应用方法研究[D].廊坊:中国科学院渗流流体力学研究所,1995.
    [39]Purcell E M, Torrey H C, Pound R V. Resonance absorption by nuclear magnetic moments in a solid[J]. Physical Review,1946,69(1-2):37-38.
    [40]Bloch F. Nuclear induction[J]. Physical Review,1946,70(7-8):460-474.
    [41]Brown R J S, Fatt I. Measurements of fractional wettability of oil fields rocks by the nuclear magnetic relaxation method [C]. SPE 743-G in fall Meeting of the Petroleum Branch of AIME, Los Angeles, California,1956.
    [42]Seevers, D.0. A nuclear magnetic method for determining the permeability of sandstones[C]. SPWLA 7th Annual Logging Symposium, Society of Petrophysicists & Well Log Analysts,1966.
    [43]Timur A. An investigation of permeability, porosity, and residual water saturation relationship for sandstone reservoir[J]. The Log Analyst,1968,9(4):8-17.
    [44]Lauterbur P. C. Image formation by induced local interactions:examples employing nuclear magnetic resonance[J]. Nature,1973,242(5394):190-191.
    [45]Brownstein K R, Tarr C E. Importance of classical diffusion in NMR studies of water in biological cells[J]. Physical Review A,1979,19(6):2446-2453.
    [46]Gummerson R J, Hall C, Hoff W D, et al. Unsaturated water flow within porous materials observed by NMR imaging[J]. Nature,1979,281(5726):56-57.
    [47]Rothwell W P, Vinegar H J. Petrophysical applications of NMR imaging [j]. Applied Optics, 1985,24(23):3969-3976.
    [48]Blackband S, Mansfield P, Barnes J R, et al. Discrimination of crude oil and water in sand and in bore cores with NMR imaging [J]. SPE Formation Evaluation,1986,1(1):31-34.
    [49]Baldwin, B. A. Detecting fluid movement and isolation in reservoir cores using medical NMR imaging techniques[R]. SPE/DOE 14884, presented at the 5th Symposium on Enhanced Oil Recovery, Tulsa:SPE/DOE,1986.
    [50]Chen S, Kim K H, Qin F, et al. Quantitative NMR imaging of multiphase flow in porous media[J]. Magnetic Resonance Imaging,1992,10(5):815-826.
    [51]Merrill M R. Porosity measurements in natural porous rocks using magnetic resonance imaging[J]. Applied Magnetic Resonance,1993,5(3-4):307-321.
    [52]Borgia G C, Bortolotti V, Dattilo P, et al. Quantitative determination of porosity: a local assessment by NMR imaging techniques[J]. Magnetic Resonance Imaging,1996, 14(7-8):919-921.
    [53]Shanthi S. Mandava, A. Watson T, et al. NMR imaging of saturation during immiscible displacements[J]. AIChE Journal,1990,36(11):1680-1686.
    [54]Williams J. L. A, Taylor D G. Measurements of viscosity and permeability of two phase miscible fluid flow in rock cores [J]. Magnetic Resonance Imaging,1994,12(2):317-318.
    [55]Pearl Z, Magaritz M, Bendel P. Measuring diffusion coefficients of solutes in porous media by NMR imaging[J]. Journal of Magnetic Resonance,1991,95 (3):597-602.
    [56]Robinson M A, Edelstein W A. Fluid velocities in oil cores during water injections [C]. SCA Annual Technical Conference, San Antonio,1991:Paper Number 9113.
    [57]Robinson M A. Measurement of fluid velocities during water injection into natural porous rocks[C]. SPE Rocky Mountain Regional Meeting, Casper, Wyoming,1992:Paper Number 24369.
    [58]Robinson M A, Jin Z. Velocity measurements in natural porous rocks[J]. Magnetic Resonance Imaging,1994,12(2):345-348.
    [59]Chang C T P, Watson A T. NMR imaging of flow velocity in porous media [J], AIChE Journal. 1999,45 (3):437-440.
    [60]Guilfoyle D N, Mansfield P, Packer K J. Fluid flow measurements in porous media by echo-planar imaging[J]. Journal of Magnetic Resonance,1992,97(2):342-358.
    [61]Baumann T, Petsch R, Niessner R. Direct 3-D measurement of the flow velocity in porous media using magnetic resonance tomography[J]. Environmental Science & Technology,2000, 34 (19):4242-4248.
    [62]Baumann T, Petsch R, Fesl G, et al. Flow and diffusion measurements in natural porous media using magnetic resonance imaging[J]. Journal of Environmental Quality,2002,31(2): 470-476.
    [63]Hall L D, Rajanavagam V, Thin-Slice. Chemical-shift imaging of oil and water in sandstone rock at 80 MHz[J]. Journal of Magnetic Resonance,1987,74(1):139-146.
    [64]Edelstein W A, Vinegar H J, Tutunjan P N, et al. NMR imaging for core analysis[C]. SPE 18272. Annual Technical Conference and Exhibition, Houston, Texas,2-5 October,1988.
    [65]Dechter J J, Komoroski R A, Ramaprasad S. NMR chemical shift selective imaging of individual fluids in sandstone and dolomite cores[C]. Science Clubs of America Conference, USA,1989:paper number 8903.
    [66]Hall L D, Rajanavagam V, Hall C. Chemical-shift imaging of water and n-dodecane in sedimentary rocks[J]. Journal of Magnetic Resonance,1986,68(1):185-188.
    [67]Ford J J. Gradient-amplitude phase-encoded spectral (GRAPES) imaging. A novel approach to spin-echo chemical-shift imaging[J]. Journal of Magnetic Resonance,1990, 87(2):346-351.
    [68]Lodes C C, Felmlee J P, Ehman R L, et al. Proton MR chemical shift imaging using double and triple phase contrast acquisition methods [J]. Journal of Computer Assisted Tomography, 1989,13(5):855-861.
    [69]Majors P D, Smith J L, Kovarik F S, et al. NMR spectroscopic imaging of oil displacement in dolomite[J]. Journal of Magnetic Resonance,1990,89(3):470-478.
    [70]Horsf ield M, Hall C, Hall L D. Two-species chemical-shift imaging using prior knowledge and estimation theory. Application to rock cores[J]. Journal of Magnetic Resonance,1990, 87(2):319-330.
    [71]Patz S, Stromski M E, Hrovat M, et al. Application of single species chemical shift imaging to sandstone cores[J]. Magnetic Resonance Imaging,1991,9(5):797-802.
    [72]Straley C, Rossini D, Schwartz L M, et al. Particle filtration in sandstone cores: Application of a chemical shift imaging technique[C]. Chicago:SCA Conference Paper Number 9217,1992.
    [73]Chang C T, Edwards C M. Proton MR two-component chemical shift imaging of fluids in porous media[J]. The Log Analyst,1993,34(6):20-28.
    [74]Straley C, Rossini D, Schwartz L M, et al. Chemical shift imaging of particle filtration in sandstone cores[J]. Magnetic Resonance Imaging.1994,12(2):313-315.
    [75]Davies S, Hardwick A, Roberts D, et al. Quantification of oil and water in preserved reservoir rock by NMR spectroscopy and imaging[J]. Magnetic Resonance Imaging.1994, 12(2):349-353.
    [76]Williams J A, Maddinelli G, Taylor D G. Selective magnetic resonance imaging of chemicals in sandstone cores during flow[J]. Journal of Magnetic Resonance,1994,109 (1):124-128.
    [77]Williams J L, Taylor D G, Maddinelli G, et al. Visualization of fluid displacement in rock cores by NMR imaging[J]. Magnetic Resonance Imaging 1991,9(5):767-773.
    [78]Chen J D, Dias M M, Patz S, et al. Schwartz, Magnetic resonance imaging of immiscible fluid displacement in porous media[J]. Physical Review Letters,1988,61(13):1489-1492.
    [79]Bourbiaux B J, Kalaydjian F J. Experimental study of concurrent and countercurrent flows in natural porous media [J]. SPE Reservoir Engineering,1990,361-368.
    [80]Perez J M, Poston SW, Barrufet MA. Studies of carbonated water imbibition using MR I [C]. The Society of Core Analysts, SCA/SPWLA Joint Annual Conference, Oklahoma City, Oklahoma, 14-17 June,1992.
    [81]Baldwin B A, Spinler E A. In situ saturation development during spontaneous imbibition[J]. Journal of Petroleum Science and Engineering,2002,35(1-2):23-32.
    [82]Majors P, Li P, Peters E. NMR Imaging of Immiscible Displacements in Porous Media. SPE Formation Evaluation[J],1997,12(3):164-169.
    [83]Horng R T. The use of NMR to conduct a microscopic investigation of NAPL entrapment in porous media[M]. Massachusetts Institute of Technology.1997.
    [84]Barrufet M A, Perez J M, Modara S S, et al. MRI studies of permeability control using biopolymers[C]. SPE 24809 presented at SPE Annual Technical Conference and Exhibition,4-7 October, Washington, D. C.1992.
    [85]Hazlett R D, Gleeson J W, Laali H, et al. NMR imaging application to carbon dioxide miscible flooding in west texas carbonates[C]. SCA 9311 in annual technical conference proceedings:Society of Professional Well Log Analysts, Society of Core Analysts Chapter-at-Large,1993.
    [86]Hazlett R D, Furr M J, Navarro R. A correlation for miscible flood displacement efficiency in the San Andres with NMR relaxation [J]. SPE Advanced Technology Series,1994, 2 (2):185-189.
    [87]彭石林,刘崇汉,杨丽敏.岩石核磁共振实验测量及分析[J].江汉石油科技,1999,9(1):12-19.
    [88]Ferno M A, Ersland G, Haugen A, et al. Impacts from fractures on oil recovery mechanisms in carbonate rocks at oil-wet and water-wet conditions-Visualizing fluid flow across fractures with MRI[C]. the International Oil Conference and Exhibition, Veracruz, Mexico, 2007.
    [89]Ferno M A. Visualizing fluid flow with MRI in oil-wet fractured carbonate rock[C]. the International Symposium of the Society of Core Analysts held in Calgary, Canada, 2007-12.
    [90]Aspenes E. Wettability effects on oil recovery mechanisms in fractured chalk[D]. Norway: University of Bergen,2007.
    [91]Haugen A. Fluid Flow in Fractured Carbonates:Wettability effects and enhanced oil recovery[D]. Norway:University of Bergen,2010.
    [92]Brautaset A, Ersland G, Graue A, et al. Using MRI to study in situ oil recovery during C02 injection in carbonates[C]. SCA2008-41, the International Symposium of the Society of Core Analysts, Abu Dhabi, the United Arab Emirates(UAE),2008,41.
    [93]Brautaset A. In situ fluid dynamics and CO2 injection in porous rocks[D]. Norway: University of Bergen,2009.
    [94]Graue A, Kvamme B, Baldwin B A, et al. Magnetic resonance imaging of methane-carbon dioxide hydrate reactions in sandstone pores[C]. Society of Petroleum Engineers Annual Technical Conference and Exhibition,2006,24-27.
    [95]Graue A, Kvamme B, Baldwin B A, et al. MRI visualization of spontaneous methane production from hydrates in sandstone core plugs when exposed to CO2[C]. Society of Petroleum Engineers Journal,2008,13(2):146-152.
    [96]Birkedal K A. Hydrate formation and CH4 production from natural gas hydrates-emphasis on boundary conditions and production methods[D]. Bergen:University of Bergen,2009.
    [97]Baldwin B A, Stevens J, Howard J, et al. Using magnetic resonance imaging to monitor CH4 hydrate formation and spontaneous conversion of CH4 hydrate to CO2 hydrate in porous media[J]. Magnetic Resonance Imaging,2009,27(5):720-726.
    [98]Erslanda G, Huseboa J, Grauea A, et al. Measuring gas hydrate formation and exchange with C02 in Bentheim sandstone using MRI tomography [J]. Chemical Engineering Journal,2010, 158(1):25-31.
    [99]Ogawa K, Matsuka T, Hirai S, et al. Three-dimensional velocity measurement of complex interstitial flows through water-saturated porous media by the tagging method in the MRI technique[J]. Measurement Science and Technology,2001,12(2):172-180.
    [100]Okamoto I, Hirai S, Ogawa K. MRI velocity measurements of water flow in porous media containing a stagnant immiscible liquid[J]. Measurement Science and Technology,2001,12(9), 1465-1472.
    [101]Suekane T, Ishii T, Tsushima S, et al. Characteristics of an immiscible flow of supercritical CO2 and water in porous media under sequestration conditions[C]. In 7th International Conference on Greenhouse Gas Control Technologies,2004,11(1):1231-1236.
    [102]Suekane T, Ishii T, Tsushima S, et al. Magnetic resonance imaging of in-situ saturation in porous media for CO2 geologic sequestration[C].7th International Conference on Magnetic Resonance in Porous Media,2004,70.
    [103]Suekane T, Tsushima S, Hirai S. Application of MRI to the measurement of two-phase flow in porous media[C]. Proceedings of the 3rd Korea-Japan Joint Seminar on Heat Transfer, 2005,91-100.
    [104]Suekane T, Sokawa S, Iwatani S, et al. Behavior of supercritical CO2 injected into porous media containing water[J]. Energy,2005,30(11):2370-2382.
    [105]Suekane T, Ishii T, Tsushima S, et al. Migration of CO2 in porous media filled with water[J]. Journal of Thermal Science Technology,2006,1 (1):1-11.
    [106]Suekane T, Nobuso T, Hirai S, et al. Geological storage of carbon dioxide by residual gas and solubility trapping[J]. International Journal Greenhouse Gas Control,2008,2(1): 58-64.
    [107]Suekane T, Furukawa N, Tsushima S, et al. Application of MRI in the measurement of two-phase flow of supercritical CO2 and water in porous rocks [J]. Journal of Porous Media, 2009,12(2):143-151.
    [108]Balcom B, MacGregor R, Beyea S, et al. A Single point ramped imaging with T1 enhancement (SPRITE)[J]. Journal of Magnetic Resonance,1996,123(1),131-134.
    [109]Halse M, Rioux J, Romanzetti S, et al. Centric scan SPRITE magnetic resonance imaging: Optimization of SNR, resolution and relaxation time mapping[J]. Journal of Magnetic Resonance,2004,169,102-117.
    [110]Chen Q, Butler K E, Gingras M K, et al. A mechanism study of co-current and counter-current imbibition using new magnetic resonance techniques[C]. Proceedings of the International Symposium of the Society of Core Analysts, Toronto, Ontario,2005,38.
    [111]Chen Q, Rack F, Balcom B J. Quantitative magnetic resonance imaging methods for core analysis in new ways of looking at sediment cores and core data[C]. Geological Society Special Publication,2006,267:193-2070.
    [112]Chen Q, Halse M, Balcom B J. Centric scan SPRITE for spin density imaging of short relaxation time porous materials[J]. Magnetic Resonance Imaging,2005,23(2):263-266.
    [113]Marica F, Chen Q, Hamilton A, et al. Spatially resolved measurement of rock core porosity[J]. Journal of Magnetic Resonance,2006,178(1):136-141.
    [114]Li L, Han H, Balcom B J. Spin echo SPI methods for quantitative analysis of fluids in porous media[J]. Journal of Magnetic Resonance,2009,198(2):252-260.
    [115]Chen Q, Butler K E, Gingras M K, et al. A mechanism study of co-current and counter-current imbibition using new magnetic resonance techniques[C]. SCA 2005-38, Proceedings of the International Symposium of the Society of Core Analysts, Toronto, Ontario 21-25 August 2005.
    [116]Chen Q, Gingras M K, Balcom B J. A magnetic resonance study of pore filling processes during spontaneous imbibition in Berea sandstone[J]. Journal of Chemical Physics,2003, 119(18):9609-9616.
    [117]Li L, Marica F, Chen Q, et al. Quantitative discrimination of water and hydrocarbons in porous media by magnetization prepared centric-scan SPRITE[J]. Journal of Magnetic Resonance,2007,186(2):282-292.
    [118]Li Linqing, Chen Quan, Andrew E Marble, et al. Flow imaging of fluids in porous media by magnetization prepared centric-scan SPRITE[J]. Journal of Magnetic Resonance,2009, 197(1):1-8.
    [119]Romero-Zeron L, Ongsurakul S, Li L, et al. Visualization of water flooding through unconsolidated porous media using magnetic resonance imaging[J]. Petroleum Science and Technology,2009,27(17),1532-2459.
    [120]Romero-Zeron L, Ongsurakul S, Li L, et al. Visualization of mobility-control by polymer water flooding through unconsolidated porous media using magnetic resonance imaging[J]. Petroleum Science and Technology,2009,27(17),2046-2062.
    [121]Romero-Zeron L, Ongsurakul S, Li L, et al. Magnetic resonance imaging of phase trapping and in-situ permeability modification in unconsolidated porous media[J]. Petroleum Science and Technology,2010,28(3):262-276.
    [122]Romero-Zeron L, Ongsurakul S, Li L, et al. Visualization of the effect of porous media wettability on polymer flooding performance through unconsolidated porous media using magnetic resonance imaging[J]. Petroleum Science and Technology,2010,28 (1):52-67.
    [123]肖立志.岩石核磁共振研究[D].武汉:中国科学院武汉物理研究所,1995.
    [124]谌丛菊.核磁共振在多孔岩心油藏岩石物理性质研究中的应用[D].武汉:中国科学院武汉物理与数学研究所,1998.
    [125]陈权.岩石核磁共振及其在渗流力学和油田开发中的应用研究[D].中国科学院武汉物理与数学研究所,2001.
    [126]黄延章,张慧敏,王为民,等.核磁共振成象技术在石油勘探开发中的应用[J].大庆石油地质与开发,1993,14(4):13-17.
    [127]Chen Q, Kinzelbach W, Oswald S. Nuclear magnetic resonance imaging for studies of flow and transport in porous media[J]. Journal of Environmental Quality,1997, 31(2):477-486.
    [128]黄延章,尚根华,陈永敏.用核磁共振成像技术研究周期注水驱油机理[J].石油学报,1995,16(4):62-67.
    [129]陈权,周洪涛.非均质油层注水开发的核磁共振成像实验研究[J].油气采收率技术,1997,5(1):34-40.
    [130]周洪涛,陈权,翟希娟,等.岩芯堵水调剖的核磁共振成像(MRI)研究[A].第九届全国波谱学学术会议论文摘要集,1996.
    [131]王为民,郎东江.辽河油田热采驱油实验的核磁共振成像研究[C].北京国际石油与石油化工科技报告会,北京,1994.
    [132]王为民,郭和坤,孙佃庆,等.用核磁共振成像技术研究聚合物驱油过程[J].石油学报,1997,18(4):54-61.
    [133]Wang W, Lang D, Liu W. The application of NMR imaging to the studies of enhanced oil recovery in China[J]. Magnetic Resonance Imaging,1996,14(7-8):951-953.
    [134]苗盛,张发强,李铁军,等.核磁共振成像技术在油气运移路径观察与分析中的应用[J].石油学报,2004,25(3):44-47.
    [135]周波,侯平,王为民,等.核磁共振成像技术分析油运移过程中含油饱和度[J].石油勘探与开发,2004,32(6):78-81.
    [136]周波,罗晓容,王毅.核磁共振成像技术定量分析粘土矿物对油气二次运移过程的影响[J].地质论评,2007,53(5):44-47.
    [137]郎东江,王为民,尚根华.应用核磁共振成像(NMRI)技术研究复合剂驱油特征[J]. CT理论与应用研究,2006,15(3):13-17.
    [138]潘一山,宋义敏,高迎伏,等.三元复合驱驱油机理及乳液渗流规律NMRI研究[J].辽宁工程技术大学学报.,2003,22(2):199-201.
    [139]赵敏,齐敦苏,孙新波,等.核磁共振成像在射孔完井中的应用[J].西南石油学院学报,2006,28(6):46-48.
    [140]秦积舜.油层物理[M].山东:中国石油大学出版社,2001.
    [141]D'Orazio F, Tarczon J C, Halparin W P, et al. Application of nuclear magnetic resonance pore structure analysis to porous silica glass[J]. Journal of Applied Physics, 1989,65(2):742-751.
    [142]Callaghan P T. Principle of nuclear magnetic resonance microscopy [M]. New York:Oxford University Press,1991.
    [143]Chen Q, Wang W M, Cai X C. Application of NMR imaging to steam foam flooding in porous media[J]. Magnetic Resonance Imaging,1996,14(7-8):949-950.
    [144]Chen Q, Zhou H T. Experimental research on NMR imaging in water flood developed heterogeneous reservoirs[J]. Oil & Gas Recovery Technology,1998,5(1):34-40.
    [145]Chen Q, Kinzelbach W, Oswald S. Nuclear magnetic resonance imaging for studies of flow and transport in porous media[J]. Journal of Environmental Quality,2002, 31 (2):477-86.
    [146]Gaigalas A K, Van Orden A C, Robertson B, et al. Application of magnetic resonance imaging to visualization of flow in porous media [J]. Nuclear Technology,1989, 84(1):113-118.
    [147]Guillot G, Kassab G, Hulin J P, et al. Monitoring of tracer dispersion in porous media by NMR imaging[J]. Journal of Physics D:Applied Physics,1991,24(5):763-773.
    [148]Pearl Z, Magaritz M, Bendal P.1993. Nuclear magnetic resonance imaging of miscible fingering in porous media[J]. Transport in Porous Media,12(2):107-123.
    [149]Chen S, Qin F, Kim K H, et al. NMR imaging of multiphase flow in porous media[J]. AIChE Journal,1993,39(6):925-934.
    [150]Sankey M H, Holland D J, Sederman A J, et al. Magnetic resonance velocity imaging of liquid and gas two-phase flow in packed beds[J]. Journal of Magnetic Resonance,2009, 196(2):142-148.
    [151]Torsaeter 0. An experimental study of water imbibition in chalk from the Ekofisk field[C]. SPE 12688. The SPE Enhanced Oil Recovery Symposium, Tulsa, Oklahoma,15-18 April, 1984.
    [152]Baldwin B A. Water imbibition and characterization of North Sea Chalk reservoir surfaces[J]. SPE Formation Evaluation,1988,3(1):125-130.
    [153]Schechter D S, Zhou D, Orr Jr F M. Capillary imbibition and gravity segregation in low IFT systems[C]. SPE22594. The SPE Annual Technical Conference and Exhibition, Dallas, Texas,6-9 October 1991.
    [154]Li K, Horne R N. Characterization of spontaneous water imbibition into gas-saturated rocks[J]. SPE Journal,2001,6(4):375-384.
    [155]朱维耀,鞠岩,赵明,等.低渗透裂缝性砂岩油藏多孔介质渗析机理研究[J].石油学报,2002,23(6):56-59.
    [156]陈淦,宋志理.火烧山油田基质岩块渗析特征[J].新疆石油地质,1994,15(3):268-275.
    [157]Aronofsky JS, Masse L, Natanson S G. A model for the mechanism of oil recovery from the porous matrix due to water invasion in fractured reservoirs [J]. Petroleum Transactions, AIME,1958,213:17-19.
    [158]Ma S, Morrow N R, Zhang X. Generalized scaling of spontaneous imbibition data for strongly water-wet systems[J]. Journal of Petroleum Science and Engineering,1997, 18(3-4):165-178.
    [159]Viksund B G, Morrow N R, Ma S, et al. Initial water saturation and oil recovery from chalk and sandstone by spontaneous imbibition[C]. Paper SCA-9851, Presented at the 1998 SCA International Symposium, The Hague, Netherlands.
    [160]Graue A, Viksund B G, Baldwin B A, et al. Large-scale two-dimensional imaging of wettability effects in fluid movement and oil recovery in fractured chalk[J]. SPE Journal, 1999,4(1):25-36.
    [161]Zhou X, Morrow N R, Ma S. Interrelationship of wettability, initial water saturation, aging time, and oil recovery by spontaneous imbibition and waterflooding[J]. SPE Journal, 2000,5(2):199-207.
    [162]Nguyen V H, Sheppard A P, Knackstedt M A, et al.The effect of displacement rate on imbibition relative permeability and residual saturation[J].Journal of Petroleum Science and Engineering,2006,52(1-4):54-70.
    [163]Yildiz H 0, Gokmen M, Cesur Y. Effect of shape factor, characteristic length, and boundary conditions on spontaneous imbibition[J]. Journal of Petroleum Science and Engineering,2006,53(3-4):158-170.
    [164]姚同玉,李继山,王建,等.裂缝性低渗透油藏的渗析机理及有利条件[J].吉林大学学报(工学版),2009,39(4):937-940.
    [165]Metz B, Davidson 0, de Coninck H, et al. Special report on carbon dioxide capture and storage[M]. New York:Cambridge University Press,2005.
    [166]沈平平,廖新维.二氧化碳地质埋存与提高石油采收率技术[M].北京:石油工业出版社,2009,32-38.
    [167]Hussain R, Pintelon T R R, Mitchell J, et al. Using NMR displacement measurements to probe CO2 entrapment in porous media[J]. AIChE Journal,2011,57(7):1700-1709.
    [168]赵喜平.磁共振成象[M].北京:科学出版社,2004,518-528.
    [169]Asghari K, Torabi F. Effect of miscible and immiscible CO2 flooding on gravity drainage: experimental and simulation results[C]. SPE 110587 in SPE/DOE Symposium on Improved Oil Recovery, Tulsa, OK, Apr 20-23,2008.
    [170]Ayirala S C, Xu W, Rao D N. Interfacial behavior of complex hydrocarbon fluids at elevated pressures and temperatures[C]. International Conference on MEMS, NANO and Smart Systems, Banff, Alberta, Canada, July 24-27,2005.
    [171]Goodfield G, Goodyear S G, Townsley P H. New coreflood interpretation method for relative permeabilities based on direct processing of in-situ saturation data[C]. SPE 71490 in the 2001 SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, Sept 30-Oct 3,2001.
    [172]王家禄.汕藏物理模拟[M].北京:石油工业出版社.2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700