电弧加热发动机的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
星上推进系统是为航天器提供机动和控制推力的装置。目前,电推进系统以其优越的性能逐步取代传统的化学推进系统,被广泛的用于空间飞行任务。作为电推进的一种方式,电弧加热发动机以较高的推力/功率比、推力密度、中高的比冲、良好的系统继承性和可靠性等特点,成为当前国际研究和应用的热点。随着空间技术的发展和未来航天任务的需求,先进的电弧加热发动机将是理想的选择。因此,开展对电弧加热发动机的研究具有十分重要的意义。
     本文设计、建造一套性能先进的低功率电弧加热发动机。详细讨论了发动机对不同组件的性能要求,并根据要求对每一个构件选择了合适的材料,使其稳定可靠工作。本文通过优化发动机其内部结构,减小了热损失,提高了比冲。
     本文设计、建立了一套满足真空度要求的真空模拟系统和电弧加热发动机性能测量系统,并对电弧加热发动机进行实验研究和性能测试。以氩气作为推进剂,在不同工况下进行点火实验,测量获得了其工作推力、电弧电压和电流、推进剂流率和弧室压力等宏观参数,得到了不同实验条件下其工作的实际比冲、推力效率、推力/功率比以及比功率等性能参数,分析了推进剂质量流率、电弧功率、电弧加热发动机电弧室结构尺寸等因素对其性能的影响,为数值模拟研究和实际的低功率电弧加热发动机优化设计及研制提供了实验基础。
     本文优化并改进了一套高速、高精度的多谱线电弧等离子体光谱诊断系统,使其适用于电弧加热发动机羽流激发温度的诊断,并利用该系统诊断了发动机出口羽流的非平衡程度和温度沿径向的分布。本文还研究了发动机运行参数,如电流、流量对羽流平衡态和温度分布的影响。
     本文建立了电弧加热发动机工作的简化的一维理论分析模型。该模型实现了快速、有效地预报了电弧加热发动机的性能,有助于分析实验结果和理解发动机内部电弧复杂的物理过程,为其实际应用到我国空间任务提供了理论基础。
The propulsion system is used to provide impetus for motion and control of spacecraft. At present, electric propulsion system has been widely applied in space fight missions and ascendant performance of electric propulsion makes it a substitution of traditional chemical propulsion system gradually. Arcjet is one of the highlight of electric propulsion investigation and application because of its high thrust density, high ratio of thrust and power, preferable specific impulse, better system successiveness and reliability. Advanced Arcjet system will be one of the favorite choices with the development of space technology and the demand of aerospace task. So it has important significance to investigate the Arcjet system.
     A low power Arcjet with high performance has been designed and constructed in this dissertation. This Arcjet can run steadily with high temperature status and in low-pressure environment. Detailed requirements are discussed for every component of the Arcjet. According to the specific requirement for every component, suitable material is selected for it. The internal structure has been optimized to reduce the heat loss and increase the specific impulse.
     Much works has been distributed to the development of a vacuum system to simulate the outer space and a measurement system to test the Arcjet performance. Ignition experiments in various operational modes have been done with Argon as propellant. Macroscopical working parameters including thrust, mass flow rate, voltage, current, inlet pressure and vacuity are obtained by the test measurement system and actual performance parameters including specific impulse, thrust efficiency, ratio of thrust and power and ratio of power and mass flow are calculated. The influence of parameters such as mass flow, input power, and constrictor size on Arcjet performance is also analyzed. This work provides an experimental foundation for the numerical simulation study and optimized design of Arcjet.
     A high-speed, high-resolution, multi-line spectroscopic diagnostic system has been improved to diagnostic the excitation temperature of Arcjet plume. The extent of
引文
[1] R.M. Myers, Chemical and Electric Propulsion Options for small Satellites. Proc. Of the 8th Annual AIAA/USU Conf of Small Satellites, 1994.
    [2] J.D. Filliben, Electric Thruster System-Technical Report, AD-A327009,June, 1997
    [3] A.C. Ducati, H. Humpal, J.Meltzer, E.Muehlberger, J.P. Todd, and H. Waltzer, 1-kw Arcjet-Engine System-Performance Test, Journal of Spacecraft, Vol.1, No.3, May-June 1964, P.327-332.
    [4] J.P. Todd and R.E. Sheets, Development of a Regeneratively Cooled 30-kw Arcjet Engine, AIAA 64-671, AIAA 4TH Electric Propulsion Conference, Philadelphia, August 1964.
    [5] R. Richter, Development Work on Plasma Arc Jet Engines, ARS 2347-62, ARS Electric Propulsion Conference, Berkeley, March 1962
    [6] R.R. John, M. Chen, J.Connors, and J. Megrue, Arc Jet Performance Experiment and Theory IV, ARS 2345-62, ARS Electric Propulsion Conference, Berkeley, March 1962.
    [7] R.R. John, J.F. Connors, and S. Bennett, Thirty Day Endurance Test of a 30kW Arc Jet Engine, AIAA 63-274, AIAA Summer Meeting, Los Angeles, June 1963.
    [8] W.D. Deininger, T.J. Prvirotto, and J.R. Brophy, Effect of Nozzle and Cathode Configuration on Arcjet Performance, AIAA 87-1082 AIAA/DGLR/JSAA 19th International Electric Propulsion Conference, Colorado Springs, May 1987.
    [9] K.D. Goodfellow and J.E. Polk, Throttling Capability of a 30-kW Class Ammonia Arcjet, AIAA 91-2577, AIAA/SAE/ASME/ASEE 27th Joint Propulsion Conference, Sacramento, June 1991.
    [10] T.J. Pivirotto, D.Q. King, and W.D. Deininger, Long Duration Test of a 30-kW Class Thermal Arcjet Engine, AIAA 87-1974, AIAA/SAE/ASME/ASEE 23rd Joint Propulsion Conference, San Diego, June 1987.
    [11] J.E. Polk and K.D. Good fellow, Results of a 1462 Hour Ammonia Arcjet Endurance Test, AIAA 92-3833, AIAA/SAE/ASME/ASEE 28th Joint Propulsion Conference, Nashville, July 1992.
    [12] F.M. Curran and S. Nakanishi, Low Power dc Arcjet Operation with Hydrogen/Nitrogen Propellant Mixtures, AIAA 86-1505, AIAA/ASME/SAE/ASEE 22nd
    [13] S.Nakanishi, Experimental Performance of a 1-Kilowatt Arcjet Thruster, NASA Technical Memorandum 87131, October 1985.
    [14] F. M. Curran and T.W. Haag, An Extended Life and Performance Test of a Low-Power Arcjet , NASA Technical Memorandum 100942, July 1988.
    [15] T.L. Hardy and F.M. Curran, Low Power dc Arcjet Operation with Hydrogen/Nitrogen/Ammonia Mixtures, AIAA 87-1948, AIAA/SAE/ASME/ASEE 23rd Joint Propulsion Conference, San Diego, June 1987.
    [16] F.M. Curran, A.J. Sovie, and T.W. Haag, Arcjet Nozzle Design Impacts, NASA Technical Memorandum 102050, May 1989.
    [17] F.M. Curran and C.J. Sarmiento, Low Power Arcjet Performance Characterization, AIAA 90-2578, AIAA/DGLR/JSASS 21st International Electric Propulsion Conference, Orlando, July 1990.
    [18] J.M. Sankovic and F.M. Curran, Arcjet Thermal Characteristics, AIAA 912456, AIAA/SAE/ASME/ASEE 27th Joint Propulsion Conference, Sacramento, June 1991.
    [19] F.M. Curran, D.H. Manzella, and E.J. Pencil, Performance Characterization of a Segmented Anode Arcjet Thruster, AIAA 90-2582, AIAA/DGLR/JSASS 21st International Electric Propulsion Conference, Orlando, July 1990.
    [20] T. Haag and F. Curran, High Power Hydrogen Arcjet Performance, AIAA 91-2226, AIAA/SAE/ASME/ASEE 27th Joint Propulsion Conference, Sacramento, June 1991.
    [21] S.C. Knowles, W.W. Smith, F.M. Curran, and T.W. Haag, Performance Characterization of a Low Power Hydrazine Arcjet, AIAA 87-1057, AIAA/DGLR/JSASS 19th International Electric Propulsion Conference, Colorado Springs, May 1987.
    [22] S.C. Knowles, S.E. Yano, and R.S. Aadland, Qualification and Life Testing of a Flight Design Hydrazine Arcjet System, AIAA 90-2576, AIAA/DGLR/JSASS 21st International Electric Propulsion Conference, Orlando, July 1990.
    [23] W.W. Smith, R.D. Smith, S.E. Yano, K. Davies, and D. Lichtin, Low Power Hy-drazine Arcject Flight Qualification, IEPC 91-148, AIDAA/AIAA/DGLR/JSASS 22nd International Electric Propulsion Conference, Viareggio, Italy, October 1991.
    [24] B. Glocker, M.Autweter-Kurtz, T.M. Goelz, H.L. Kurtz, and H.O. Schrade, Medium Power Arcjet Thruster Experiments, AIAA 90-2531, AIAA/DGLR/JSASS 21st International Electric Propulsion Conference, Orlando, July 1990.
    [25] B. Glocker and M. Auweter-Kurtz, Numerical and Experimental Constrictor Flow Analysis of a 10kW Thermal Arjcet, AIAA 92-3835, AIAA/SAE/ASME/ASEE 28th Joint Propulsion Conference, Nashville, July 1992.
    [26] B. Glocker, Th. Rosgen, and A. Laxander, Medium Power Arcjet Analysis and Experiments, IEPC 91-016, AIDAA/AIAA/DGLR/JSASS 22nd International Electric Propulsion Conference, Viareggio, Italy, October 1991.
    [27] M. Autweter-Kurtz, H.L. Kurtz, and H.O. Schrade, High Power Arcjet Thruster Experiments, IEPC 91-072, AIDAA/AIAA/DGLR/JSASS 22nd International Electric Propulsion Conference, Viareggio, Italy, October 1991.
    [28] H.L. Kurtz, D.M. Zube, B. Glocker, and M. Autweter-Kurtz, Low Power Hydrazine Arcjet Thruster Study, AIAA 92-3116, AIAA/SAE/ASME/ASEE 28th Joint Propulsion Conference, Nashville, July 1992.
    [29] T.Yamada, Y. Shimizu, K. Toki, and K. Kuriki, Thermal Analysis and Thrust Performance of a Low Power Arcjet Thruster, AIAA 90-2581, AIAA/DGLR/JSASS 21st International Electric Propulsion Conference, Orlando, July 1990.
    [30] H. Tahara, T. Sakakibara, K. Onoe, and T. Yoshikawa, Discharge Chareacteristics and Inner Plasma Features of a High-Power DC Arcjet Thruster, AIAA 90-2534, AIAA/DGLRJSASS 21st International Electric Propulsion Conference, Orlando, July 1990.
    [31] H. Tahara, T. Sakakibara, K. Onoe, and T. Yoshikawa, Experimental and Numerical Studies of a 10kW Water-Cooled Arcjet Thruster, IEPC 91-015, AIDAA/AIAA/DGLR/JSASS 22nd International Electric Propulsion Conference, Viareggio, Italy, October 1991.
    [32] T. Yoshikawa, K. Onoe, S.Tsuri, M. Ishii, and K.Uematsu, Development of a Low Power Arcjet Thruster-Thrust Performance and Life Evaluation, IEPC 91-043, AIDAA/AIAA/DGLR/JSASS 22nd International Electric Propulsion Conference, Viareggio, Italy, October 1991.
    [33] G.Cruciani, W.D.Deininger, and C.Petagna, Development of a IN, Radiatively Cooled Arcjet, AIAA 90-2536, AIAA/DGLR/JSASS 21st International Electric Propulsion Conference, Orlando, July 1990.
    [34] G.Cruciani and W.D.Deininger, Development Testing of a 1kW Class Arcjet Thruster, AIAA 92-3114, AIAA/SAE/ASME/ASEE 28th Joint Propulsion Conference, Nashville, July 1992.
    [35] Burton Rodney L., Krier Herman. Overview of Arcjet Thruster Research at the University of Illinois[R]. AIAA 96-3296, 32nd JPC,1996.
    [36] Ruyten W.M., Burtner D., Keefer D.. Spectroscopic Investigation of a Low-Power Arcjet Plume[R].AIAA 93-1790, 29th JPC,1993.
    [37] Liebeskind John G., Hanson Ronald K., Cappelli M.A. Laser-induced fluorescence diagnostic for temperature and velocity measurements in a hydrogen Arcjet plume[J]. APPLIED OPTICS, 1993,32(30): 6117-6126.
    [38] Bufton S.A., Burton R.L., Krier H.. Measured Plasma Properties at the Exit Plane of a 1kW Arcjet[R].AIAA 95-3066, 31st JPC,1995.
    [39] Hargus W.A., Jr. and Cappelli M.A.. Pressure Measurements in the Plume of a Low Power Arcjet Nozzle. AIAA 95-2818, 31th JPC,1995.
    [40] Talley K., Elrod W.. Static Pressure Measurements of the NASA-Lewis 1.2kw Arcjet. AIAA 92-3111, 28th JPC,1992.
    [41] Storm P.V. and Cappelli M.A.. Stark broadening corrections to laser-induced fluorescence temperature measurements in a hydrogen Arcjet plume[J]. APPLIED OPTICS, 1996,35(24): 4913-4918.
    [42] R.R. John, S.Bennett, L.A. Coss, M.M. Chen, and J.F. Connors, Energy Addition and Loss Mechanisms in the Thermal Arc Jet Engine, AIAA 63-022, AIAA Electric Propulsion Conference, Colorado Springs, March 1963.
    [43] R. Spurrett and R.A. Bond, Modelling Arcjet Thruster Performance, IEPC 91-110, AIDAA/AIAA/DGLR/JSASS 22nd International Electric Propulsion Conference, Viareggio, Italy, October 1991.
    [44] B. Glocker, H.O. Schrade, and P.C. Sleziona, Numerical Prediction of Arcjet Performance, AIAA 90-2612, AIAA/DGLR/JSASS 21st International Electric Propulsion Conference, Orlando, July 1990.
    [45] V.R. Watson and E.B. Pegot, Numerical Calculations for the Characteristics of a Gas Flowing Axially Through a Constricted Arc, NASA Technical Note TN D-4042, June 1967.
    [46] M.Andrenucci et al., Development of a Computer Programme for the Analysis of Arcjet Nozzles, IEPC 91-113, AIDAA/AIAA/DGLR/JSASS 22nd International Electric Propulsion Conference, Viareggio, Italy, October 1991.
    [47] P. Kovitya, D.A. Scott, and G.N. Haddad, Two-dimensional Modelling of Plasma Torches, CSIRO Division of Applied Physics, Final Report for AWRA Contract No. 123, July 1988.
    [48] G. E. Pawlas and T.G. Keith, Analysis of a Swirl Stabilized Arcjet Thruster, AIAA 91-1995, AIAA/SAE/ASME/ASEE 27th Joint Propulsion Conference, Sacramento, June 1991.
    [49] H. Okamoto, M. Nishida, and K. Tanaka, Numerical Studies of the Flow Field in a Low Power DC Arcjet Thruster Using Navier-Stokes Equations, IEPC 91-112, AIDAA/AIAA/DGLR/JSASS 22nd International Electric Propulsion Conference, Viareggio, Italy, October 1991.
    [50] G.W. Bulter, B.A.Kashiwa, and D.Q.King, Numerical Modeling of Arcjet Performance, AIAA 90-1474, AIAA 21st Fluid Dynamics, Plasma Dynamics, and Lasers Conference, Seattle, June 1990.
    [51] G.W. Bulter and D.Q.King, Single and Two Fluid Simulations of Arcjet Performance, AIAA 92-3104, AIAA/SAE/ASME/ASEE 28th Joint Prcpulsion Conference, Nashville, July 1992.
    [52] D.Q.King and G.W. Bulter, Modeling and Measurement of N2 Arcjet Performance, AIAA 90-2626, AIAA/DGIR/JSASS 21st International Electric Propulsion Conference, Orlando, Jly 1990.
    [53] R. Rhodes and D. Keefer, Numerical Modeling of an Arcjet Thruster, AIAA 90-2614, AIAA/DGIR/JSASS 21st International Electric Propulsion Conference, Orlando, July 1990.
    [54] R. Rhodes and D. keefer, Modeling Arcjet Space Thrusters, AIAA 91-1994, AIAA/SAE/ASME/ASEE 27th Joint Propulsion Conference, Sacramento, June 1991.
    [55] R. Rhodes and D. Keefer, Comparison of Model Calculations With Experimental Data From Hydrogen Arcjets, IEPC-91-111, AIDAA/AIAA/DGLR/JSASS 22nd International Electric Propulsion Conference, Viareggio, Italy, October 1991.
    [56] 廖宏图,吴铭岚,汪南豪.电弧喷射推力器内部工作工程研究综述[J].推进技术,1999,20(3):107-112.
    [57] 过增元,赵文华.电弧和热等离子体.北京:科学出版社,1986.1-21
    [58] W.H.Zhao, J.Q.Li and J.D.Yan. Temperature measurement of nonsteady arcs. IEEE Trans. Plasma Sci.,1997, 25(5):828-832
    [59] 李建林.瞬变电弧等离子体温度场的光谱法诊断:[硕士学位论文].北京:清华大学工程力学系,1990
    [60] 闫究敦.非稳态电弧的光谱温度诊断系统的研制:[硕士学位论文].北京:清华大学工程力学系,1988
    [61] 田阔.直流电弧等离子发生器射流脉动的研究:[博士学位论文].北京:清华大学工程力学系,2001
    [62] 陈熙.高温电离气体的传热与流动.北京:科学出版社,1993.488-511
    [63] J.Reader, C.H.Corliss, W.L.Wiese et al. Wavelengths and transition probabilities for atoms and atomic ions. USA: National Bureau of Standard, 1980.
    [64] T.M. Lee, Physics and Engineering of high power swithing devices, The MIT Press, 1975

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700