叶尖射流对压气机稳定性影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风扇/压气机内部气流流动的强增压过程决定了其具有气动失稳的特性,而作为发动机中的增压部件,其稳定性决定了发动机的稳定性。为了满足当代飞机非常规机动、超声速巡航等指标,就需要增加发动机的推重比和降低其燃油率,这就要求风扇/压气机朝着更高的压比和更高的级负荷方向发展。但这使要想保证其气动稳定性将显得更加困难。因此,发展提高风扇/压气机稳定裕度的方法显得十分迫切,在这些方法中,喷射气流以其较强的扩稳能力、在需要时才施加到流场等特点越来越受到研究者的青睐。如果要想使该方法得到有效地实施,就必须对压气机内部流场以及动态失速过程有着深入的了解。
     为了探索轴流压气机内部流动失稳机理,为叶尖射流对压气机稳定性影响的实验研究做好准备,为喷射系统的整体布局提供必要的依据,本文以一台双级低速轴流压气机为实验对象,从压气机整体特性和级特性出现拐头现象出发,分析了第1级静子和第2级静子出口和通道内流场的流动现象和第1级转子叶尖泄漏流的变化发展,发现压气机失速与静子叶片吸力面附面层分离有着密切关系;并着重分析了该压气机的动态失速过程,发现它是由模态波扰动引起的失速,并且该扰动信号和随后出现的失速团都首先出现在第1级压气机的叶尖处。综合以上因素,喷射系统应该布置在该压气机进口上游的外机匣上。
     为了研究定常叶尖微射流对压气机稳定性的影响及其扩稳机理,本文加工了满足不同射流要求的喷嘴,搭建了一套定常喷射系统,在该双级低速压气机上验证了均匀进气条件下定常叶尖射流的有效性,为实际应用中喷射系统的布置以及射流参数设计提供指导性建议;在参数化研究结果的指导下,探索了叶尖射流提高压气机稳定裕度的机理,发现叶尖射流扩大压气机的稳定裕度是因为叶尖射流从频率、幅值和轴向结构三个方面抑制了模态波向失速团的发展,并在此基础上总结出了在叶尖射流作用下模态波沿压气机周向发展的物理模型,该模型能合理地解释叶尖射流扩稳的原因;另外,还分析了叶尖射流对第1级转子的叶尖流场、叶尖负荷以及叶尖处模态波轴向结构的影响,进一步揭示了叶尖射流提高压气机稳定性的原因。
     为了增强压气机的抗畸变能力,使它在进口流场较恶劣的情况下也能正常工作,开展进气畸变条件下叶尖射流能否提高压气机稳定性的研究具有较高的实用价值。本文研究了周向总压畸变和径向总压畸变对叶尖射流扩稳效果的影响,获得了周向畸变条件下叶尖射流也能有效地提高压气机的稳定裕度、周向畸变条件的扩稳原因与均匀进气条件下的扩稳原因一致以及与均匀进气结果相比周向总压畸变减弱了射流扩稳效果的结论;本文还研究了两种形式的径向进气畸变,由于根部径向畸变改变了失速起始的位置,将均匀进气条件的叶尖位置转移到叶根位置,所以这使叶尖射流扩稳效果甚微,尖部径向畸变由于叶尖处扰动脉动强度大以及叶中处模态波的发展,这同样使叶尖射流扩稳效果不佳。
     为了获得叶尖射流对高速轴流压气机稳定性的影响。本文以高速、高负荷NASA Rotor37为研究对象,以数值计算方法为手段,深入分析了不同转速下压气机失稳的原因,并在此基础上研究了不同射流量对压气机稳定性的影响,揭示了定常射流提高压气机稳定裕度的机理。
Fan/compressor is one of the aero engine’s most important parts, whose stability directlyinfluences aero engine stability. In order to meet up-to-date aero craft flight target such asunconventional flexibility, supersonic cruise, a higher thrust-to-weight ratio needs to be increasedwhile fuel rate needs to be decreased, which requests higher pressure rise and loading per stage for thefan/compressor. Therefore, these demands make it difficult to ensure their aerodynamic stability. Themethods to enlarge fan/compressor stable margin such as using air injection and casing treatmentcome to appearance. Thoroughly understanding the compressor especially stall inception isindispensable if effective execution of these methods needs to be achieved.
     In order to explore axial compressor flow instability mechanism, and be ready for micro airinjection experiment on the compressor stability. Based on the turning of through compressorcharacteristic and stage characteristic, the the first stage stator and the second stage stator outlet andpassage flow field and blade tip leakage flow on top of the first stage rotor development are analyzed,and the result is that compressor stall has close relation with boundary layer separation of the blade tipsuction surface; according to the research of the stall inception, the compressor rotating stall isincepted by modal wave, which appears in the blade tip of the first stage. With all these in condition,injection system should be set in the outer casing of the compressor inlet upstream.
     In the uniform inflow, the effect of injection parameter such as the injection mass flow, injectornumber, circumference configuration of the injection system on the compressor stall margin wasstudied. The results indicate: under the condition that not less than four injectors are equally spacedcircumferentially, injection angle is a certain number to the counter rotation and momentum perinjector is as large as possible, the enhancement stability effect of the injection arrives at the most;under the guide of the parametric investigation, the mechanism of the micro injection enhancing thecompressor stability could be gotten, because the micro injection suppresses the modal wavedevelopment to the rotating stall from the facet of frequency, magnitude and axial structure. Based onthis, a physical model explaining how the micro injection enhance the compressor stability is putforward. At the same time, the micro injection delays tip leakage flow movements toward the rotorleading edge face and ameliorate the rotor tip loading.
     In order to strengthen the compressor ability against inlet distortion, so that it can work normallyadverse inlet flow field, the investigation to test whether the micro injection improves compressor stability under the condition of inlet distortion has high value for practical purpose. The researchresults indicate under the condition of the uniform inflow, the reason why the micro injectionenhancement the compressor stability under the condition of the inlet distortion is that the microinjection suppresses the modal wave development towards the rotating stall. When the total pressuredistortion style is different, the effect of micro injection enhancing compressor stability is different,too. For example, that effect isn’t obvious for the pure radial total pressure inlet distortion, however, itis obvious for the pure circumference total pressure inlet distortion. At the condition of the totalpressure inlet distortion, the enhancement with equally spaced circumference is the best, the effect ofenhancement stability for injection pooling in the low pressure area is better than that in the highpressure area.
     Steady tip injection on an isolated axial flow compressor, NASA Rotor37, has been studied inthe paper by using the method of numerical simulation. At first, the compressor stall reason can befound at the100%and50%designed rotating speed. At the designed rotating speed, the interactionbetween the shock wave and tip leakage flow leads to the blockage in the blade tip area, which resultsin the stall finally. Second, the effect of micro injection on the compressor stability at the two rotatingspeed are studied. The results indicate at the designed rotating speed, even if the injection is at thechoked condition, the effect of steady injection on the compressor stability is little; at the50%designed rotating speed, when injection mass flow reaches a certain value, that effect is obvious.
引文
[1] Emmons H L,et al.Compressor surge and stall propagation.Transctions of the ASME,1955,77(4):455~467.
    [2] Silkwski P D.Unsteady Phenomena and Flow Field Instabilities in Multistage AxialCompressors.Internal Gas Turbine Laboratory Repor,1992.
    [3] McDougall N M.Comparison between the Design Point and Near-Stall Performance of anAxial Compressor.Journal of Turbomachinery,1990,112(1):105~119.
    [4] Day I J.Stall Inception in Axial Flow Compressors.ASME Journal of Turbomachinery,1993,115(1):1~9.
    [5] Camp T R,Day I J.Study of Spike and Modal Stall Phenomena in a Low-Speed AxialCompressor.ASME Journal of Turbomachinery,1998,120(2):393~401.
    [6] Day I J,Breuer T,Escuret J,et al.Stall Inception and the Prospects for Active Control in FourHigh-Speed Compressor.ASME Journal of Turbomachinery,1999,121(1):18~27.
    [7] McDougall N M,Cumpsty N A,Hynes T P.Stall Inception in Axial Compressors.ASMEJournal of Turbomachinery,1990,112(1)116~125.
    [8] Garnier V H,Epstein A H,Greitzer E M.Rotating Waves As a Stall Indication in AxialCompressors.ASME Journal of Turbomachinery,1991,115(3):290~302.
    [9]胡骏,汤国才,张惠民.轴流压气机中旋转失速的研究.航空学报,1994,15(4):481~487.
    [10]蒋康涛,徐纲,黄伟光,等.低速轴流压气机旋转失速的二维数值模拟.工程热物理学报,2003,24(6):935~938.
    [11] Inoue M,Kuroumaru M.Structure of Tip Clearance Flow in an Isolated Axial CompressorRotor.ASME Paper88-GT-251.
    [12] Vo H D,Tan C S, Greitzer E M.Criteria for Spike Initiated Rotating Stall. GT2005-68374.
    [13] Bae J,Breuer K S,Tan C S.Active Control of Tip Clearance Flow in Axial Compressor.ASME Paper GT-2003-38861.
    [14] Bae J,Breuer K S.Periodic Unsteadiness of Compressor Tip Clearance Vortex.ASME PaperGT-2004-53015.
    [15] Deng X Y.Unsteady Tip Clearance Flow in a Low-Speed Axial Compressor Rotor withUpstream and Downstream Stators.ASME GT2005-68571.
    [16] Zhang H W.A Study on the Mechanism of Tip Leakage Flow Unsteadiness in an IsolatedCompressor Rotor.ASME Paper GT2006-91123.
    [17] Tong Z T,Lin F,Chen J Y,et al.The Self-Induced Unsteadiness of Tip Leakage Vortex andIts Effect on Compressor Stall Inception.ASME Paper GT2007-27010.
    [18] Tan C S.Three-dimensional and Tip Clearance Flows in Compressors.VKI LS2006-06onAdvances in Axial Compressor Aerodynamics.
    [19] Mailach R.Experimental Investigation of Rotating Instabilities in a Low-Speed ResearchCompressor.IMech1999C557/006,pp.595~604.
    [20] M rz J,Hah C,Neise W.An Experimental and Numerical Investigation into the Mechanismsof Rotating Instability.ASME Journal of Turbomachinery,2002,124:367~375.
    [21] Schlechtriem S,Lotzerich M.Breakdown of Tip Leakage Vortices in Compressors at FlowConditions Close to Stall.ASME Paper No.97-GT-41.
    [22] Furukawa M,Inoue M,Saiki K,et al.The Role of Tip Leakage Vortex Breakdown inCompressor Rotor Aerodynamics.ASME Journal of Turbomachinery,1999,121:469~480.
    [23] Furukawa M,Saiki K,Yamada K,et al.Unsteady Flow Behavior Due to Breakdown of TipLeakage Vortex in an Axial Compressor Rotor at Near-Stall Condition.ASME Paper2000-GT-666.
    [24] Epstein.Smart Engine Components:A Micro in Every Blade.1986,24(1):60~64.
    [25] Ffowcs Williams J E,Huang X.Y.Active Stabilization of Compressor Surge.Journal of FluidMechanics.1989,204:245~262.
    [26] Pinsley J E,Guenette G R,et al.Active Stabilization of Centrifugal CompressorSurge.American Society of Mechanical Engineers,GT12311p,1990.
    [27] Gysling D L,Dugundji J,et al.Dynamic Control of Centrifugal Compressor Surge UsingTailored Structures.Transactions of the ASME,1991,113:710~722.
    [28] Paduano J D,Epstein A H,Valavani L,et al.Active Control of Rotating Stall in a Low-SpeedAxial Compressor.Transactions of the ASME,1993,115:48~56.
    [29] Hah C,Schulze R,Wagner S,et al.Numerical and Experimental Study for Short WavelengthStall Inception in a Low-Speed Axial Compressor.Proceedings of the14th ISABE,Paper No.ISABE99-7033.
    [30] Weigl H J.Active Stabilization of Rotating Stall and Surge in a Transonic Single Stage AxialCompressor.Ph.D. Dissertation, Massachusetts:Massachusetts Institute of Technology,Cambridge,1997.
    [31] Gabriele C,Behnam H B.Parametric Study of Tip Injection in an Axial Flow CompressorStage.ASME Paper GT2007-27403.
    [32] Kefalakis M,Papailiou K D.Active Flow Control for Increasing the Surge Margin of an AxialFlow Compressor.ASME Paper GT2006-90113.
    [33] Suder K L,Hathaway M D.Compressor Stability Enhancement Using Discrete TipInjection.ASME Journal of Turbomachinery,2001,123:14~23.
    [34] Hathaway M D,Strazisar AJ.Impact of Discrete Tip Injection on Stabilization of a TransonicCompressor Rotor.Proc.21st Army Science Conference,June13–15,Norfolk,VA.
    [35] Freeman C,Wilson A G,Day I J,et al.Experiments in Active Control of Stall on anAeroengine Gas Turbine.Journal of Turbomachinery,1998,120:637~647.
    [36]耿少娟,张宏武,陈静宜,等.跨音速轴流压气机叶顶间隙泄漏流对微射流的.工程热物理学报,2009,30(12):2013~2016.
    [37] Neuhaus L,Wiederhold O.Active Flow Control to Improve the Aerodynamic Performance ofAxial Turbomachines.GT2009-60008.
    [38]周军伟,侯安平,周盛.射流频率对转子失速裕度影响的探索.中国科学,技术科学,2010,40(4):392~398.
    [39] Dobrzynski B,et al.Active Flow Control in A Single-Stage Axial Compressor Using TipInjection and End wall Boundary Layer Removal.GT2008-50214.
    [40] Nie C,Xu G,Cheng X,Chen J.Micro Air Injection and Its Unsteady Response in aLow-Speed Axial Compressor.ASME J. Turbomachinery,2002,124:572~579.
    [41]童志庭,聂超群,朱俊强.微射流提高轴流压气机稳定性的研究.工程热物理学报,2006,27(1):121~124.
    [42]程晓斌,徐纲,聂超群.小波方法分析小流量射流影响两级低速轴流.工程热物理学报,2002,23(1):31~34.
    [43]徐纲,程晓斌,聂超群,等.两级低速轴流压气机的射流实验的非定常响应.工热物理学报,2002,23(1):27~30.
    [44]徐纲,聂超群,黄伟光,等.低速轴流压气机顶部微量射流控制失速机理的数值模拟.工热物理学报,2004,25(1):37~40.
    [45]卢新根,楚武利,朱俊强.定常微量射流提高轴流压气机稳定工作裕度机理探讨.西北工业大学学报,2007,25(1):17~20.
    [46] Hossein K,Joao A T.Numerical Study of Discrete Tip Injection in a Transonic AxialCompressor.ASME Paper GT2010-23608.
    [47] Sven J H,Stadlbauer M, Gründmayer J.Frap Measurements in a Stability Enhanced HighPressure Compressor. ISABE-2011-1210.
    [48] Stefan B,Bastian M,Reinhard N.Active stall Elimination by Air Injection onto the TipRegion of Compressor Blades.ISABE-2009-1105.
    [49] Roy B,Chouhan M,Kota V K,et al.Experimental Study of Boundary Layer Control ThroughTip Injection on Straight and Swept Compressor Blades.ASME Paper GT2005-68304.
    [50] Roy B.Stability Enhancement and Hysterisis Improvement of Axial Flow Fan by Discrete AndDistributed Tip Injection Schemes.ASME Paper GT2008-50075.
    [51] Behnam H B,et al.A New Design For Tip Injection In Transonic Axial Compressors.ASMEPaper GT2006-90007.
    [52]贾惟,刘火星.叶顶射流对跨声转子近失速点流动的影响.航空动力学报,2011,26(12):2731~2740.
    [53] Davis M,Hale A,Beale D.An Argument for Enhancement of the Current Inlet DistortionGround Test Practice for Aircraft Gas Turbine Engines.Journal of Turbomachinery,2002,124(2):235~241.
    [54] Billet G,Huard J,Chevalier P,et al.Experimental and Numerical Study of the Response of anAxial Compressor to Distorted Inlet Flow.Journal of Fluids Engineering,1988,110(4):355~360.
    [55] James E C,Charles M M,Paul L B.Experimental Investigation of the Effect ofScreen-Induced Total Pressure Distortion on Turbojet Stall Margin.1971,NASA TMX-2239.
    [56] Hu J,Peters T,Fottner L.Numerical Simulation of Flow Instabilities in High Speed MultistageCompressors.J.of Thermal Science,1999,8(1):23~31.
    [57] Hah C,Rabe D C,Sullivan T J,et al.Effects of Inlet Distortion on the Flow Field in aTransonic Compressor Rotor.ASME Paper96-GT-547.
    [58]张靖煊.畸变条件下轴流压气机叶顶间隙流对流动失稳影响的非定常机制.[博士学位论文].北京:中国科学院工程热物理研究所,2007.
    [59] C.M.van Schalkwyk.Active Stabilization of Axial Compressors with Circumferential InletDistortion.Journal of Turbomachinery,1998,120:431~439.
    [60]王维赉.动态压力测量原理及方法.北京:中国计量出版社.1986:65~72.
    [61]屠宝锋.轴流压气机失速起始和多尺度非定常气动稳定性研究,[博士学位论文].南京:南京航空大学,2009.
    [62]王志强.高压压气机低速模拟方法研究,[博士学位论文].南京:南京航空大学,2010.
    [63] Domercq O,Escuret J F.Tip Clearance Effect on High-Pressure Compressor Stage Matching.Journal of Power and Energy,2007,221:759~767.
    [64] McDougall N M.Stall Inception in Axial Compressor.PhD.Thesis,London:CambridgeUniversity,1988.
    [65] Takahiro N,Toshio K,Hiroshi H.Rotor-Tip Flow Fields Near Inception Point Of ModalDisturbance In An Axial-Flow Fan.GT2010-22187.
    [66]童志庭.轴流压气机中叶尖泄漏涡、失速先兆、叶尖微射流非定常关联性的实验研究,[博士学位论文].北京:中国科学院工程热物理研究所,2006.
    [67]邓向阳.压气机叶顶间隙流的数值模拟研究,[博士学位论文].北京:中国科学院工程热物理研究所,2005.
    [68] Khalid S A,Khalsa A S,Waitz I A,et a1.Blockage in Axial Compressors.ASME Journal ofTurbomachinery,1999,121:499~509.
    [69] Camp T R,Day I J.Study of Spike and Modal Stall Phenomena in a Low-Speed AxialCompressor. ASME Journal of Turbomachinery,1998,120(2):393~401.
    [70] Stockwell R G,Mansinha L,Lowe R P.Localization of the Complex Spectrum:The STransform.Transactions on Signal Processing,1995,17(1):62~80.
    [71] Bendat J S,Piersol A G.Engineering Applications of Correlation and Spectral Analysis.Wiley,New York,1980.
    [72]胡骏.进气畸变对轴流压气机性能影响实验研究.航空动力学报,2001,16(2):142~146.
    [73]黄健,吴虎,杜文海.45°周向压力畸变对轴流压气机影响的实验研究和机理分析.航空动力学报,2007,22(3):460~464.
    [74]陈美宁,朴英,王大磊.总压进气畸变对压气机转子气动影响的数值模拟.航空动力学报,2009,24(8):1792~1798.
    [75]蒋华兵,陆亚钧,袁巍,等.进气畸变对低速轴流压气机失速特性的影响.航空动力学报,2008,23(2):355~360.
    [76] Zhang Y F,Chu W L,Lu X G.Numerical simulation of the effect of inlet distortion to thesubsonic axial-flow compressor.AIAA2008-77.
    [77] Nikolaos C,Tiziano G.Axial compressor response to inlet flow distortions by a cfdanalysis.ASME Paper GT2004-53846.
    [78] Lin F,Li M L,Chen J Y.Long-to-Short Length-Scale Transition: A Stall InceptionPhenomenon in an Axial Compressor With Inlet Distortion.Transactions of the ASME.2006,128:130~140.
    [79] Leinhos D C,Schmid N R,Fottner L.The Influence of Transient Inlet Distortions on theInstability Inception of a Low-Pressure Compressor in a Turbofan Engine.Journal ofTurbomachinery,123:1~8.
    [80]刘大响,叶培梁,胡骏,等.航空燃气涡轮发动机稳定性设计与评定技术[M].北京:航空工业出版社,2004.
    [81]国防科学技术工业委员会,GJB/Z64A-2004(K),航空涡轮射流和涡轮风扇发动机进口总压畸变评定指南,北京:国防科学技术工业委员会,2004:11~14.
    [82]国防科学技术工业委员会,GJB/Z224-2005(K),航空燃气涡轮发动机稳定性设计与评定指南,北京:国防科学技术工业委员会,2005:34~37.
    [83]罗标能.压气机进口插板总压畸变稳定性研究,[硕士学位论文].南京:南京航空航天大学,2006.
    [84]李亮.进口总压畸变稳定性评定方法研究,[硕士学位论文].南京:南京航空航天大学,2008.
    [85]李亮,胡骏,王志强,等.多种形式插板的压气机进气总压畸变实验.航空动力学报,2009,24(4):423~426.
    [86] Mokelke H.The Prediction of Stesdy,Circumferential Pressure and Temperature Distortion inMultistage Axial Flow Compressors. ASME Joumal of Engineering for Power.1980,102(2):448~458.
    [87]吴虎,廉小纯,陈辅群,等.畸变进气下压缩系统稳定性分析的通用方法.航空动力学报,1997,18(5):62~64.
    [88] Hale A,Brien W.A Three-dimensional Turbine Engine Analysis Comp Ressor Code (TEACC)for Steady-State Inlet Distortion.Transactions of the ASME, Journal of Turbomachinery,1998,120(7).
    [89]王勤,刘世官,王振华.某型发动机进气总压畸变流场中涡旋尺度的计算及其变化特征.航空发动机,2003,29(2):29~33.
    [90]程邦勤,陶增元,李军.某型涡扇发动机进气畸变压力脉动分析.航空动力学报,2003,18(1):65~69.
    [91]江勇,张百灵,孔卫东.航空发动机插板式进气压力畸变紊流度分布.空军工程大学学报.2008,9(1):1~4.
    [92]李茂义,陆亚钧,弓志强.进口畸变条件下轴流压气机转子内流的PIV研究.航空动力学报,2006,21(3):461~466.
    [93] Reid L,Moore R D.Design and Overall Performance of Four Highly-Loaded,High-SpeedInlet Stages for an Advanced,High-Pressure-Ratio Core Compressor.NASA TP-1337,1978.
    [94] Denton J D. Lessons from Rotor37.Journal of Thermal Science,1997,6(1):1~13.
    [95] Suder K L,Celestina M L.Experimental and Computational Investigation of the TipClearance Flow in a Transonic Axial Compressor Rotor.NASA TM-106711,1994.
    [96] Hathaway M D,Strazisa A J.Impact of Discrete Tip Injection on Stabilization of a TransonicCompressor Rotor.Proc.21st Army Science Conference,June13~15, Norfolk, VA.
    [97] Hoeger M,Fritsch G,Bauer D.Numerical Simulation of the Shock-Tip Leakage VortexInteraction in a HPC Front Stage.ASME Joumal of Turbomachinery,1999,121:456~468.
    [98] Behnam H B,Joao A T,Paul C I,et al. Parametric Study of Tip Clearance–Casing Treatmenton Performance and Stability of a Transonic Axial Compressor. GT2004-53390.
    [99] Suder K L.Blockage Development in a Transonic, Axial Compressor Rotor. NASATM-113115,1997.
    [100] Bright M M.Dimension Determination of Precursive Stall Events in a Single Stage High SpeedCompressor.NASA TM-107268,1995.
    [101] Chima R V. Calculation of Tip Clearance Effects in a Transonic Compressor Rotor. NASATM-107216,1996.
    [102] Hah C. Large Eddy Simulation of Transonic Flow Field in NASA Rotor37. NASATM-215672,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700