多孔药型罩聚能射流机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚能效应能够显著提高能量密度,高效传递炸药爆炸能量,已被广泛应用于军事和民用领域。药型罩作为战斗部的核心部件,其性能直接影响着聚能效应的发挥。本文通过理论分析、试验研究和数值模拟、宏观理论分析和细观机理相结合的研究方法,对多孔药型罩聚能射流及其侵彻机理进行了系统的分析和研究。
     正确选取状态方程是多孔材料冲击温升计算问题的关键。本文首先对现有的多孔材料的状态方程进行了综述和分析,讨论了现有多孔材料状态方程的优缺点和使用范围。由于Hosson和Herrmann状态方程的参数比较少,精度有保证,可用于工程实际,为冲击温升计算奠定了基础。
     对多孔材料的冲击特性进行了分析和研究,给出了多孔材料药型罩聚能射流速度的近似计算方法,并与实际测试进行了对比。理论分析和计算表明,多孔药型罩聚能射流的速度降低主要是由于冲击温升引起的能量耗散和作用于罩壁的二次冲击压缩压力降低造成。
     考虑了多孔材料的物理特性,给出了多孔材料药型罩形成射流的高低速条件,即药型罩的压垮速度必须小于c(T),同时冲击温升使低速条件降低。给出了含有低熔点金属多孔射流的形成凝聚条件,在满足声速的同时,还要保证药型罩在压垮之后不发生液气相的转变,为多孔药型罩聚能装药的工程设计提供了依据。
     对多孔药型罩聚能射流的稳定性进行了理论分析,结合脉冲X光和侵彻实验对两种不同孔隙度的多孔药型罩聚能射流稳定性进行了研究,得出合适的孔隙度可以降低低速段射流的动态屈服强度,提高射流的稳定性。同时初始冲击温升可以使射流的高速段的粘性降低,与紫铜射流进行了侵彻对比试验,揭示了多孔药型罩低炸高大穿深的机理。
     提出了聚能粒子流概念。在密度自锁模型的假设基础上,结合粒子流的多孔特性,提出了粒子流的侵彻模型,弥补了经典理论不能计算粒子流侵彻深度的不足。该模型在一定条件下可以转化为现有的侵彻模型。
     对回收的紫铜射流和多孔铜射流的杵体进行了细观观测,探讨了多孔药型罩聚能射流在高应变和高应变率下的主要变形机制,冲击温升为动态再结晶创造了有利条件。同时观察到射流和杵体分离处经受了较大的剪切变形。
     采用数值模拟方法,系统的研究了细直径射流引爆包覆炸药物理影响因素,模拟结果显示射流头部形状对侵彻引爆的影响取决于盖板厚度,对于一定厚度的盖板,当射流直径小到一定程度可以不考虑头部形状的影响。对于不同密度的射流引爆同样条件的包覆炸药,随着射流密度的降低需要较高的速度。盖板越厚,需要的射流速度越高;随着射流速度的提高,盖板密度的影响减弱。
     在分析飞板与射流作用的机理上,建立了飞板断续干扰射流频率计算的物理模型,并分析了NAT0角、飞板速度及盖板硬度对干扰频率的影响。提出了断续干扰和连续干扰的转变条件。
     本文的研究工作为多孔材料药型罩聚能装药的设计及其应用提供了新的指导思想。
Shaped charge effect is broadly used in military arena and civil construction, because the focusing of the detonation products creates an intense localized force and decays slowly. As a critical part of the warhead, property of the shaped charge liner has great effect on the application of the shaped charge effect. The jet property and penetration mechanism of shaped charge with porous liner were studied systematically with experimental, analytical and numerical methods.
     Equation of state (EOS) of the porous material is key to the shock temperature rising calculation. All of the EOS of porous materials in the open literatures were analyzed and compared, the merits of which and application conditions were discussed. Because of the few parameters and accuracy, the EOS of Griineisen revised by Herrmann was selected.
     Porous material property shocked was studied and analyzed. Approximated jet speed calculation method was presented and compared with the measurement results. It is shown that the lower speed with porosity increase may be caused by the energy dissipation and degradation of the shocked pressure.
     Porous nature considered, the criteria for the jet coherence were presented, that is, the collapse flow speed must be less than the sound speed, which is after the shock wave compressed and released. The condition for the jet coherence produced by the shaped charge liner made up of low melting point was put forward, that is, sound speed satisfied, and the shock temperature rising after collapse must be less than the material evaporating point to avoid the phase transformation from liquid to vapor, which is helpful for the shaped charge design.
     The jet stability produced from shaped charge with porous liner was studied theoretically, compared with X-Ray measurement and penetration test, it is shown that proper porosity can decrease the jet dynamic strength and enhance the breakup time. Penetration Compared with the homogeneous liners, the deeper penetration mechanism at low standoff distance was presented ,that is, the shock temperature rising can decrease the viscosity of the high-speed part.
     Concept of shaped charge granular jet was presented. Based on the assumption of density locking model, the penetration model of granular jet was put forward, which covers shortage of the classical theory, and can become any of all the forms under certain condition.
     The slug microstructures was examined by optical microscopy and electronic scanning microscopy and compared with the spanned homogeneous one, it reveals that the dynamic recrystallization is the main plastic deformation mechanism at great high-strain-rate, and initial temperature rise is helpful for the dynamic recrystallization. The great shear deformation at the separated location of jet and slug was also observed.
     A nonlinear finite element software LS-DYNA was used to simulate the initiation of confined explosive penetrated vertically by shaped charge jet, the physical property is analyzed systematically. Calculations show that, jet head shape effect on the initiation depends on the covered plate thickness and it has no effect on the initiation when the plate thickness is ascertained and jet diameter is less than some value. For the jet initiation with different density, the less the density and the thicker plate, the higher is the speed. The plate density becomes less important with the higher jet speed.
     Based on the analysis of the interaction between jet and flying plate, a physical model for calculating the intermittent disturbance frequency was presented. The parameters such as NATO-angle, plate velocity and hardness were analyzed; the transition condition from intermittent to continuous disturbance was put forward.
     This work is of significance and guidance for the design and application of shaped charge with porous liner in the future.
引文
[1]恽寿容,赵衡阳 爆炸力学[M].北京:国防工业出版社2005.5 P171-211
    [2]Baker E.L.,Daniels A.,Fuchs B.Improved performance of shaped charge warheads using more powerful explosive formulations,17thISB,1998.3,PP2-347-2-355.
    [3]Jamet F.,Lichtenberger A.Investigation of the W-Cu liner material,9thISB,1986:2-233-2-236.
    [4]王风英,刘天生.钨铜镍合金药型罩的研究[J].兵工学报,2001,22(1):112
    [5]Bransky I,Faidish E.9th International symposium on ballistics,1986,9
    [6]Jackowski A.,Wlodarczyk E.The influence of repressing liners made from sintered copper on jet formation[J].J.Mater.Pro.tech.2006(171):21-26.
    [7]Henry Mohaupt.Shaped Charges and Warheads[M],NewJersey,Inc.,Englewood Cliffs,1966:66-78
    [8]Schardin.H.Development of the Shaped Charge[M].Wehrtechnische Hefie,1954
    [9]Seely L,Clark J.High Speed Radiographic Studies of Controlled Fragmentation[R].Ballistic Research Report No.368,June 16,1943
    [10]Clark J,Rodas W.High Speed Radiographic Studies of Controlled Fragmentation[R]Ballistic Research Laboratory Report No.585,November13,1945
    [11]Tuck J.Note on the Theory if the Munroe Effect[R].U.K.Report,A.C3596,February 27,1943.
    [12]Schardin H,Thomer G.Investigation of the Hollow Charge Problmes With Help of the Flash X-Ray Method[R].Ordnance Technical Intelligence Bulletin 20,1941:1628
    [13]Linschitz H,Paul M.Experimental Studies of Cone Collapse and Jet Formation.Part Ⅰ:Recovery of Cone From Low-Powered Charges[R].National Defense Research Committee,Report OSRD NO.2027,November 29,1943
    [14]Birkhoff G.Mathematical Jet Theory of Lined Hollow Charges[R].Ballistics Research Laboratory Report No.370,June 18,1943
    [15]Birkhoff G.Hollow Charge Anti-Tank Projectiles[R].Ballistic Research Laboratory Report No.623,February 10,1947
    [16]Birkhoff G,MacDougall D,Pugh E,et al.Explosives with lined Cavities[J].Journal of Applied Physics,1948,19(6):563-582
    [17]Evans W.The Hollow Charge Effect[R].tnst.Min.Metall,No.520,March,1950
    [18]Evans W,Ubbelohde A.Formation of Munroe Jets And Their Action On Massive Targets[R].Res.Sup.(London),3-7,1950a.
    [19]Evans W,Ubbelohde A.Some Kinematic Properties of Munroe Jets[R].Res.Sup.(London),3-8,May,1950b
    [20]Pugh E,Eichelberger R,Rostoker N.Theory of Jet Formation by Charges with Lined Conical Cavities[J].Journal of Applied Physics,1952,23(2):532-536
    [21]Eichelberger R,Pugh E.Experimental Verfication of the Theory of Jet Formation by Charges with Lined Conical Cavities[J].Journal of Applied Physics,1952,23(5):537-542
    [22]Lampson M.Jet Formation from Collapsing Conical Shells[A].10~(th)ISB[C],1989.
    [23]Brown J,Curtis J.P,Cook D.D.the formation of the jets from shaped charges in the presence of asymmetry,Journal of Applied Physics.72(6)1992.PP2136-2143
    [24]Kelly R.J,Curtis J.P.On analytic modeling of casing and liner thickniss variations in a shaped charge.Journal of Applied Physics.75(1)1994.PP96-103.
    [25]Curtis J.P,Kelly R.J,circular streamline model of shaped charge jet and slug formation with asymmetry,Journal of Applied Physics.75(12)1994.PP7700-7709
    [26]Curtis J.P,et al,variational approach to the calculation of the radii in the stagnant core model of shaped charge jet formation,J.Appl.Phy.1994,76(12),pp7731-7739.
    [27]Maysless M.et al.Jet tip and appendix characteristics dependence on liner thickness in 60~0point initiated shaped charge.17~(th)ISB,1998,pp2-187-196
    [28]Trebinski R.,an analytical model of jet formation,17~(th)ISB,1998,pp2-243-250
    [29]Thiel M.V.Levatin J.J.Appl.Phy.1980,51(12),pp6107-6114.
    [30]Curtis J.P,Cornish R.Formation model for shaped charge liners comprising multiple layers of different materials.1999,18~(th)ISB,pp458-456.
    [31]郝莉等,聚能射流问题的数值模拟.北京理工大学学报,2003,23(1):19-21.
    [32]Walsh J M,et al.Limiting conditions for jet formation in high velocity collisions[J]J.Appl.Phys.1953,24(3).PP2975-2981.
    [33]Chou P C,Carleone J,Karpp R R.Criteria for jet formation from impinging shells and plates[J],J.Appl.Phys.1976,47(7).PP2975-2981.
    [34]HarrisonJ.T.BASC,an analytical code for calculating shaped charge properties.6~(th)ISB,1981.,1981,PP253-261.
    [35]Murphy M J,Examination of coherency coherence criteria for caculating shaped charge properties[A],6~(th)ISB,San Antonio1990,pp308-316.
    [36]Miller S.,et al.extension of the criterion on cohesiveness of jet formed by collapsing shells.12~(th)ISB.1990.[37]Chanteret P Y.Studies of maximum velocities for coherent shaped charge jets[A],13~(th)ISB,PP327-334
    [38]Walker,J D.Incoherence of the shaped charge jets.16~(th)ISB,1996,VOL(2),PP457-463.
    [39]Chanteret P Y,Lichenburger,15~(th)ISB,1995:2-143-149.
    [40]Cowan et al.on on the prediction of incoherent shaped charge jets.14~(th)ISB,PP39-48.
    [41]Kelly R J,Curtis J P,Cowan K G.An analytic model for the prediction of incoherent shaped charge jets.J.Appl.Phys.1999,86(3),PP1255-1265.
    [42]Mostert F.J,et al.the influence of parameters other than liner velocity on shaped charge jet coherence,22th ISB,2005,pp499-506.
    [43]Ronald et al.Dynamic model for predicting shaped charge jet stability.J.Appl.Phys.1999,86.PP317-326.
    [44]隋树元,王树山,终点效应学.北京:国防工业出版社,1999,PP196-277.
    [45]Trishin Y.A.Kinelovskii S.A.Effect of porosity on shaped charge flow.Combustion,explosion,and shock waves,2000,36(2)PP272-281
    [46]Held M.Particulation of Shaped Jets[A].Proceedings of the 11~(th)International Symposium on Ballistics[C].Brussels Belgium,1989,WM 1:1-10
    [47]Shelton R,Arbuckle A.A Calculation of Particle Size Distributions in the Break up of Shaped Charge Jets[J].Journal ofA pplied Physics,1979,50(10)4183-4191
    [48]Chou P C.Carleone J.the stability of shaped charge jets.J.Appl.Phys.1977.48(10):4187-4195.
    [49]Walsh J.M.Plastic instability and particulation in stretching metal jets.J.Appl.phys.1984,56(7):1997-2005
    [50]Romero L..the stability of stretching and accelerating plastic sheets.J.Appl.Phys.1991,69(11)pp7474-7499.
    [51]Friankel I,Weihs D.Influence of Viscosity on the Capillary Instability of a Stretching Jet[J].J.Fluid.Mech.,1987,185:361
    [52]Pack D.C. on the perturbation and breakup of a high-speed, elongating metal jet. J.Appl.Phys. 1988,63(6),pp 1864-1871.
    [53]Yarin A.L.On instability of rapidly stretching metal jets produced by shaped charges.Int.J.Engng sci.1994,32(5),pp847-862.
    [54]Babkin A.V. et al,effect of shaped charge jet compressibility and strength on the characteristics of their initial stretching in free fiight.J.Appl.Mech.tech.Phys. 1997,38(2),PP177-181.
    [55]Curtis J. Axisymmetrical Instability Model for Shaped Charge Jets[J]. Journal of Applied physics. 1987,61 (11): 4978-4985
    [56]Schwartz A.J, Baker E.L.effect of interior surface finish on the break-up of cooper shaped charges, 18th ISB, 1999.9, PP559-565
    [57]Hirsch E.scaling of the shaped charge jet breakup time.propellants,explosives,pyrotechnics. 2006,31(3)PP230-233.
    [58]P.Y.Chanteret,A.lichtenberger. About varying shaped charge liner thickness. 17th ISB, 1998,2-365-372.
    [59]Anderson, et al. a study of grain size effect on the performance of cold pressed shaped charge liners. 15th ISB, 1995,PP259-266.
    [60]Schwartz A.J.et al. analysis of the intergranular impurity concentration and the effects on the ductility of copper shaped charge jets. 17th ISB, 1998,2-439-446.
    [61] Konig P.J., Mostert F.J.the dynamic ductility of shock-hardend copper derived from a novel high strain rate test. 17th ISB, 1998,2-319-324.
    [62]Trebinski R, Jackaski A, Influence of shock wave heating during porous liners lauching on the behavior of jets[A]. 17th International symposium on ballistics,part 2,1998.3,PP235-242.
    [63]Cowan K.G., Greenwood P.R. Hydyocode and analytical code modeling of the effect of liner material grain size on shaped charge jet break-up parameters. 17# international symposium on ballistics, 1998.3, PP2-217-2-223
    [64]Stolken J.S. et al. Shaped charge jet stability calculations: the role of initial and boundary conditions,22th ISB,2005,PP654-661.
    [65]Zernow and Chapyak, initial results obtained from a 3Dcomputational model of the shaped charge jet particulation process, 17th ISB,1998,PP2-199-206.
    [66]Petit J. et al.breakup of copper shaped charge jets: experiment,numerical simulations,and analytical modeling.J.Appl.Phys.2005,98,123521.
    [67]Fedorov S,Babkin A,Ladov S,et al.Prediction of the penetrating power of metallic shaped charge jets subjected to an intense electric current pulse[J].Technical Physics,2003,48(7):829-836
    [68]Fedorov S.Magnetic-field amplification in metal shaped-charge jets during their inertial elongation[J].Combustion Explosion and Shock Waves,2005,41(1):106-113
    [69]Prentice H,Curtis J.Heat generation by shaped charge jet penetration[J].International Journal of Impact Engineering.2003,29(10):589-600
    [70]Held M.Shaped charge optimization against ERA targets[J].Propellants Explosives Pyrotechnics,2005,30(3):216-223.
    [71]Held M.Shaped charge optimization against ERA targets[J].Propellants Explosives Pyrotechnics,2005,30(3):216-223.
    [72]郑哲敏.聚能射流的稳定性问题[J].爆炸与冲击,1981,1(1):6-17.
    [73]秦承森,段庆生,韩冰.聚能射流的断裂时间.爆炸与冲击[J].1997,17(4):318-325
    [74]秦承森,李勇.一个新的射流颗粒速度差公式[J].爆炸与冲击,2001,21(1):8-12
    [75]北京工业学院八系编 爆炸及其作用(下)(M)北京:国防工业出版社,1979
    [76]Hirsch E.,Yossifon G.One-streamline model application to shaped charge jet formation and target penetration.1998,17th ISB,pp2-175-183
    [77]Hankock S.L.Jet penetration for a class of cumulative mass profiles,International journal of impact engineering.1999,23,353-363.
    [78]Held M.Theoretical optimum jet diameter profile for maximum penetration.17th ISB.1998,PP2-259-265.
    [79]Cornish R.,et al.degradation mechanisms in shaped charge jet penetration.International journal of impact engineering,2001,26,105-114.
    [80]Mills J.T.and Curtis J.P.A theoretical investigation of the penetration properties of hollow particles.International journal of impact engineering,2001,26,523-531.
    [81]M.Moyses.penetration by shaped charge jets with raring off-axis velocity distributions.1998,17th ISB,pp2-413-420.
    [82]Rokni U.,et al.a study of the cratering process by particulated jets and its implication in the prediction of jet penetration.17th ISB,1998,pp2-325-332.
    [83]Mayseless M,Genussov R.Jet penetration into low density targets.International journal of impact engineering, 1999,23,585-595.
    [84]Chanteret P. Y.Theoretical consideration about jet density and shaped charge performance. 17th ISB, 1998,pp2-373-380.
    [85]Mayseless M.hirsch E..the penetration-standoff relation of jets with non linear velocity distribution. 18th ISB,1999,pp535-542.
    [86]Marklev G.E. Effect of initial heating of shaped charge liners on shaped charge penetration.Journal of applied mechanics and technical physics,2000,41(5),PP788-791.
    [87]Babkin A.V.,et al. Limits of increasing the penetration of shaped charge jets by pulsed thermal action on shaped charge liners.combustion,explosive and shock waves,2001,37(6),727-733.
    [88]Haugstad B.S. Compressibility effects in shaped charge jet penetration. J.Appl.Phys. 1981,52(3),PP 1243-1246.
    [89]Flis W.J.CrillyM.GHypovelocity jet penetration of porous materials. 18th ISB, 1999:869-876.
    [90]Grove B.Theoretical considerations on the penetration of powdered metal jets. International journal of impact engineering(2006),doi:10.1016.
    [91]Mayseless M.,et al.A computational study of non porous and porous liners in explosively-formed jets. Shock compression of condensed matter, 1999pp367-370.
    [92]Phillips T.linermaterials:resources,processes,properties,costs,and applications.Final report,AD report.91-282.
    [93]Bourne B.,et al.Shaped charge warheads containing low melt energy metal liners, 19th ISB,2001,pp583-590.
    [94] 王铁福等.贫铀药型罩及其聚能射流.爆炸与冲击.1995.15(2),pp180-184.
    [95]Bake E.L.,et al. Development of molybdenum shaped charge liners producing high ductility jets, 14th ISB, 1993.
    [96]Cowan K.G.,et al. Analytical code and hydrocode modeling and experimental characterization of shaped charges containing conical tungsten liners.18th ISB,1999,pp449-457.
    [97]Fuchs B.E.,shaped charge having a porous tungsten liner-an experimental and theoretical study of metal compression, jet formation and penetration mechanics.PhD.dessertation.UMI.1997.
    [98]Murr L.E.,Shih H.K., Niou C-S.Dynamic recrystallization in detonating tantalum shaped charges:A mechanism for extreme plastic deformation. Materials characterization 1994(33):65-74.
    [99]Murr L.E.,et al. Comparison of beginning and ending microstructure in metal shaped charges as a means to explore mechanisms for plastic deformation at high rates.J.of material science 1995(30)PP2747-2758
    [100]Feng C.,Murr L.E.,Niou C-S.Aspects of dynamic recrystallization in shaped charge and explosively formed projectile devices.Metallurgical and materials transactions A.1996(27A),PP:1773-1778.
    [101]Tian W.H.,Fan A.L.,Gao H.Y.Comparision of microstructure in electroformed copper liners of shaped charges before and after plastic deformation at different strain rates.Materials science and engineering.A350(2003)160-167.
    [102]Bransky I,et al.Investigation of shaped charges with conical and hemispherical liners of tungsten alloys.9th ISB,1986,2-237-242.
    [103]Chaiat D..Future P/M materials for kinetic energy penetrators and shaped charge liners.Powder metallurgy in defense technology,1981,vol7,PP185-195.
    [104]Lichenberger A.Influence of the elaboration of W-alloys liners on the behaviour of shaped charge jet.4th international conference on tungsten refractory metals and alloys:processing properties and applications,1997,pp66-73.
    [105]Lee S.,et al.penetration performances of tungsten-copper shaped charge liner.22th ISB,2005,pp437-443.
    [106]Lithenberger A.Ductile behaviour of some materials in the shaped charge jet,metallurgical and materials applications if shock-waves and high-strain-rate phenomena.1995,pp463-470.
    [107]王铁福等.Copper-tungsten shaped charge liners and their performance,弹道学报,1992pp78-82.
    [108]臧涛成等.用聚能装药多层约型罩提高射流速度的研究.弹道学报.1995,7(2)pp78-82.
    [109]史慧生.约型罩质量分布对射孔弹穿透性能的影响.爆破器材.1997,26(4),pp1-4.
    [110]汪永庆,王树山.粉末药型罩射流速度的近似计算方法。火工品,2001.4,pp45-48
    [111]郭圣廷,曾新吾.铋在石油射孔弹约型罩中的应用.测井技术2002,26(4)pp338-340.
    [112]刘建韬等.聚能射孔弹铜合金药型罩的烧结机理。火炸药学报,2001(2):50-51
    [113]向旭等.石油射孔弹金属射流穿孔机理及金属粉末选用研究。测井技术,2000,24(6):448-451
    [1]Dullien F.A.L.多孔介质-流体渗移与孔隙结构[M].1990:45-60.
    [2]Herrmann W.J.Appl.Phys.1969,40:2490.
    [3]Oh K.H.,Persson P.A.Equation of state for extraplolation of high-pressure shock Hugoniot data[J].J.Appl.Phys.1989,65(10):2852-3856
    [4]Simons G A.,Legner H H.An analytic model for the shock Hugoniot in porous materials[J].J.Appl.Phys.1982,53(2):943-947.
    [5]Petrie M.W.,Page N.M.An equation of state for shock loaded powders[J].J.Appl.Phys.1991,69(6):3517-3524.
    [6]Dijken D.K.,De Hosson J.Th.M..Shock wave equation of state of powder material[J].J.Appl.Phys.1994,75(2):809-813.
    [7]Wu Qiang,Jing Fuqian.Yhermaldynamic equation of state and application to Hugoniot predictions for porous materials.J.Appl.Phys.1996,80(8):4343-4349.
    [8]B-Mostert L.,Viljion H.J..Comparative study of analytical method for Hugoniot curves of porous matrials.J.Appl.Phys.1999,86(3):1245-1254.
    [1]Birkhoff G,MacDougall D,Pugh E.Explosives with lined cavities.J.Appl.Phys.,19(6),1948.
    [2]Pugh E M,Eichelberger R J,Rostoker N.Theory of Jet Formation by Charges with Lined Conical cavities.J.Appl.Phys.,23(5),1952.
    [3]Chou P C,Flis W J.Recent development in shaped charge technology[J].Propellants,explosives,pyrotechnics,1986,11:99-104.
    [4]Chou P C,et al.Improved formulas for velocity,acceleration,and projection angle of explosively driven liners.6~(th)ISB,1982,286-296.
    [5]Taylor G.I.Analysis of the explosion of a long cylindrical bomb detonated at one end[M].London:Published by Chapman and Hall,1941:110-186.
    [6]Randers-Pehrson G.An improved equation for calculating fragment projection angle,2th ISB,1977.
    [7]秦承森等,周培基抛射角公式的改进,爆炸与冲击,2005,25(2)PP97-101.
    [8]Gurney R W.The initial velocity of fragments from bombs,shells,and grenades.Ballistic Research Laboratory Report.No.405,14 Sept.1943.
    [9]Trebinski R,Jackaski A,Influence of shock wave heating during porous liners lauching on the behavior of jets[A].17~(th)International symposium on ballistics,part 2,1998.3,PP235-242.
    [10]经福谦.实验物态方程导引.北京:科学出版社.1999.
    [1]Walsh J M,et al.Limiting conditions for jet formation in high velocity collisions[J]J.Appl.Phys.1953,24(3).PP2975-2981.
    [2]Chou P C,Carleone J,Karpp R R.Criteria for jet formation from impinging shells and plates[J],J.Appl.Phys.1976,47(7).PP2975-2981.
    [3]Murphy M J,Examination of coherency coherence criteria for caculating shaped charge properties[A],6~(th)ISB,San Antonio1990,pp308-316.
    [4]Chanteret P Y.Studies of maximum velocities for coherent shaped charge jets[A],13~(th)ISB,PP327-334.
    [5]Walker,J D.Incoherence of the shaped charge jets.16~(th)ISB,1996,VOL(2),PP457-463.
    [6]Kelly R J,Curtis J P,Cowan K G.An analytic model for the prediction of incoherent shaped charge jets.J.Appl.Phys.1999,86(3),PP 1255-1265.
    [7]Harrison J T.BASC,ananlytical code for caculating shaped charge properties,6~(th)ISB,1981,PP253-261.
    [8]Trebinski R,Jackaski A,Influence of shock wave heating during porous liners lauching on the behavior of jets[A].17~(th)International symposium on ballistics,part 2,1998.3,PP235-242.
    [9]经福谦.实验物态方程导引.北京:科学出版社.1999.
    [10]爆炸及其作用编写组.爆炸及其作用(下).北京:国防工业出版社.1979.
    [11]恽寿榕,赵衡阳.爆炸力学.北京:国防工业出版社.2005.5
    [12]Meyer M A,Dynamic behavior of materials[M],John Wiley and sons,inc.1994,pp327-339.
    [13]Mayseles M,et al.A computational study of non porous and porous liners in explosively-formed jets.Shock compression of condensed matter,1999pp367-370.
    [1]P.C.Chou,J.Carleone.The stability of shaped charge[J].J.Appl.Phys.1977,48(10):4187-4195.
    [2]D.C.Pack.On the perturbation and breakup of a high-speed,elongating metal jet.J.Appl.Phys.[J],1988,63(6):1864-1871.
    [3]A.L.Yarin.On instability of rapidly stretching metal jets produced by shaped charge.Int.J.Engng.Sci.1994,3(5):847-862.
    [4]Louis Zernow,Edward J.Chapyak.Initial results obtained from 3Dcomputational model of the shaped charge jet particulation process.17~(tH)ISB,South Africa,1998.3.P2-199-206.
    [5]J.P.Curtis,Axisymmetric instability model for shaped charge.J.Appl.Phys.1987,61(11):4978-4985.
    [6]郑哲敏.聚能射流的稳定性问题[J].爆炸与冲击,1981,1(1),P6-17.
    [7]秦承森等.聚能射流的断裂时间[J].爆炸与冲击,1997,17(4):318-325.
    [8]隋树元,王树山.终点效应学[M].北京:国防工业出版社,2001:197-278.
    [9]G.Andersson et al.A study of grain size effects on the performance of cold pressed shaped charge liners.15~(th)ISB,pp259-266.
    [10]A.J.Schwartz,E.L.Baker.effect of interior surface finish on the break-up of copper shaped charge.18~(th)ISB,1999.pp559-565.
    [11]J.P.Curtis.Axisymmetric instability model for shaped charge jets.J.Appl.Phys.61(11),1987:4978-4985
    [12]E.Hirsch,A formula for the shaped charge breakup time,propellants,explosives,pyrotechnics,1979(4)89-94.
    [13]P.C.Chou,J.Carlone,recent developments in shaped charge technology,propellants,explosives,pyrotechnics,1986,11 pp99-114.
    [14]J.Carlone,Mechanics of shaped charge,Tactical missile warheads,Progress in astronautics,vol,15,1993.
    [15]P.Y.Chanteret.Velocity gradient and shaped charge jet length.18~(th)ISB,1999,pp434-440.
    [16]F.J.Zerilli,R.W.Armstrong.Constitutive relations for the plastic deformation of metals.American institute of physics conference,1996.
    [17]G.R.Johnson,W.H.Cook.7~(th)ISB,1983.
    [18]陈军,罗建.聚能装约射流如何形成空穴[J],弹箭技术,1995(4):36-43
    [19]J.L.Robinson.fluid mechnics of copper:viscous energy dissipation in impact welding.J.Appl.Phys.1977,48(6):2202-2207.
    [20]吴月华,杨杰编著,材料的结构与性能.合肥:中国科技大学出版社,2001:104.
    [21]M A Meyer,Dynamic behavior of materials[M],John Wilcy and sons,inc.1994,pp327-331,
    [1]北京工业学院八系编.爆炸及其作用(下册)[M].北京:国防工业出版社,1979.赵文宣.
    [2]隋树元,王树山.终点效应学[M].北京:国防工业出版社,2000.
    [3]恽寿榕,赵衡阳.爆炸力学[M].北京:国防工业出版社,2005.
    [4]F.Jamet,A.Lichtenberger.Investigation of copper-tungsten shaped charge liners.9~(th)ISB,1986,2-233-236.
    [5]D.Chaiat.Future P/M materials for kinetic energy penetrators and shaped charge liners.Powder metallurgy in defense technology,1981,vol7,PP185-195.
    [6]S.Lee,et al.penetration performances of tungsten-copper shaped charge liner.22th ISB,2005:437-443.
    [7]C.Voumard,et al.Performances and behavior of WCu-pseudo-alloy shaped charges with a simple model for calculating the stand-off curve.19th ISB,2001:437-443.
    [8]G.Birkhoff,et al.explosives with linedcavities.J.Appl.Phys.1948,vol(19):563-581.
    [9]Tate.A J.Mech.phys.solids.1967,15:387.
    [10]M.Keefe,et al.penetration by stretching projectiles.J.Mech.phys.solids,1988,36(5):537-549.
    [11]B.S.Haugstad.Compressibility effects in shaped charge jet penetration,J.Appl,Phys.1981,52(3):1243-1246.
    [12]W.J.Flis,M.G.Crilly,Hypervelocity jet penetration of porous materials.18~(th)ISB,1999:869-876
    [13]B.Grove.Theoretical considerations on the penetration of powdered metal jets.Doi:10.1016/j.ijmpeng.2006.09.034.
    [14]Gehring,J.M,et al,experimental studies of impact phenamena and correlation with theoretical models.7(th)Symp.Hypervel.Impact.1965.
    [15]R.Comish,et al.Degradation mechanisms in shaped charge jet penetration.Inter.J.Impact Engng,2001(26):105-114.
    [16]王晓鸣等.高速分段弹的侵彻模型.南京理工大学学报,1997,21(5):445-448.
    [1]L.E.Murr,H.K.Shih,C-S.Niou.dynamic recrystallization in detonating tantalum shaped charges:A mechanism for extreme plastic deformation.Materials characterization1994(33):65-74.
    [2]C.Feng,L.E.Murr,C-S.Niou.Aspects of dynamic recrystallization in shaped charge and explosively formed projectile devices.Metallurgical and materials transactions A.1996(27A),PP:1773-1778.
    [3]W.H.Tian,A.L.Fan,H.Y.Gao.Comparision of microstructure in electroformed copper liners of shaped charges before and after plastic deformation at different strain rates.Materials science and engineering.A350(2003)160-167.
    [4]L.Zernow,L.lowry.High strain rate deformation of copper in shaped charge jets.Shock-wave and high-strain-rate phenomena in materials,M.A.Meyers,New york.1992:521-528
    [5]L.E.Murr,C-S.Niou,J.C.Sanchez and H.K.Shih.comparison of beginning and ending microstructure in metal shaped charges as a means to explore mechanisms for plastic deformation at high rates.J.of material science 1995(30)PP:2747-2758
    [6]范爱玲等.电铸与旋压药型罩微观组织及织构的研究[J].兵器材料科学与工程,2001,24(5):38-40
    [7]Seong LEE,et al.microstructural evolution of a shaped charge liner and target materials during ballistic tests.Metallurgical and materials transactions A,2002,vol.33A,pp1069-1074.
    [8]A.Lichtenberger.Ductile behavior of some materials in the chaped charge jet.In metallurgical and materials application of shock-wave and high-strain-rate phenemena,edited byL.E.murr,et al.1995:463-470.
    [9]M.Mayseless.the appendix:a new section of a shaped charge jet,24~(t上)ICHSPP,2001:739-747.
    [1]M.Held.initiation phenomena with shaped charge jets,9~(th)ISB,1989:1416-1426.
    [2]M.C.Chick,D.J.Hatt.the initiation of covered composition B by metal jet,7~(th)ISD,1981:352-361
    [3]M.Held.experiments of initiation of covered but unconfined high explosive charge by means of shaped charge jets,Propellants,Explosives,Pyrotechnics,1987,12:35-40.
    [4]J.Brown,D.Finch,the shaped charge jet attack of confined and unconfined sheet explosive at nomal incidence.1~(th)ISB,211-232.
    [5]C.Mader,G.H.Pimbley.Jet initiation of explosives.LASL Report-8647,University of California.pp1-8.
    [6]R.Frey,et al.Shock evolution after shaped charge jet impact and its relevance to explosive initiation.Int.J.Impact Engng,1995,Vol.16(4),pp563-590.
    [7]F.Walker.E,Wasley R.J.Critical energy for shock initiation of heterogeneous explosives[J].Explosive Stoffe,1969(1),9-13.
    [8]L.David,et al.The effect of impact orientation on the critical velocity needed to initiate a covered explosive charge[J].Int.J.Impact Engng,1997,Vol.20,223-233.
    [9]F.Peugeot,M.Quidot.Threshold Energy:A dimensional extension of the critical energy for jet attack application[J].Propellants,Explosives,Pyrotechnics 23,1998,188-192.
    [10]F.Peugeot,et al.A analytical extension of the critical energy criterian used to predict bare explosive response to jet attack[J].Propellants,Explosives,Pyrotechnics 23,1998,117-122.
    [11]赵海鸥,LS-DYNA动力分析指南,兵器工业出版社,2003.
    [12]时党勇,李裕春,张胜民,基于ANSYS/LS-DYNA8.1进行显式动力分析,清华大学出版社,2005.
    [13]M.Katayama,S.Kide and T.Yamamoto.Numerical and experimental study on the shaped charge for space debris assessment[J].Acta Astronautica Vol,48,No.5-12,2001,363-372.
    [14]E.L.Lee,C.M.Tarver.Phenomenological model of initiation in heterogeneous explosives[J].Phys.Fluids,1980,23(12):2362-2369
    [15]Livermore.LS-DYNA Keyword User's Manual[DB].California:Livermore Software Technology Corporation,2001.
    [16]M.Held.Shaped charge jet initiation tests with covered high explosive charges with air gaps[J].Propellants,Explosives,Pyrotechnics,2001,26:38-42.
    [1]M.Mayseless,Y.Erlich.interaction of shaped charge jets with reactive armor,proc.8~(th)ISB.Rauistics.1984
    [2]N.Barenea,N.Sela,M.Ravid Ananalytical model for shaped charge jet interaction with reactive armour and residual penetration[A],14~(th)ISB,Canada 1993.9:651-660.
    [3]Zhu Dingbo,Li Jingyun,Li Dejun.Distrbance on an armour-piecing jet caused by an explosive armour.ACTA ARMAMENTAR.1991,2(1):46-52.
    [4]隋树元,王树山,终点效应学[M].北京:国防工业出版社:2000.7:80-82
    [5]M.Held.Stopping power of explosive reactive armours against different shaped charge diameters or at different angles.[J].Propellants,Explosives,pyrotechnics 2001,26:97-104.
    [6]Manfred held.Momentum theory of explosive reactive armours[J].Propellants,Explosives,pyrotechnics 2001,26:91-96.
    [7]Manfred held.Disturbance of shaped charge jets by bulging armour[J].Propellants,Explosives,Pyrotechnics.2001,26:191-195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700