对冲阻尼型气波制冷机性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气波制冷机作为一种膨胀制冷设备,具有制冷量大、运行周期长、节能、操作维修方便、带液运行能力强等特点。已应用于油田气轻烃回收、天然气脱水、化工厂尾气回收或废气净化等领域。但目前国内外气波制冷机相关的报道较少,相关报道多以针对性较强的实验研究为主,缺少系统和深入的理论及实验研究,气波制冷机的性能有待于进一步提高。据此,本文建立了完善的气波制冷机实验平台,并结合数值分析方法,对气波制冷机振荡管内波系运动和传热行为进行研究,以探寻提高气波制冷机性能的途径。通过研究振荡管内波系的运行状况,确定了气波机实现极值等熵制冷效率的操作条件,并给出了极值射流频率的预测方法:通过研究振荡管内传热行为,确定了振荡管的壁温分布及其随各参数的变化规律,提出了对冲型均直振荡管:通过研究对冲型均直振荡管的性能,对该振荡管的结构进行有效地改进,确定了性能更佳的对冲型阻尼振荡管:通过研究不同参数条件下采用对冲型阻尼振荡管气波机的制冷性能,掌握了该气波制冷机的运行规律。
     本论文的主要研究工作及所形成的主要结果与结论如下:
     (1)设计加工了气波实验整机和多管系气波实验机,建立了边界条件可灵活改变的气波制冷机实验平台,减小了实验机与工业机之间的差异,可较好地完成振荡管内瞬态压力、振荡管外壁温度、机器制冷性能及其结构优化等实验工作。采用滑移网格技术,建立了多管、多周期的数值分析模型,并加入实验测得的管壁温度,避免了振荡管的初始和边界条件不准确的问题,克服了振荡管内非定常传热达到热平衡状态所需计算时间长、累计误差大的缺点,此数值模型经实验验证与实验结果吻合良好。
     (2)对振荡管内波系运行状况和传热行为进行了模拟计算,并借助于实验手段,对一端封闭的均直振荡管内流动进行了深入研究。研究发现:管内激波与喷嘴结构之间存在最优匹配关系是振荡管制冷性能存在极值现象的主要原因;数值分析能够理想地预测气波制冷机的极值射流频率。激波扰动能够引起管内气体与管壁之间的传热量迅速增加,是影响振荡管壁温分布的主要因素;由于膨胀波的作用,使振荡管内激波扰动存在一定的范围,该扰动范围能够诱发振荡管壁温出现跳跃和封闭端回升现象。
     (3)通过振荡管壁温分布的分析发现,波系对冲有利于管内气体能量的外输耗散,据此提出了对冲型均直振荡管结构。研究表明:该振荡管能够加强管内波系能量的消耗,改善振荡管壁温分布,使振荡管的管长利用率和制冷性能均得到提高。对冲型均直振荡管中有透射激波到达管入口端,使其制冷性能存在较明显的极值现象。两对冲型均直振荡管内波系运行状况存在差异,当来自于第一振荡管的透射激波到达第二振荡管入口时,第二振荡管入口处于被喷嘴前沿封闭的状态是对冲型均直振荡管实现极值等熵制冷效率的条件。
     (4)在确定了截面突扩结构——激波吸收腔的削弱激波性能随结构参数变化规律的基础上,结合激波吸收腔直径对气波制冷机体积的影响,提出了串联吸收腔结构。研究表明:串联吸收腔能够吸收入射激波能量,并将其反射为膨胀波,消除了反射激波对振荡管制冷性能的不利影响,机器制冷性能得到了提高;反射膨胀波能够引发二次入射激波,使反射膨胀波与喷嘴结构之间存在一定最优匹配关系,由于二次入射激波较弱,反映到制冷性能上,串联吸收腔振荡管效率曲线平坦:反射膨胀波到达振荡管入口时,振荡管入口处于封闭状态是串联吸收腔振荡管实现极值等熵制冷效率的条件。
     (5)综合对冲耗散和阻尼吸收不同的两种削弱激波强度的思想,提出了对冲型阻尼振荡管结构。研究表明:该振荡管克服了对冲型均直振荡管内波系运行状况存在差异的缺点,吸收了对冲型均直振荡管和串联吸收腔的优点。与一端封闭的均直振荡管相比。振荡管的管长利用率和制冷性能均得到提高,等熵制冷效率提高可达15%以上,其中极值制冷效率点提高5%左右。对冲型阻尼振荡管中的阻尼腔结构能将入射激波反射为膨胀波,使振荡管制冷性能和流量曲线均变得较平坦,提高了振荡管变工况的工作能力。对冲型阻尼振荡管实现极值等熵制冷效率的条件为:反射膨胀波到达振荡管入口时,振荡管入口处于封闭状态。
     (6)分别对膨胀比、压力值、喷嘴宽度和喷嘴射流角度等参数对对冲阻尼型气波制冷机制冷性能的影响进行了实验研究,并对其影响机理进行了分析,掌握了对冲阻尼型气波制冷机的运行规律,为其工业应用提供了基础保障。
Gas Wave Refrigerator(GWR),a kind of gas expansion refrigeration equipment,has many features such as high throughput,long operation period,low cost,easy operation,simple maintenance and good anti-erosion against drops or particles.At present,GWR has already been used in light hydrocarbon recovery from oil-field gas,natural gas dehydration,chemical plant exhaust or waste gas purification,scientific research,etc.However,little research work on GWR has been done,and the previous work focused only on the experimental research for some special cases.A systemically theoretical and experimental research has not been reported, and the performance of GWR needs to be improved for enlargement of application area.This dissertation is aimed to explore a method for improvement of GWR performance.An experimental platform and a numerical model are established to study the wave motion and heat transfer behavior inside oscillating tube.By the study on the wave motion inside oscillating tube,the operational conditions when GWR achieves the extreme refrigeration efficiency are determined,and a prediction method for extreme jet flow frequency is put forward.By the study on the heat transfer behavior inside oscillating tube,the tube wall temperature distribution and its parameter influences are obtained,and Intersection Oscillating Tube(IOT) is proposed. By the study on IOT performance,IOT structure is effectively improved,and Intersection Damp Oscillating Tube(IDOT) is determined because of its better performance.By the study on parameter influences on the refrigeration performance of GWR with IDOT,the operation principles of this GWR are obtained.The main research work and achievements are as following.
     (1) Two experimental machines,60-tube whole machine and multi-tube series machine, are designed and produced.The GWR experimental platform with changeable boundary conditions is set up.Thus,it is possible to complete many experimental works on oscillating tube,such as the inner transient pressure,the outer wall temperature,the refrigeration performance and the structure optimization.Besides,the differences between experimental GWR and industrial GWR can be reduced.
     A numerical model of GWR is set up using sliding mesh technique,and the tube wall temperature distribution which is obtained from experiments is considered.This model can complete the multi-period computation,and simulate the influence of the adjacent oscillating tubes.It can overcome the disadvantages of the conventional model such as inaccurate initial conditions and inaccurate boundary conditions,and make up for the deficiency of long computing time and big accumulated error for oscillating tube to achieve thermal equilibrium. The numerical model is verified by experiments and it is in good agreement with the experimental results.
     (2) The flow inside the oscillating tube is investigated by the numerical and experimental study on wave moving status and heat transfer process.The results show that,the existence of extreme refrigeration performance is mainly because of the optimal match relation between shock wave and nozzle structure.The numerical analysis can ideally forecast the extreme jet frequency of GWR.As the shock wave disturbance inside oscillating tube can cause the rapid increase of gas temperature and heat flow rate of the inner wall,it is considered as the main influencing factor of the wall temperature distribution.As there is a disturbance range for shock wave inside oscillating tube,the jumping and rebound phenomena appear in the tube wall temperature distribution.
     (3) By analyzing the wall temperature distribution of oscillating tube,the intersection dissipation phenomenon of waves has been detected under the higher order extreme jet frequency.Then,Intersection Oscillating Tube(IOT) is put forward and its internal flow and refrigeration performance are studied.The results show that the utilization ratio and refrigeration performance of oscillating tube have been enhanced by using IOT.As IOT can not eliminate the shock wave,there are still the obvious extreme phenomena in refrigeration performance.When the second oscillating tube of lOT achieves the optimal match relation between shock wave and nozzle structure,the extreme isentropic refrigeration efficiency appears.
     (4) The structural parameter influences on weakening-wave performance of the expansion chamber(a sudden-expansion structure) are investigated.Then the oscillating tube with series expansion chambers is proposed considering the effect of chamber diameter on the GWR volume,and its internal flow and refrigeration performance are studied.The results show that, series expansion chambers can absorb the injected shock waves,and the reflected waves are expansion waves.Therefore,the refrigeration performance of oscillating tube is enhanced and its change range with jet frequency becomes small.For the reflected expansion waves can cause the second injected shock waves,there is the optimal match relation between the reflected expansion waves and nozzle structure,leading to the slight extreme phenomena in refrigeration performance of oscillating tube with series expansion chambers.The oscillating tube inlet has already been closed by the nozzle forehead when the reflected expansion waves get to the inlet, which is the condition for oscillating tube with series expansion chambers to achieve the extreme isentropic refrigeration efficiency
     (5) IDOT is put forward by combining two weakening-wave methods,intersection dissipation and damp absorption,and its internal flow and refrigeration performance are studied. The results show that IDOT has the merit of IOT and oscillating tube with series expansion chambers,makes up for the deficiency of IOT in match relation.Comparing with the straight oscillating tube,the utilization ratio and refrigeration performance of IDOT are enhanced,the increase of isentropic refrigeration efficiency may reach above 15%to the most and the peak efficiency has increased more than 5%.The refrigeration performance and the throughput of IDOT are both more stable because the reflected wave is expansion wave.The extreme isentropic refrigeration efficiency of IDOT can be achieved if its inlet has already been closed by the nozzle forehead when the reflected expansion wave gets to the inlet.
     (6) The influences of some parameters,including expansion ratio,pressure value,nozzle width and nozzle jet angle,on the refrigeration performance of GWR with IDOT are investigated,and the influence mechanisms are analyzed.Furthermore,the operation law of GWR with IDOT is found,and its industrial application is guaranteed.
引文
[1]Rennaz M C.New French gas cooler recovers 120bpd gasoline[J].World Oil,1973,8:57-59.
    [2]Christian D,Amande J C,Viltard C.Barge-mounted NGL plant boosts recovery from offshore field[J].World Oii,1982,7:105-107.
    [3]张波.一种新型自由活塞式膨胀机的研制及试验研究[J].西安交通大学学报,2006,40(7):2-5.
    [4]江楚标.透平膨胀机及发展动态[J].深冷技术,2001,(5):1-9.
    [5]刘井龙,熊联友.一种新型膨胀机-涡旋式膨胀机[J].深冷技术,2000,(4):13-15.
    [6]和永超,侯予.三种膨胀装置不可逆损失的比较[J].低温与超导,2005,33(2):53-57.
    [7]E.Brocher,C.Maresca and M.H.Bournay[J].J.Fluid Mech,1970,43(2):369-384.
    [8]Rennaz M C.Well head gas refrigerator field strips condensate[J].World Oil,1971,10:60-61.
    [9]Marchal P,Malek S,Vitard J C.Skid-mounted rotating thermal separator[J].Oil and Gas,1984,11:55-58.
    [10]#12
    [11]间宫林荣.かス冷却分离装置の化学工业への利用[J].化学装置,1978,2:52-57.
    [12]Thermal separators employing a movable distribute:U S,4383423[P].1983-5-17.
    [13]Galyukov.A.Timofeev E.Proceedings of 20th Int Sym(On Shock Waves)[C].Australian:13-20.
    [14]Saito T,Voinovich P,Zhao W etc.Experimental and numerical study of pressure wave refrigerator performance[J].Shock Wave,2003,13:253-259.
    [15]Shao J,Bao Y D,Shen Y N etc.Experimental Investigation of an new type expander[J].Advances in Cryogenic Engineering,1986,31:685-692.
    [16]Shao J,Shen Y N,Feng Y P etc.Thermodynamic analysis and experimental study on petroleum gas separation system incorporating RJE[J].Proceeding of ICESR,1986,9.
    [17]Shao J,Gao J,Feng Y etc.Experimental study of influence of transient performance in pressure plus tubes on isentropic efficiency of RJE[J].Cryogenics,1986,26(11):634-636.
    [18]方曜奇等.第四届全国激波管与激波学术会论文集[C].1987:67-71.
    [19]黄志达,黄钟岳,方曜奇.新型节能装置-透平式热分离机的研究[J].大连工学院学报,1983,22(3):115-119.
    [20]黄志达,唐山椒.RFT-2000型透平式热分离机原理及应用[J].大连工学院学报,1985,24(4):123-124.
    [21]方曜奇等.接受管结构对热分离机制冷的影响[J].流体工程,1987,17(3):15-18.
    [22]邵件,包裕弟,沈永年等.转动喷嘴膨胀机的实验研究[J].浙江大学学报,1984,18(3):25-34.
    [23]邵件,沈永年.转动式热分离机转速与变压管长度匹配的研究[J].浙江大学学报,1988,22(5):114-119.
    [24]包裕弟,沈永年,张朝涵,冯仰浦,邵件.回收气体压力能的转动喷嘴膨胀机研究[J].能源工程,1981,2:27-30.
    [25]方曜奇,郑洁.一种新型的制冷技术-气波制冷机[J].辽宁化工,1990,(5):51-54.
    [26]Fang Y Q,Zheng J,Liu R J,Zhu C,Fan J,Hu D P.Experimental study of gas wave refrigeration[C3.In:TakayamaK Proc.18th Int Symp on Shock Waves.Springer-Verlag Berlin Heidelberg Ⅱ,1991:1335- 1338.
    [27]于伟.利用多孔板阻尼提高热分离机效率.青年力学协会第二届年会文流论文[C],1992:111-134.
    [28]李学来.压力波制冷机的研究及工业开发[J].制冷,1997,60(3):6-12.
    [29]朱彻,刘润杰,李洪安.气波制冷技术在天然气脱水净化工程中的应用[J].制冷,1995,50(1):10-15.
    [30]朱彻,李洪安,邹久朋等.一项新兴的天然气脱水净化技术[J].天然气工业,1995,15(5):57-61.
    [31]张朝函.一种新型机械-旋转式制冷机[J].低温工程,1993,1-34.
    [32]尹荣辅.川中油气田轻烃资源回收的问题和讨论[J].石油和天然气化工,1994,24(1):19-22.
    [33]蒋洪,朱聪.轻烃回收技术的现状及发展方向[J].石油规划设计,2000,11(2):15-16.
    [34]黄齐飞,李学来.热分离技术发展现状与应用前景[J].福建化工,2001,2:10-14.
    [35]孙以岑.利用余压的节能技术-用热分离机回收氨厂放空气的探讨[J].石油化工设备,1986,15(6):13-18.
    [36]俞鸿儒.用于低温风洞的新颖制冷方法[J].力学学报,1999,31(6):645-651.
    [37]俞鸿儒.产生风洞低温试验气流的新途径[J].流体力学实验与测量,1997,11(1):1-5.
    [38]胡大鹏.SB416航空发动机高空模拟试验气波制冷系统研究与开发[R],2003.
    [39]梁世斌,方曜奇.利用低温技术进行物料细粉碎的实验研究[J].制冷学报,1995(3):27-29.
    [40]梁世斌,方曜奇.利用低温技术进行胎面胶细粉碎的实验研究[J].制冷学报,1996(1):20-22.
    [41]Coanda H.Device for deflecting a stream of elastic fluid projected into an elastic fluid.US,2052869[P],1936-09-01.
    [42]E.Brocher,C.Maresca and M.H.Bournay[J].J.Fluid Mech,1970,43(2):369-384.
    [43]李兆慈,徐烈,赵兰萍.脉管制冷与气波制冷耦合的研究[J].低温与超导,2000,(2):1-5.
    [44]李兆慈.脉管式气波制冷机耦合特性的研究[D].上海:上海交通大学,2001.
    [45]徐烈,熊炜,孙恒.脉管式气波制冷的实验研究[J].低温工程,1999,(4):136-141.
    [46]David M,Marechal J C,Simon Y and Gupin C.Theory flow in orifice pulse tube refrigerator[J].Cryogenics,1993,33:154-159.
    [47]De Boer P C T.Pressure heat pumping in the orifice pulse-tube refrigerator[J].Adv.Cry.Eng,1996,41:1471-1478.
    [48]Kittel P.Ideal orifice pulse tube refrigerator performance[J].Cryogenics,1992,32(9):843-844.
    [49]Nalim,M.R..Preliminary Assessment of Combustion Modes for Internal Combustion Wave Rotors[C].AIAA-1995-2801-927.
    [50]Wilson,J.,Paxson,D.E..Wave Rotor Optimization for Gas Turbine Topping Cycles[J].Journal of Propulsion and Power,1996,12(4):778-785.
    [51]Hoxie,S.S.,Lear,W.E.,and Micklow,G.J..A CFD Study of Wave Rotor Losses Due to the Gradual Opening of Rotor Passage Inlets[C].AIAA1998-3253-993.
    [52]Nalim,M.R..Wave Rotor Detonation Engine.US,6460342[P],2002.
    [53]Snyder,P.,Alparslan,B.,and Nalim,M.R..Wave Rotor Combustor Test Rig Preliminary Design[P].2004 International Mechanical Engineering Conference,ASME Paper IMECE2004- 61795,2004.
    [54]Okamoto,K.,Nagashima,T..A Simple Numerical Approach of Micro Wave Rotor Gasdynamic Design[P].16th International Syposium on Airbreathing Engines,Paper ISABE-2003-1213,2003.
    [55]Okamoto,K.,Nagashima,T.,and Yamaguchi,K..Rotor-Wall Clearance Effects upon Wave Rotor Passage Blow[P].15th International Symposium on Airbreathing Engines,Paper ISABE-2001-1222,2001.
    [56]Okamoto,K.,Nagashima,T.,and Yamaguchi,K..Introductory Investigation of Micro Wave Rotor[C].2003 International Gas Turbine Congress,ASME Paper IGTCO3-FR-302,Japan,2003.
    [57]Akbari,P.,MUller,N..Preliminary Design Procedure for Gas Turbine Topping Reverse-Flow Wave Rotors[C].2003 International Gas Turbine Congress,ASME Paper IGTCO3-FR-301,2003.
    [58]Akbari,P.,Muller,N..Gas Dynamic Design Analyses of Charging Zone for Reverse-Flow Pressure Wave Superchargers[C].2003 ASME Spring Technical Conference,ASME Paper ICES2003-690,2003.
    [59]刘虎.压力交换制冷机结构参数优化研究[D].大连:大连理工大学,2006.
    [60]丁美霞.压力交换制冷机参数对性能的影响[D].大连:大连理工大学,2007.
    [61]李力.气波制冷机接受管内不定常流数值模拟[D].大连:大连理工大学,1994.
    [62]胡志敏,方曜奇等.刚直管在脉动压力作用下表面泵热的实验研究[C].全国化工机械专业教育指导委员会成立大会及第二届校际学术交流会.
    [63]俞鸿儒.热分离机内的流动[J].大连工学院学报,1984,23(4):1-7.
    [64]熊炜.脉管式气波制冷机的实验研究[D].上海:上海交通大学.1999.
    [65]冯其标.热分离机-新型制冷和气体分离装置[J].石油化工,1982,(1):41-47.
    [66]黄公明.脉动管并非冲波管[J].低温工程,1987,(1):47-51.
    [67]黄公明.脉动管中波的形成、反射与相交[J].低温工程,1987,2:16-20.
    [68]W.Zhao,Z.L.Jiang,H.R.Yu.Wave Propagation Analysis in a Pressure Wave Refrigerator [J].World Scientific,2005,19(28):1747-1750.
    [69]孔珑.可压缩流体动力学[M].北京:水利电力出版社,1991.
    [70]张渝.膨胀波与激波[M].北京:北京大学出版社,1983.
    [71]钱翼谡.空气动力学[M].北京:北京航空航天大学出版社,2004.
    [72]张远君.流体力学大全[M].北京:北京航空航天大学出版社,1991.
    [73]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [74]苏铭德,黄素逸.计算流体力学基础[M].北京:清华大学出版社,1997.
    [75]张涵信,沈孟育.计算流体力学-差分方法的原理和应用[M].北京:国防工业出版社,2003.
    [76]李志印,熊小辉,吴家鸣.计算流体力学常用数值方法简介[J].广东造船,2004,3:5-8.
    [77]刘光宗,方杭安.压力谐振管的数值计算[J].应用力学学报,1988,15(2):53-64.
    [78]胡大鹏.第四届高校化机专业教学科研交流会论文[C],1991:152-158.
    [79]李学来.轴向及径向传热对气波振荡管冷效应的影响[D].大连:大连理工大学,1996.
    [80]Fang Y Q,Hu D P.Proc of the 10th Int Heat Transfer Conf[C],Bmighton U K,1994:54-56.
    [81]刘海鑫,张朝涵.旋转式热分离机振荡管内热力过程的理论分析[J].深冷技术,2004,1:8-12.
    [82]顾顗.热分离机的结构及应用探讨[J].化工装备技术,1990,11(1):24-29.
    [83]李学来.压力波制冷机工作管开口端处的流动分析[J].福州大学学报,2001,29(5):108-110.
    [84]朱子华,刘学武.旋射流型式气波制冷机实验研究[J].实验流体力学,2007,21(3):35-37.
    [85]方曜奇,郑洁,刘润杰等.气波制冷效率影响因素的实验研究[J].气动试验与测量控制,1993,7(3):15-18.
    [86]朱雪琴.气波制冷机振荡管最佳管长的研究[J].无锡轻工业学院学报,1993,2:135-140.
    [87]李学来.管长对振荡管冷效应影响的实验研究[J].制冷,1996,(2):15-17.
    [88]李兆慈,徐烈,张存泉,孙恒,赵兰萍.气波制冷机等熵效率影响因素的实验研究[J].低温工程,2000,5:50-54.
    [89]李学来.两种管外传热型式对振荡管性能的影响[J].化工学报,2000,51(1):12-16.
    [90]张朝涵,周国勇.提高旋转式热分离机热力性能的实验研究[J].低温与超导,2002,30(4):54-58.
    [91]刘学武,邹久朋,朱彻等.反冲膨胀式气波制冷机制冷特性[J].天然气工业,2005,25(2):176-180.
    [92]李学来,郭荣伟.振荡管最佳射流激励频率钳制效应[J].南京航空航天大学学报,1998,30(6):606-610.
    [93]李学来,黄齐飞,朱彻.有关因素对振荡管最佳射流激励频率的影响[J].化工学报,2002,53(2):194-198.
    [94]李学来,黄齐飞,朱彻.反射激波的吸收对热分离机性能的影响[J].化工学报,2003,54(2):170-175.
    [95]李学来,方曜奇,朱彻,刘润杰.振荡管管壁轴向导热的试验研究[J].大连理工大学学报,1996,36(1):37-40.
    [96]李学来,方曜奇,朱彻.气波制冷机振荡管外强化换热的试验研究[J].制冷,1996,4:7-9.
    [97]李学来,朱彻,方曜奇.振荡管最佳隔热位置[J].化工学报,2001,52(9):757-760.
    [98]冀晓辉,刘伟.振荡管结构对气波制冷机制冷性能影响的研究[J].制冷学报,2004,3:19-21.
    [99]Liang S B,Li X L,Ma H B.Thermoacoustic power effect on the refrigeration performance of thermal separators[J].Cryogenics,2003,43:493-500.
    [100]Baird M,DuncanG et al.Heat transfer in pulsed turbulent flow[J].Chem.Eng.Sci.,1966,21(2):197-199.
    [101]Keil R H,Baird M H I.Enhancement of heat transfer by flow pulsation[J].Ind.Eng.Chem.Process,1971,10(4):473-478.
    [102]Ludlow J C,Zirovan D I and Gainer J L.Heat transfer with pulsating flow[J].Chem.Eng.Comm.,1980,7(4&5):211-218.
    [103]Gupta S K,Petal R D and Ackerberg R C.Wall heat/mass transfer in pulsatile flow [J].Chem.Eng.Sci.,1982,37(12):1727-1739.
    [104]Lemlich R,Armour J C.Forced convective heat transfer to a pulsed liquid[J].Heat transfer,Boston,Chem.Eng.Prog.Symp.Series,1965,61:83-96.
    [105]Charles R.Milburn,Malcolm H.I.Baird.Flow pulsation generator for pilot-scale [J].Ind.Eng.Chem.Progess,1970,9(4):629-635.
    [106]Edwards M F,Nellist D A and Wilkinson W L.Heat transfer to viscous fluids in pusating flow in pipes[J].Chem.Engineer,1973,(279):532-545.
    [107]Park J S,Taylor M F and McE1igot D M.Heat transfer to pulsating turbulent gas flow [J].Heat Transfer,1982,Hemisphere Pub.Co.,1982,3:105-110.
    [108]张连玉,汪令羽,苗瑞生.爆炸气体动力学基础[M].北京工业学院出版社,1987.
    [109]刘润杰.气波制冷机转速与动态压力的同步测量[J].气动实验与测量控制,1995,2:79-82.
    [110]Okamoto K.,Araki M.:Shock wave observation in narrow tubes for a parametric study on micro wave rotor design[J].Journal of thermal science,2008,17:134-140.
    [111]Parneix S,et al.Predictions of turbulent heat transfer in an axisymmetric jet impinging on a heated pedestal[J].ASME J Heat Transfer,1999,121(2):43-49.
    [112]Speziale C G,ThangamS.Analysis of an RNG based turbulence model for separated flows [J].Internetional Journal Engineeringg Science,1992,30(10):1379-1388.
    [113]Thangam S,Speziale C G.Turbulent flow past a backward-facing step:a critical evaluation of two-equation models[C].AIAA,1992,30(5):1314-1320.
    [114]Shih T H,Liou W W,Shabbir A,Yang Z G,Zhu J.A new k-ε eddy viscosity model for high reynolds number turbulent flows[J].Compute Fluids,1995,24(3):227-238.
    [115]Fern(?)ndez J A,E1icer-Cort(?)s J C,Valencia A,Pavageau M,Gupta S.Comparison of low-cost two-equation turbulence models for prediction flow dynamics in twin-jets devices[J].Heat and Mass Transfer,2007,34(5):1-9.
    [116]Speziale C.G.,Thangam S..Analysis of an RNG based turbulence model for separated flows[J].International Journal of Engineering Science,1992,30:1397-1388.
    [117]Fernandez J.A.,Elicer-Cort(?)s J.C.,Valencia A.,Pavageau M,Gupta S.Comparison of low-cost two-equation turbulence models for prediction flow dynamics in twin-jets devices[J].Heat and Mass Transfer,2007,34:1-9.
    [118]Van Leer B.Upwind-difference methods for aerodynamics problems governed by the Euler equations of gas dynamics[J].Lectures in Applied Mathematics,1985,(22):327-336.
    [119]马铁犹.计算流体力学[M].北京:北京航空航天大学出版社,1987.
    [120]王承尧,王正华.计算流体力学及并行计算[M].长沙:国防科技大学出版社,2000.
    [121]陈作斌.计算流体力学及应用[M].北京:国防工业出版社,2003.
    [122]李德元.二维非定常流体力学数值计算[M].北京:科学出版社,1987.
    [123]黄敦.复杂激波的数值模拟[J].现代流体力学进展,1992,1:60-72.
    [124]童秉纲,张炳萱,崔而杰.非定常流与涡运动[M].北京:国防工业出版社,1993。
    [125]Van Leer B.Upwind-difference methods for aerodynamics problems governed by the Euler equations of gas dynamics[J].Lectures in Applied Mathematics,1985,(22):327-336.
    [126]黄国平,梁德旺.块结构的MUSCL算法求解三维进气道流场[J].空气动力学学报,2000。18(2):194-199.
    [127]Konstantin I.Matveev,Gregory W.Swift,Scott Backhaus.Temperatures near the interface between an ideal heat exchanger and a thermal buffer tube or pulse tube [J].International Journal of Heat and Mass Transfer,2006,49:868-878.
    [128]T.Jin,G.B.Chen,B.R.Wang,S.Y.Zhang.Application of thermoacoustic effect to refrigeration[J].Review of Scientific Instruments,2003,74(1):677-679.
    [129]M.E.H.Tijani,J.C.H.Zeegers,A.T.A.M.de Waele.Construction and performance of a thermoacoustic refrigerator[J].Cryogenics,2002,42:59- 66.
    [130]M.E.H.Tijani,J.C.H.Zeegers,A.T.A.M.de Waele.Design of thermoacoustic refrigerators[J].Cryogenics,2002,42:49-57.
    [131]Yanyan Chert,Ercang Luo,Wei Dai.Heat transfer characteristics of oscillating flow regenerator filled with circular tubes or parallel plates[J].Cryogenics,2006.
    [132]Rui Bao,Guobang Chen,ge Tang,Zhengzhong Jia,Weihua Cao.Influence of resonance tube geometry shape on performance of thermoacoustic engine[J].Ultrasonics,2006.
    [133]邹久鹏,刘学武,陈淑花.削弱振荡管内反射激波能量的实验研究[J].低温工程,2001,3:48-53.
    [134]YuWei(于伟).Study on the factors effect on refrigeration efficiency of thermal separator[D].Beijing:Institute of Mechanics,Chinese Academy of Sciences,1988.
    [135]刘学武,陈淑花.新型气波制冷机的节能效果[J].节能和环保,2001,9:34-35.
    [136]刘学武,金良安,李志义,胡大鹏.气波管内波系影响因素的实验研究与数值模拟[J].化工学报,2004,55(2):177-181.
    [137]代玉强.压力交换制冷机性能分析[D].大连:大连理工大学,2003.
    [138]胡大鹏,刘培启,邹久朋,朱彻,代玉强.一种阻尼对冲式气波制冷机:中国,ZL2008200 12504.5[P].2008,04,30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700