淹没射流中磨料与空泡的相互关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为满足海洋资源的开发与水下切割的需要,空化水射流与磨料射流得到不断的发展。同时,含砂水流通过各种水力机械(如水泵、水轮机等)、水工建筑时存在严重的空蚀现象有待研究,固、液、气多相流动的研究也很不完善。目前国内外对淹没环境下磨料射流中磨料与空泡的相互关系的研究还处于空白。
     本文从理论上系统地分析了淹没射流中磨料与空泡的相互关系,以及磨料射流的空蚀特性,实验研究了纯水空化射流和含有空泡的磨料射流的岩石破碎性能。得到以下重要结果:
     ①通过对空泡的运动特性研究,建立了磨料射流的空泡运动方程。在单颗粒磨料受力分析基础上,建立了磨料群的运动方程。给出了空泡溃灭历时随磨料浓度、流场压力的变化,以及给出了磨料颗粒速度分布规律。
     ②按微观运动理论,分析了含有空泡的磨料射流运动特性,建立了空泡、磨料、水体各相分别满足的动量方程。数值模拟和分析了淹没磨料射流的流场和压力场。得到:颗粒相速度比水相减少,颗粒相最大滞止压强较水相增加。研究了含有空泡的磨料射流的紊动特性、出流特性、和空化特性。指出,相同条件下含有空泡的磨料射流的空化数较纯水空化射流大,磨料射流的空化能力有所降低。纯水空化射流主要依靠空泡溃灭作用使靶体破坏,含有空泡的磨料射流则是磨料的磨损与空蚀两者共同作用使得靶体破坏。纯水空化射流的空泡溃灭压强略大于含有空泡的磨料射流。
     ③在纯水空化射流与低浓度的磨料射流中,空泡云的发育过程经历了空泡云的膨胀、压缩、再膨胀、压缩、溃灭的几个过程。纯水空化射流产生的空泡云长度随泵压增加而增加;随着围压的增加,空泡云长度存在一最优围压。低浓度的磨料射流中,空泡云长度随着泵压增加先扬后抑;随着围压增加,空泡云长度出现不稳定性。
     ④实验研究表明,在相同泵压时,文丘里型空化喷嘴产生的空化射流比普通收缩喷嘴具有更强的冲蚀能力,对砂岩的深度冲蚀能力平均是普通射流的2倍;质量冲蚀能力平均是普通射流的7倍;切缝直径是普通射流的2.3倍。
     对于含有空泡的磨料射流,围压增加空化噪音减少,泵压增加空化噪音增加;有效靶距直径比增加,对花岗岩的冲蚀深度与冲蚀质量存在一最优有效靶距直径比;在最佳冲蚀时间下,较纯水空化射流工作效率提高2倍。随泵压的增加,对花岗岩的冲蚀质量、冲蚀深度增加;随围压的增加,冲蚀质量、冲蚀深度减少,最优围压与纯水空化射流相同。
     本研究的主要创新之处在于:通过分析研究淹没状态下磨料射流中磨料与空泡的相互关系,建立了磨料射流的空泡运动方程和磨料群的运动方程;按微观运动理论建立了含有空泡的磨料射流的动量方程;给出了含有空泡的磨料射流的空化数变化规律,以及空泡溃灭压强的范围。这对含有空泡的磨料射流在深海深水中的应用奠定理论和实验基础。
In order to satisfy the needs of exploiting ocean resources and incising under water , cavitation water jets and abrasive water jets have been developed. The cavitation of waterpower mechanism (such as pump and water motor) and water project construction through water current with sand need studying. The research of three multiphase of solid and liquid and gas has not been perfect. The research of the relationship between solid particles and bubble of abrasive water jets in the condition submerged by water has not been done at present all over the world.
     This paper will study systematically and theoretically the relationship of solid particles and bubble in submerged water jets, and the cavitation characteristic of abrasive water jets. Then it will experiment the capability of rock-erosion by cavitation water jets and by abrasive water jets with bubble. The important findings are as follows.
     ①By analyzing bubble athletics characteristic, the bubble athletics equation in abrasive water jets was established. On the basis of the force analysis of single particle, athletics equation of the group abrasive particles has been set up. The study suggests that the time that a bubble collapses varies with the concentration of abrasive particles, and the fluid pressure, and shows the velocity distribution of the abrasive particles.
     ②The momentum equations of liquid, bubble and solid particle have been set up after the athletic disciplinarian of abrasive water jets with bubble was analyzed from microcosmic movement theory. It were simulated for the velocity and the pressure of the submerged abrasive water jets. Show that the velocity of solid particles is smaller than water phase , and its dynamic pressure is bigger than water phase . The characteristics of the turbulent and the overflow, and the cavitation characteristic of abrasive water jets with bubble have been studied. Then it is pointed out that the cavitation number of abrasive water jets with bubble is bigger than that of cavitation water jets under the same condition, and the ability of cavitation of abrasive water jets decreases slightly. The cavitation water jets erodes the target by the bubble collapsing while the abrasive water jets with bubble incise and break the target by the erosion and abrasion. The bubble collapse pressure of cavitation water jets is bigger than that of abrasive water jets with bubble slightly.
     ③The growth of bubble cloud experiences swelling and compressing, reinflating and recompressing, collapsing and falling in the cavitation water jets or abrasive water jets with bubble. The length of bubble cloud produced by cavitation water jets increases with pump pressure and as it does, it has a best ambient pressure. In the low–concentration abrasive water jets with bubble, the length of bubble cloud firstly increases and then decreases with the increase of pump pressure and it is unsteady as ambient pressure increases.
     ④The experiment shows : With the same pump pressure, the capability of cavitation water jets produced by wenqiuli nozlle is stronger than common water jets. The average depth of erosion on gritstone for cavitation water jets is 2 times as much as common water jets, and its mass erosion is 7 times as much as common water jets, and its diameter of erosion is 2.3 times as much as common water jets.
     The erosion experimentation of abrasive water jets with bubble indicates: The noise of cavitation decreases with ambient pressure, while it increases with pump pressure. The depth and mass erosion on granitic decrease with the increasing of ratio of efficient standoff distance to diameter. At the best erosion time, the work efficiency is three times as much as cavitation water jets. The mass erosion and depth erosion on granitic increase with pump pressure, while they decrease with ambient pressure, and have a best ambient pressure which is the same as cavitation water jets.
     The main innovation of the dissertation is that: By analyzing the relationship between solid particles and bubble of abrasive water jets submerged by water, the bubble athletics equation in abrasive water jets and the group abrasive dynamic equation have been established . The momentum equations of abrasive water jets with bubble has been investigated based on microcosmic movement theory . The change domain of cavitation number and bubble collapse pressure have been gained . These provide the theoretical and experimental basis for the application of abrasive water jets with bubble in deep water and deep sea.
引文
[1] 黄源芳.中国河流沙粒对水轮机磨损影响的研究与实践.水力发电,2005.12.Vol.31(12)
    [2] ThomasJ. Labus,Proceedings of the 6th American Water Jet Conference, Water Jet Technology Association,1991
    [3] Erdmana Jesnitzer.F,Cleaning,drilling and cutting by an interrupted jets, Proc.5th. Intern. symp.on jet cutting technogy,1980
    [4] M.A.Z. Hasan, Hussain A.K. The Self-excited Axisymmertric Jet, J. of Fluid Mech. 1982, Vol.115,.
    [5] 沈忠厚. 水射流理论与技术, 山东东营:石油大学出版社, 1998.3.
    [6] Mazurkiewicz M. An Analysis of One Possibility for Pulsating a High Pressure Water Jet. Proceeding of the 2nd American Water Jet Conference. Rolla, Mo USA, 1983.
    [7] Vijay M.M. Nozzle for Generating Cavitating and /or Pulsed Water Jets, Proceeding of the 4th Pacific Rim International Conference on Water Jet Technology, Japan, 1995.
    [8] Nebeker E B. Rodriguez S E. Percussive Water Jet for Rock Cutting. Proc. 3rd Int. Symp. on Jet Cutting Technology. BHRA, 1976.
    [9] Wylie E B. Pipeline Dynamics and the Pulsed Jet. Proc. 1st Int. Symp. on Jet Cutting Technology. BHRA, 1972.
    [10] Johson V.E. Conn A.F. The Development of Structured Cavitating Jet for Deephole Bits, SPE 11060, 1982.
    [11] Rockwell D. Prediction of Oscillation Frequencies for Unstable Flow Past Cavities. ASME, Journal of Fluids Engineering, 1977,Vol.99,:294~300.
    [12] Rockwell D, Audascher E. Review: Self-sustaining Oscillations of Flow Past Cavities. ASME, Journal of Fluids Engineering, Vol.100, 1978:152~165.
    [13] Wallace W. Martin E. Audascher E. Fluid-dynamic Excitation Involving Flow Instability, Pro. AMCE, J. of the Hydraulics, Division 5,1975.
    [14] Johnson V E, Conn A F. Self-resonating Cavitating Jets[C]. The 6th Int. Symp. on Jet Cutting Tech. BHRA, 1982.
    [15] Li XH, Liao Y, Lei XY, Lei YY, Lu YY, Jiao BQ. Numerically controlled water cutter and its applications in the machining of natural rock materials.MACHINING OF NATURAL STONE MATERIALS. 2003,Vol.250,pp 274-280
    [16] Lu Yiyu, Li Xiaohong, Liao Yong, Lei Xiangyang. Experiments on Deflecting & Oscillating Waterjet[J]. Journal of Chongqing University, 2002,Vol.1(1)pp11~15
    [17] LyYiyu,LiXiaohong,ZhangFenghua. Numerical simulation of bubble chaotic motion in a cavitating water jet[J]. Journal of Chongqing University-Eng.Ed, 2003, Vol.2(1)pp91~94
    [18] 卢义玉,李晓红,杨林. 脉冲磨料射流中球泡溃灭特性的理论[J]. 重庆大学学报, 2003, Vol.26(5)pp99-102
    [19] Johson V.E. et al. Cavitating and Structured Jet for Mechanical Bits to Increase Drilling Rate, J. Energy Engineering, 1984.
    [20] Conn A.F. Rudy S.L. Cutting Coal with the Cavijet Cavitation Water Jet Method, Proc. 3rd Int. Symp. on Jet Cutting Technology. BHRA, 1976.
    [21] Chahine G.L. Conn A.F. Cleaning and Cutting with Self-resonating Pulsed Watere Jets, Proceeding of the 2nd American Water Jet Conference. Rolla, Mo USA, 1983.
    [22] Sheng Zhonghou et al. Theoretical Analysis of a Jet-driven Helmholtz Resonator and Effect of Its Configuration on the Water Jet Cutting Property. In: Wood P A. Proc. 9th Int. Symp. on Jet Cutting Technology, BHRA, 1988.
    [23] Bourne N. K. & Field J. E., Cavity Collapse in a Liquid with Solid Particles, J. Fluid Mech. 1994.,Vol.259.
    [24] Bourne N.K. Fieid J.E. Cavity Collapse in a Liquid with Solid Particles, J. of Fluid Mech. 1994,Vol.259:149~165.
    [25] 黄细彬, 袁银忠, 王世夏. 含沙掺气高速水流对壁面磨蚀的分析, 河海大学学报, 2000,Vol.28, No.2:27~31.
    [26] 梁柱, 程良骏. 球泡在固液两相流中的溃灭研究, 四川联合大学学报, 1997,Vol.1, No.2:69~73.
    [27] 陆力, 黄继汤, 许协庆. 固液两相流体中的空泡溃灭计算, 力学学报, 1991,Vol.23, No.1,: 8~16.
    [28] 李晓红, 王建生, 卢义玉, 杨林等. 自激振荡磨料射流的基本理论与初步试验,中国安全科学学报, 1999 ,Vol.9, (10): 12~16.
    [29] 李晓红, 刘爱林, 郑金龙, 卢义玉. 自激振荡磨料射流的研究, 中国安全科学学报, 1995, Vol.5, (5), (增刊):161~165.
    [30] Savanick G.A. et al. An Abrasive Jet Device for Cutting Deep Serfs in Hard Rock, Proceeding of the 3rd American Water Jet Conference. 1985.
    [31] H D.C. Kim T.J. etc. A parametric Study of Abrasive Water Jet Processes by Piercing Experiment. Proc. 8th Int. Symp. on Jet Cutting Technology, BHRA, 1986.
    [32] 廖勇,李晓红,卢义玉,雷向阳. 自激振荡脉冲磨料射流的研究[J]. 流体机械 1995, Vol.31(4)pp4-5x
    [33] .雷向阳,李晓红,卢义玉,廖勇. 自激振荡脉频率对磨料在脉冲磨料射流中分布的影响[J].矿山机械,2003,No.2, (2)pp8-9
    [34] 廖勇,李晓红,卢义玉,雷向阳,康勇. 高围压水射流切割实验装置的设计[J]. 流体机械, 2002, Vol.30(12)pp16~20
    [35] 李晓红,卢义玉,雷向阳,廖勇等.淹没和非淹没状态下脉冲磨料射流切割实验研究,第十一次全国高压水射流技术研讨会学术会议论文集,2001.11,P29~P33,扬州。
    [36] 卢义玉,李晓红,廖勇,杨新桦,雷向阳,康勇. 脉冲磨料射流主要参数对切割性能的影响[J].重庆大学学报,2002, Vol.25(5)pp116~1191
    [37] 梁柱,蒋劲,程良骏.稀疏固液两相流中空泡云的振动研究,华中了理工大学学报,1997.9, Vol.25(9)pp44-47
    [38] 戚定满,鲁传敬,何友声.两空泡运动特性研究. 力学学报,2000.3, Vol.21(1)pp17-21
    [39] 程大中. 迅速发展中的高压水射流新技术, 高压水射流, 1987, No.1, 60~73.
    [40] 胡寿根等. 淹没水射流冲蚀性能实验研究, 机械工程学报, 1997(3).
    [41] 倪晋仁,固液两相流基本理论及其最新应用,科学出版社,1991.
    [42] 刘大有, 二相流体动力学, 北京:高等教育出版社, 1983.
    [43] Hashish M. A modeling Study of Metal Cutting with Abrasive Water Jets, Trans. ASME. J. of Eng. Mater. And Tech , 1984, Vol.106:88~100.
    [44] Fairhurst R.M. Heron R.A. Saunders D.H. DIJET—A New Abrasive Water Jet Cutting Technique, Proc. 8th Int. Symp. on Jet Cutting Technology, BHRA, 1986.
    [45] 黄继汤. 空化与空蚀的原理及应用, 清华大学出版社,1991.
    [46] Vijay M.M. Some Aspects of High Speed Cavitating Water Jets, Proceeding of Water Jet Cutting Technology, Beijin, 1987.
    [47] Kztasuga Yanaida, Water Jet Cavitation of Submerged Horn Shaped Nozzles, Proceeding of the 3rd American Water Jet Conference. 1985.
    [48] Lichtarowicz A. Experiments with Cavitating Jets, Proc. 2nd Int. Symp. on Jet Cutting Technology, BHRA, 1974.
    [49] R. Kobayashi Y. Masuki Water Jet Nozzle Geometry and Its Effect on Erosion Process of Metallic Material, Proceeding of the 5th American Water Jet Conference. 1995.
    [50] Vijay M.M. Study of a Nozzle Device for Generating Cavitating and Pulsed Water Jets, Proc. 13th Int. Symp. on Jet Cutting Technology, BHRA, 1996.
    [51] 吴望一, 流体力学, 北京大学出版社,1983.
    [52] 黄继汤, 李志民. 液体粘性对空泡收缩及膨胀的影响, 水利学报, 1987(8).
    [53] 林永明等. 单一均匀悬浮固-液两相流中球泡的动力学方程, 水动力学研究与进展, Ser. A, 1995, Vol.10, No.3:242~248.
    [54] 杨林,自激振荡脉冲磨料射流的动态特性研究, 重庆大学博士论文, 2001.2
    [55] 陈秉二, 叶健, 古兴桥. 含沙水;水流中沙粒与汽蚀相互影响的高速摄影观测, 甘肃工业大学学报, 1986, Vol.12.
    [56] 费详俊,浆体与粒状物料输送水力学,清华大学出版社,1994.5
    [57] 傅旭东,王光谦,低浓度固液两相流颗粒相本构关系的动力学分析,清华大学学报,2002.vol.42(4):560-563
    [58] 傅旭东,王光谦,董曾南,低浓度固液两相流理论分析与管流数值计算,中国科学(E辑),2001.vol.31(6):556-563
    [59] 傅旭东,王光谦,低浓度固液两相流的颗粒相动力学模型,力学学报,2003.vol.35(6):650-659
    [60] 徐宇,吴玉林,唐学林,用动力学方法推导空化流的控制方程, 清华大学学报, 2003.Vol.43, No.10:1416~1419.
    [61] 唐学林,徐宇,吴玉林,高浓度固-液两相流紊流的动力学模型,力学学报,2002. Vol.34(6): 956-961
    [62] 周力行,湍流两相流动与燃烧的数值模拟,清华大学出版社,1991.8
    [63] Chuen-Yen Chow,计算流体力学导论,上海交通大学出版社,1987.2
    [64] Mazurkiewicz M. Material Removal by Hydroabrasive High Pressure Jet Mechanism Study, SME, 1989.
    [65] Hashish M. Cutting with High Pressure Susupension Jets, Proceeding of the 6th American Water Jet Conference. 1991.
    [66] 杨清文. 淹没和非淹没下前混合磨料射流的动力特性及切割特性, 重庆大学博士论文, 1998.6.
    [67] Johson V.E. Conn A.F. Self-resonating Cavitating Jets, Proc. 6th Int. Symp. on Jet Cutting Technology, BHRA, 1979.
    [68] Johson V.E. et al. Tunneling, Fracturing, Drilling and Mining with High Water Jets Utilizing Cavitation Damage, Proc. 1st Int. Symp. on Jet Cutting Technology, BHRA, 1972.
    [69] 蒋或澄,胡寿根,丁胜.淹没空化水射流水下模拟实验装置的理论分析,上海理工大学学报, 1998,Vol.20(3)pp212-214.
    [70] 朱美洲, 胡寿根. 锥形喷嘴结构参数及淹没空化水射流冲蚀性能的实验研究,水动力学研究与进展,1998.9, Vol.13(3)pp263-271
    [71] 张凤华. 空化水射流的理论、实验及应用, 重庆大学博士论文, 1999.10.
    [72] 张凤华, 廖振方等.空化水射流的化学效应, 重庆大学学报,2004, Vol.27(1)pp32-35
    [73] 余常昭,紊动射流,高等教育出版社,1993.
    [74] 黄继汤. 应用高速摄影技术研究空化现象, 清华大学学报, 1989, Vol.29, No.5:1~7.
    [75] 蔡悦斌,鲁传敬,何友声,瞬态空化泡演变过程的数值模拟,应用力学学报,1997.6 Vol.14(2)pp1-6
    [76] 戚定满,鲁传敬,何友声.空泡溃灭及空化噪声研究综述.上海力学,1999.3, Vol.20(1)pp1-9
    [77] 何子干,倪汉勇.考虑液体压缩性影响下空泡溃灭冲击波对固体颗粒的作用,水动力学研究与进展,1994.10, Vol.9(5)pp582-587
    [78] 何国庚,罗军等.空泡溃灭的 Bjerknes 效应,水动力学研究与进展.2000.9 Vol.15(3) pp338-341
    [79] 张凤华, 廖振方等.振荡压力场中空泡混沌运动的数值研究,应用力学学报,2001.9 Vol.18(3)pp15-19
    [80] 闻德荪,魏亚东等.工程流体力学(水力学),高等教育出版社,1991.6
    [81] 仵彦卿.岩体水力学导论.成都:西南交通大学出版社,1994:78~90
    [82] 赵阳升,《矿山岩石流体力学》,煤炭工业出版社,1994
    [83] 陶振宇,《岩石力学原理与方法》,中国地质大学出版社,1990
    [84] 范钦珊,《材料力学》清化大学出版社,2004.9
    [85] 孔祥言,《高等渗流力学》,中国科学技术大学出版社,1999
    [86] 陶振宇.关于岩石水力模型[J].力学进展,1994:409~417
    [87] 张国.裂隙岩体水力特性及其对边坡稳定性的影响[J].辽宁工程技术大学学报,1998:348~352.
    [88] Mao Bai, Elsworth D, Roegiers J C. Multi~porosity/ multi permeability approach to the simulation of naturally fractures rese rvoirs [J]. Water Resources Research, 1993, 29(6): 1621~ 1633.
    [89] Yangsheng Zhao,Zhongming Jin,Jun Sun.Mathematical for coupled solid deformation and methane flow in coal seams[J] .Appl .Math .Modelling, 1994, 18(6):32~33.
    [90] Barton N, Bandis S C. Strength, deformation and conductivity coupling of rock joints[J]. Int. J. Rock Mech. Min. Sci. & Geomech.Abstr.1985:22(3):121~140.
    [91] 赵阳升,《有限元法及其在采矿工程中的应用》,煤炭工业出版社,1994
    [92] 廖勇,高围压下磨料水射流切割的模糊建模和实验研究, 重庆大学博士论文, 2004.1
    [93] J.B.Leroux,J.A.Astolfi,J.Y.Billard,An experimental study of unsteady partical cavitation, [J]Journal of fluids engineering, 2004.Vol.126:94-101
    [94] JunIshimoto,KenjiroKamijo,Numerical analysis of cavitating flow of liquid helium in a converging-divering nozzle,[J]Journal of fluids engineering, 2003.Vol.125:749-757
    [95] Lu Yi-yu,Li Xiao-hong.Experiments on erosion mechanisms of cavitating waterjets. The 8th Asian international conference on fluid machinery.2005.11
    [96] 卢义玉,李晓红,向文英,空化水射流破碎岩石的机理研究[J],岩土力学,2005, Vol.26(8), p1233-1237
    [97] 郭烈锦,两相与多相流动力学,西安交通大学出版社,2002.11
    [98] E.J.瓦斯普.固体物料的浆体管道输送,水利电力出版社,1984.9
    [99] 李海清等,两相流参数检测与应用,浙江大学出版社,1991.11
    [100] 王晓敏译, 高压水射流技术译文集, 煤炭工业出版社,1982.
    [101] 韩文亮, 费祥俊, 任裕民. 浆体水击波波速的实验研究, 水利学报, 1990.11.
    [102] Elghobashi S.E. Abou-Arb T.W. A Two Equation Turbulence Model for Two-phase Flows, Phys. Fluids, 1983, Vol.25, No.4:931~938.
    [103] Hu Shougen. Study on Cavitating Water Jet, Research Report, 1992.
    [104] 宋拥政. 磨料射流切割机制, 机械工程学报, 1997, No.3.
    [105] 孙家骏. 水射流切割技术, 中国矿业大学出版社,1992.
    [106] 催谟慎, 孙家骏. 高压水射流技术, 煤炭工业出版社,1993.
    [107] 刘本立. 前混合磨料射流供砂系统的控制, 高压水射流, 1991.
    [108] 刘本立等. 前混合磨料射流技术研究新进展, 高压水射流, 1992.
    [109] 杨清文, 廖振方, 杨林, 磨料射流加工的主要参数对冲蚀体积的影响, 制造技术与机床, 1997(10).
    [110] 李晓红, 王建生, 杨林等.准直磨料射流在准直管内流动机理及切割应用研究,力学与实践,2000(2),Vol.22.
    [111] 唐川林. 高速振荡脉冲射流的理论、实验及应用, 重庆大学博士论文, 1999.5.
    [112] 卢义玉. 振荡流中磨料的混合机理和脉冲磨料射流的切割特性研究, 重庆大学博士论文, 2000.8.
    [113] 王国玉,曹树良等.高速水流中旋涡空化所引起的空蚀和振动[J].工程热物理学报,2002., Vol.23(6),pp706-710
    [114] 张德斌,李根生,沈忠厚.围压作用下自振空化射流脉动特性实验研究.中国安全科学学报,1999.10, Vol.9pp6-10
    [115] 李根生,沈忠厚等.自振空化射流冲击压力脉动特性实验研究,水动力学研究与进展,2003.9Vol.18(5)pp571-575
    [116] Ho C.M. Nosseir N. S., Dynamics of an Impinging Jet, Part 1: The Feedback Phenomenon, J. of Fluid Mech. , 1981 Vol.105.
    [117] Nosseir N.S. Ho C.M. Dynamics of an Impinging Jet, Part 2: The Noise Generation, J. of Fluid Mech. , 1982 Vol.116.
    [118] Zhenfang L, Chuanlin T. Pulsed Jet Nozzle for Oil Well Jetting Drilling. Proceeding of the 7th American Water Jet Conference. 1993.
    [119] Tang Chuanlin, Li Xiaohong, Liao Zhenfang. The Study of Oscillation Jet Nozzle with Flow-control Oscillator. Proc. 12th Int. Symp. on Jet Cutting Technology. BHRA, 1996.
    [120] 唐川林, 廖振方. 石油钻井钻头用自激振荡喷嘴的研究, 石油学报, 1993.1.
    [121] 唐川林, 廖振方. 自激振动脉冲喷嘴的理论分析与实验研究, 煤炭学报, 1989.1.
    [122] 唐川林, 廖振方. 脉冲水气射流的实验研究, 重庆大学学报, 1992.5.
    [123] 胡寿根,丁胜. 脉冲高压水射流工作原理及现状, 华东工业大学学报, 1997,Vol.19, No.2.
    [124] Zhenfang L. Zhong M. Design Factors on Electrohydraulic Pulsed Focus Water Jet Generator, Proceeding of Water Jet Cutting Technology, Beijin, 1987.
    [125] 廖荣庆等. 自激振荡射流实验研究及振荡腔内流动数学模型的探索, 天然气工业,1995(1).
    [126] 廖荣庆. 钻头水力系统的研究与高压水射流技术的应用, 第五届全国高压水射流技术会议论文, 1989.
    [127] 廖荣庆等. 喷嘴射流和漫流特性对钻速的影响,石油钻采工艺, 1988.2.
    [128] 熊继有, 廖荣庆. 振荡脉冲射流喷嘴钻井底压力特性研究, 西南石油学院学报, 1995.1.
    [129] Konl R.E. Rock Tunneling with High Speed Water Jet Utilizing Cavitating Damage, ASME, Journal of Fluids Engineering. 1965, No.65.
    [130] Conn A.F. Johson V.E. The Fluid Dynamics of Submerged Water Jets, Proc. 5th Int. Symp. on Jet Cutting Technology, BHRA, 1972.
    [131] Nebeker E B. Rodriguez S E. Percussive Water Jet for Rock Cutting. Proc. 3rd Int. Symp. on Jet Cutting Technology. BHRA, 1976.
    [132] Zhenfang L. Zhong M. Design Factors on Electrohydraulic Pulsed Focus Water Jet Generator, Proceeding of Water Jet Cutting Technology, Beijin, 1987.
    [133] 杨清文, 廖振方, 刘本立. 磨料射流切割技术及其应用前景展望, 机械制造, 1997No.1.
    [134] William K.B., Mechanics of Flow-Induced Sound and Vibration, Volume 1: General Concepts and Elementray Sources, ACADEMIC Press, Inc. USA, 1986.
    [135] 唐川林, 张凤华, 杨林, 廖荣庆, 熊继有. 它激振荡脉冲水射流的研究, 西南石油学院学报, 2000(1).
    [136] James Lighthill. Waves in Fluids, Cambridge University Press, 1978.
    [137] 杨林, 李晓红, 王建生, 卢义玉. 碰撞剪切流动中波速对自激振荡射流频率的影响,中国安全科学学报. .2000,Vol.10, No.6, Dec 46~50.
    [138] 杨林, 李晓红, 王建生, 卢义玉. 自激振荡脉冲磨料射流中波速对频率的影响,重庆大学学报, 2000, Vol.23 (5), 4~7.
    [139] 李晓红, 杨林等, 自激振荡脉冲射流装置的固有频率特性,煤炭学报, 2000,Vol.25,No.6, Dec. 641~644.
    [140] 杨林,李晓红等, 结构参数对自激振荡脉冲射流装置的频率特性的影响, 流体机械, 2001.1.
    [141] 罗志昌. 流体网络理论.北京:机械工业出版社, 1988:60~69.
    [142] 唐川林, 杨林等, 来流脉动对自激振荡脉冲射流的影响, 力学与实践,
    [143] Ellen K. Longmire, Structure of a Particle Round Jet, J. Fluid Mech. 1992, Vol.236
    [144] Liou.. C. P. J. Hydr. Engng., Prco. Am. Soc, Civil Engggrs, 1984, Vol.110, No.7.
    [145] D'agostino L. & Brennen C.E., Linearized Dynamics of Spherial Bubbles Clouds, J. Fluid. 1989, Mech.Vol.199.
    [146] Sami S. Anderson C. Helmhotz Oscillator for the Self-modulation of a Jet. Proc 7th Int Symp on Jet Cutting Technology, BHRA, 1984.
    [147] Yang Qingwen, Liao ZhenFang, Yang Lin and Fu AiHua, Flow Dynamics about Underwater DIAJet, Proc. of the 13th Inter. Symp. on Jetting Tech. BHRA, Brugge, Belgium, 1996.
    [148] ChuanLin Tang, ZhenFang Liao, Lin Yang, The Application of the Airlift and the Self-excited Oscillation Pulsed Jet on Exploiting Beach Placer, Proc. of the 14th Inter. Symp. on Jetting Tech. BHRA, Brugge, Belgium, 1998.
    [149] 陈克城, 流体力学实验技术, 机械工业出版社, 1983.
    [150] 张志勇等, 掌握和精通 MATLAB, 北京航空航天大学出版社, 1997.
    [151] 王瑞和,油气井工程高压水射流技术研究,东营:石油大学出版社,1998
    [152] 李晓红,水射流辅助 PDC 刀具切割破碎硬及特硬岩石的研究,重庆大学博士学位论文,1993.
    [153] William K. Blake, Mechanics of flow-induced Sound and vibration, 1986.
    [154] 薛胜雄,高压水射流技术及应用,机械工业出版社,1997.
    [155] 章梓雄,粘性流体力学,清华大学出版社,1998.
    [156] 陈矛章,粘性流体力学理论及紊流工程计算,北京航空学院出版社,1986.
    [157] 林建忠,湍流的拟序结构,机械工业出版社,1993.
    [158] 何永森,机械管内液体数值预测,国防工业出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700