喷射电沉积快速制备泡沫金属的工艺技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔金属材料或泡沫金属是80年代后期迅速发展起来的一种新型工程材料,其内部具有大量宏观孔洞结构,在消声、减震、分离工程、屏蔽防护等一些高技术领域获得了应用。当前泡沫金属生产工艺主要是烧结、铸造、电沉积方法,这些方法都是前期利用发泡剂帮助金属形成多孔形状,然后利用发泡剂的低熔点或者高温挥发性能在一定温度下将其去除,最终形成泡沫状金属。根据电沉积理论和实践的进展,如果控制各种工艺参数使整个电沉积过程远离平衡态,可以实现枝状晶的大规模生长,现在考虑使用该方法实现泡沫金属的无发泡剂生长,相信这种密枝晶结构可以产生不同于以往的类旋转长条的复杂孔隙,为制备泡沫金属提供一种新的工艺方法。
     本文采用喷射电沉积的方法进行枝状晶生长成型的试验研究,对该工艺进行试验探索,利用该方法直接制备泡沫金属多孔材料,并对试验结果进行了性能测试。所做工作如下:
     1.分析枝状晶生长所必需的工艺条件和工艺参数区间,然后进行参数分组细化进行试验,总结每种参数对枝状晶生长的影响规律。本文分别讨论了不同电流、电解液流量、溶液配方、喷头与阴极的距离、电沉积时间、喷头形状等工艺参数下的沉积产物形貌,还讨论了喷头移动后电沉积的效果,对各种参数变化下沉积产物形貌的变化趋势进行了总结。
     2.使用软件对试验结果进行进一步分析,分析其分形维数,考察枝状晶分枝生长趋势是否强盛,测算枝晶横截面的孔隙率,考察试样各个界面的均匀程度,并且通过对这两个参数的变化趋势进行分析,总结枝晶整个生长过程的规律;随后进行了喷射区域的流场、电场模拟分析,然后结合传统电沉积理论,解释了一些本工艺条件下特有的试样特征。
     3.对试验结果进行了力学和电学性能测试,并将测试结果与其他工艺的典型数据曲线进行了比较。
Foamed metal or porous materials were developed at the end of the 80’s. They have excellent physical properties, especially in damping areas, so they are widely used for noise elimination, vibration insulation, electromagnetic screening and so forth. Up to now, the main methods of manufacturing those materials are process like sintering, special found and electrodepositing. Those methods all make use of the foaming agent which could create holes and hollow structures in the metal. According to the theory of electrodiposition, the process far away from the balance could give birth to a special structure named dendritic crystal, using this phenomenon could help us to produce foamed structured metals directly without foaming agent. It must be different from the original foamed metals in structure and faculty.
     Electrodepositing methods are used to research the rules of dendritic growth in a large area, works are be doing to be familiar with the rules of these process in order to get foamed metal shaped directly by this way. Then the results of the process are tested in its performance in some areas. Here is the specific statement:
     1. Organizing experiments to find out the rule of the process is the subject’s first job, a large scope of parameters are changed to find how to make the dendritic growth more healthy and plump, the current, fluid flux, thickness of Ni+, the distance from the nozzle and electrode, shape and move of nozzle, the time are all taken into consideration. Pictures of the results are made and the variation directions of the samples are analyzed, after that procedure, the influence of these given technological conditions to the electrodeposition process could be found out. And then different conditions’results are compared together, the theory and the explanation of the results are improve after that process.
     2. Further analysis are made in the electrodepositing results, fractal dimensions are calculated to take value of the degree of branching by using a software which could show if the process is prosperous, the porosity is also measured to see how much it fits into the request of foam metals. The trends of the parameters transformation are also analyzed. At last, analysis and simulation of the electrical field and flow field are made respectively which could explain some special phenomenon in the experiments.
     3. The results’performance in electricity and mechanics are measured and then comparison between the new ones and the original ones are made.
引文
[1]王二恒.泡沫铝和泡沫铝夹芯梁冲击力学行为研究[D].合肥,中国科学技术大学, 2005.
    [2] Chuang C H, Huang J S. Elastic module and plastic collapse strength of hexagonal honeycombs with plateau borders[J]. International Journal of Mechanical Sciences, 2002, 44(9): 112-114.
    [3] John Banhart. Manufacture, Characterisation and Application of Cellular Metals and Metal Foams[J]. Progr Mater Sci.2001, 46: 55-62.
    [4]曹立宏,马颖.多孔泡沫金属材料的性能及其应用[J].甘肃科技, 2006, 22(6):1-3.
    [5] Davies G J, Shu Zhen. Review Metallic Foams: their production, properties and applications [J]. Journal of Materials Science. 1983(18): 1899-1911.
    [6]赵维民,马彦东,侯淑萍,等.泡沫金属的发展现状研究与应用[J].河北工业大学学报, 2001, 30(3):33-35.
    [7]陈学广,赵维民,马彦东,等.泡沫金属的发展现状、研究与应用[J].粉末冶金技术, 2002, 20(6): 2-4.
    [8]刘培生.多孔材料引论[M].北京:清华大学出版社, 2004: 134-138.
    [9] Kovacik J. The Tensile Behaviour of Porous Metals Made by GASAR Process. Acta Mater, 1998, 46(15): 5413-5422.
    [10]徐光.金属泡沫材料的生产方法和研究现状[J].武汉冶金科技大学学报, 1998, 21(4): 401-406.
    [11]孙伟成,武小娟.电沉积泡沫铝[J].金属功能材料, 2003, 10(2): 19-21.
    [12]周绍民.金属电沉积-原理与研究方法[M].上海科学技术出版社: 103-106.
    [13]黄琼,赵珊茸.枝晶研究的发展现状[J].人工晶体学报, 2002, 31(5).
    [14] Maire S A H, Haomi H H.Experimental Investigation of Sintered Porous Metal filters. J Aerosol Sci, 2000, 31(6): 721.
    [15]杨展如.分形物理学[M].上海:上海科技教育出版社, 1996: 55-57.
    [16] Mandelbrot B. B. How long is the coast of Britain? Statistical self-similarity and fractional dimension [J], Science, 1968(155): 636.
    [17]李军民,张义宽.一个分形生长的计算机模拟及其维数[J].西安科技学院学报, 2000, 20(2).
    [18]柴立和,马德.分形生长的新模型[J].天津大学学报, 2004, 37(4): 326-329.
    [19] Falconer K. Fractal Geometry———Mathematical Foundations and Applications[M]. Cambridge: Cambridge University Press, 1990: 42-98.
    [20] Vicsek T. Fractal Growth Phenomena [M]. Singapore: World Scientific, 1989.
    [21]王爱芹,夏佳荣.点集的计盒维数与级数收敛[J].哈尔滨师范大学自然科学学报, 2002, 18(2): 16-17.
    [22]周仲柏,陈永言.电极过程动力学基础教程[M].武汉大学出版社, 1989: 88-90.
    [23] WANG M, MING N. B. Alternating morphology transitions in electrochemical deposition[J]. Phys. Rev. Lett, 1993, 71(1): 113-116.
    [24]赵阳培.射流电铸快速成型纳米晶铜工艺基础研究[D],南京,南京航空航天大学, 2005.
    [25]李荻.电化学原理[M]:修订版.北京:北京航空航天大学出版社, 1999: 205-206.
    [26]陈亚.现代实用电镀技术[M].北京:国防工业出版社, 2003.
    [27]吉林大学.物理化学基本理论[M]:第一版.北京:人民教育出版社, 1978.
    [28]屠振密主编.电镀合金原理与工艺[M].北京:国防工业出版社, 1993.
    [29]张允诚主编.电镀手册[M]:上册.北京:国防工业出版社, 1997.
    [30] Brady R. M, Ball R. C. Fractal growth of copper electrodeposits[J]. Nature, 1984, 309(5): 225-229.
    [31]王少龙,龙晋明,李爱莲,等.喷射电沉积技术的研究现状[J],电镀与环保, 2003, 23(3):56-57.
    [32]陈书荣.金属电沉积过程枝晶生长的分形研究[D].昆明,昆明理工大学, 2002.
    [33] Grier D, Ben-Jacob E. Morphology and Microstructure in Electrochemical Deposition of Zinc [J]. Phys Rev Lett. 1986, 56(12): 1264-1267.
    [34]左孝青,孙加林.泡沫金属的性能及应用研究进展[J].昆明理工大学学报(理工版), 2005, 30(1): 13-17.
    [35]胡卫华,喻敬贤.二维锌枝晶生长行为研究[J].武汉大学学报(理学版), 2004, 50(4): 431-435.
    [36]熊毅,荆天辅,乔桂英,等.高速喷射电沉积镍工艺研究[J].电镀与涂饰, 2000, 19(5):11-14.
    [37]高睿,谢淑云.在MATLAB平台下实现DLA分形聚集生长的模拟[J].西南师范大学学报(自然科学版), 2005, 30(1): 83-86.
    [38]马飞,张文明.水射流扩孔喷嘴内部流场的数值模拟[J].北京科技大学学报, 2006, 28(6):44-46.
    [39] Matsushita M, Sano M, Sawada Y, et al. Fractal Structures of Zinc Metal Leaves Grown by Electrodeposition[J]. Phys Rev Lett, 1984, (53): 286-289.
    [40]吴建章,徐昌. DLA模型与分形生长研究综述[J].山东工业大学学报, 1996, 26(增刊): 403-409.
    [41]孙斌,任大志.铅的电沉积枝晶生长[J].武汉大学学报(理学版), 2002, 48(1): 81-83.
    [42]李建伟,郑宁,葛岭梅.微晶玻璃晶相生长过程的Monte Carlo模拟[J],西安科技大学学报, 2005, 25(1).
    [43] Debao Wang, Dabin Yu, Mingwang Shao, Xianming Liu, WeichaoYu, Yitai Qian. Dendritic growth of PBS crystals with different morphologies[J], 257(2003), 384-389.
    [44] Yasuji Sawada, A. Dougherty, J. P. Gollub. Dendritic and Fractal Patterns in Electrolytic Metal Deposits[J]. Phys. Rev. Lett., 1986, 56(12): 1260-1263.
    [45]谢刚,张郑.点阴极下金属电沉积过程枝晶二维生长的计算机模拟[J].科学技术与工程, 2003, 3(4): 343-345.
    [46]张皓东,谢刚.平行板阴极金属电沉积过程枝晶二维生长的计算机模拟[J].昆明理工大学学报(理工版), 2005, 30(3): 31-34.
    [47]王桂丰.金属镍电沉积过程中枝晶生长的分形研究[D].南京,南京航空航天大学, 2007: 34-36.
    [48] T J Chung(美).流体力学的有限元分析[M],北京:电力工业出版社, 2000.
    [49]刘萍,张东速.基于FLUENT的小流量射流流场中的可视化研究[J],安徽理工大学学报(自然科学版), 2006, 26(2).
    [50]魏德军,曹仲文,李萍.喷嘴形状对喷射能力的影响[J].辽宁化工, 2006, 35(7): 416-419.
    [51]周英,钟掘.铸嘴型腔形状对型腔流场影响的二维有限元分析[J].机械, 2003, 30(5): 7-9.
    [52] Trebinski R. Some Improvements into AnalyticalModels of Shaped Charge Jet Formation[A]. 19th International Symposium on Ballistics[C], Inter-laken, Switzerland, 2001.
    [53] Masanori Kunieda. Rapid Prototypon by Selective Electrodeposition Using Electrolyte Jet[J]. Annal of the CIRP, 1998, 47(1): 161-164.
    [54]王福军.计算流体动力学分析-CFD软件原理与应用(第二版)[M].北京:清华大学出版社, 2005.
    [55]康颖安,张俊彦.泡沫金属的力学性能研究综述[J].佛山科学技术学院学报(自然科学版), 2005, 23(1):78-80.
    [56]刘培生.泡沫金属的经典性模型—Gibson-Ashby模型浅析[J],有色金属, 2005, 57(2):22-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700