钛基羟基磷灰石复合涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羟基磷灰石(Hydroxyapatite, HA)涂层由于具有良好的生物相容性和骨诱导性,被广泛的研究和应用于临床。近年来,将HA与其它生物材料复合,从而改善HA涂层的性能,满足不同的临床需要,成为生物材料领域的研究热点。目前制备的HA复合涂层主要分为HA-有机复合涂层和HA-无机复合涂层。HA-有机复合涂层主要是将HA与生物大分子复合以期获得优良生物学性能,例如壳聚糖(Chitosan, CS),蛋白等。HA-无机复合涂层主要是将HA与无机材料,如ZrO2, TiO2等复合,以改善涂层的力学性能。然而复合涂层不均匀性一直是困扰其走向应用的主要问题。本研究制备了HA与壳聚糖(CS)、明胶(Gelatin)、氧化锆(ZrO2)复合涂层。通过比较脉冲电位和恒电位,不同脉冲电位,电解液成分对涂层结晶、成分、形貌等影响来优化工艺,然后对复合涂层进行了生物学和力学性能评价。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、傅立叶红外光谱仪(FTIR)、热重分析仪(TG)和X射线光电子能谱仪(XPS)等分析手段,研究了HA复合涂层的结构组成、形貌和性能。主要内容如下:
     采用电化学沉积法在钛金属表面制备出羟基磷灰石/壳聚糖(HA/CS)复合涂层,实现CS与HA在微观尺寸上的复合与杂化。比较了脉冲电位与恒电位模式下复合涂层的形成,研究了电位高低及壳聚糖浓度对复合涂层性能的影响。结果表明,与恒电位模式比较,脉冲电位下制备的涂层较均匀、结晶性好、CS含量高,并且HA与CS杂化程度高。脉冲电位的高低影响涂层的结晶、形貌;脉冲低电位(-1.3 V)更利于复合涂层的沉积。电解液中CS浓度影响复合涂层的形貌及CS在复合涂层中的含量,电解液中CS浓度为0.33 g/l左右比较适合。抗菌检测表明复合涂层具有良好的抗菌性。成骨细胞的培养结果表明复合涂层具有良好的生物相容性。
     通过原位水热合成和溶胶-凝胶浸提涂覆法在碱处理的钛表面制备了HA/CS复合涂层。接触角检测表明碱处理使钛表面具有超亲水性,这是形成均匀涂层的必要条件。X射线衍射分析表明复合涂层成分为HA和CS,各组分含量由热重分析确定。扫描电镜对复合涂层的形貌进行观察并发现不同HA含量的复合涂层具有不同的形貌。通过培养成骨细胞考察了复合涂层的细胞相容性。Alamar Blue检测表明HA/CS复合涂层表面细胞黏附及增殖能力较好。碱性磷酸酶(ALP)检测表明HA/CS复合涂层表面的细胞分化能力较好。综合研究结果表明该复合涂层有较好的生物相容性。
     采用电化学沉积法制备磷酸钙/明胶(CaP/Gelatin)复合涂层,对其进行表征及性能测试。讨论了不同脉冲电位、明胶浓度、沉积温度、电解液pH值等对复合涂层性能的影响。研究发现脉冲电位下涂层质量优于恒电位。XRD和FTIR分析表明复合涂层的成分为HA和明胶。SEM观察发现复合涂层是结构均匀的多孔网状或花瓣状微纳结构。复合涂层形貌及成分随脉冲电位、明胶浓度等实验条件的变换而变化。低电位利于复合涂层的结晶和沉积。改变明胶在钙磷电解液中的浓度,发现明胶浓度在0.1~1.0g/l范围内不影响涂层形貌,但影响明胶在复合涂层中的含量。沉积温度为50℃,电解液pH值在明胶等电点以下保证了复合涂层具有较好的结晶性、均匀性。Alamar Blue检测表明复合涂层具有较好的生物相容性。
     采用电化学沉积法在生物医用钛金属表面制备出均匀的HA/ZrO2复合涂层。通过热处理提高涂层的致密性,同时保留涂层的微纳结构。考察了热处理后复合涂层的成分、形貌、生物相容性及稳定性。X射线衍射分析表明复合涂层成分为HA和ZrO2。扫描电镜对HA/ZrO2复合涂层的形貌进行观察并发现热处理后复合涂层的致密性提高。研究发现ZrO2的加入大大降低了HA/ZrO2复合涂层中钙离子的释放速度,提高了HA/ZrO2复合涂层的稳定性。模拟体液(SBF)浸泡检测表明HA/ZrO2复合涂层能够诱导磷灰石生成,具有较好的生物活性。纳米划痕实验和拉力测试结果表明HA/ZrO2复合涂层具有较好的结合强度。通过培养成骨细胞考察了复合涂层的生物相容性。Alamar Blue检测表明HA/ZrO2复合涂层表面细胞黏附及增殖能力较好。ALP检测表明热处理后HA/ZrO2复合涂层表面的细胞分化能力较强。综合细胞培养结果表明HA/ZrO2复合涂层有较好的生物相容性。
     综上所述,本研究成功制备出HA/CS, HA/Gelatin, HA/ZrO2复合涂层,为进一步研究HA复合涂层在骨缺损修复中的应用提供依据。
Bioactive hydroxylapatite (HA) coatings are commonly used to improve the biocompatibility and osteoinductivity of the titanium. HA coated titanium has the advantages of metals and ceramics and has been considered as one of the most promising bone replacement materials. Recently, there is a tendency to develop HA-contained composite coatings to obtain new type of coatings that satisfy the different requirement of clinic applications. One type of the composite coatings is to incorporate biomacromolecules, such as chitosan (CS) and gelatin, into HA coatings in order to promote the biological performance of the coatings. The other is to add inorganic materials, such as ZrO2 and TiO2, into HA coatings in order to improve the mechanical properties of coatings. The homogeneity of composite coatings is still a big challenge. In this study, three types of composite coatings, HA/CS, HA/geltin and HA/ZrO2, were prepared and the processing parameters was optimized. The microstructure, composition and biological performance of coating was evaluated. The main findings were summarized as follows.
     Chitosan (CS) is a biopolymer that has good biocompatibility, antibacterial properties and the suitability for cell growth. In the present study, the electrochemical deposition method was-employed to produce HA/CS composite coatings on titanium substrates. The results indicated that pulse voltage mode can improve the CS content in the coatings and can obtain uniform coatings, compared with constant voltage mode. Pulse voltage mode also promoted the interaction between Ca and CS according to XPS analysis. Pulse voltage affected the morphology of the coatings and efficiency of the deposition. The suitable pulse voltage is-1.3 V. The concentration of CS in the electrolyte affected the CS content in the coatings and the efficiency of the deposition. The suitable one is 33.1g/l. The antibacterial test indicated that HA/CS coatings had good bactericidal ability. Osteoblasts were cultured on the coatings to evaluate the biocompatibility of coatings and the results indicated that the composite coatings could favor the attachment and proliferation of osteoblasts.
     HA/CS composite coatings were also prepared on titanium surfaces by hydro-thermal synthesis and sol-gel method. The composition, structure, morphology and biocompatibility of composite coatings were characterized. Alkali treatment converted Ti surfaces into super-hydrophilic surfaces, which was the essential prerequisite for preparing uniform HA/CS composite coatings. XRD analysis revealed that the coatings were mainly composed of HA and CS and the content of composition were determined by TG analysis. SEM observation found the coatings with different HA content had different morphologies. Osteoblasts were cultured on the coatings to evaluate their biocompatibility. Alamar Blue assay indicated that cells on the composite coatings had higher proliferation rate than those on pure titanium. Also the ALP activity of the cells on the composite coatings was higher than those on the pure titanium samples. These results demonstrated that as-prepared HA/CS composite coatings have good biocompatibility.
     Gelatin is the denatured form of collagen and is expected to be beneficial for hard tissue applications. The CaP/gelatin composite coatings could combine the bioactivity and osteoconductivity of CaP with the good characteristics of gelatin. In the present study, the pulsed electrochemical deposition method was employed to deposit CaP/gelatin composite coatings on titanium substrates. The main purpose of the study is to optimize the processing parameters of the composite coating. Electrolyte was the mixture of the Ca-P and gelatin aqueous solution with different concentration. SEM, XRD and FTIR were used to characterize the composition and morphology of the coating. The coatings prepared under constant voltage and pulse voltage electrochemical deposition were compared. It was found that the pulse voltage mode was more suitable for preparing CaP/gelatin coatings. The results indicated that the optimized experimental conditions were:pulse voltage range, 0~-1.3 V; the concentration of Ca2+,5.0×10-4mol/l; gelatin solution,0.5 g/l; pH value,5.0; temperature,50℃. Osteoblasts were cultured on the coatings to evaluate the biocompatibility of the coatings. Alamar Blue assay indicated that the composite coatings could favor the proliferation of the osteoblasts.
     In recent years, HA/ZrO2 composite coatings have attracted extensive research attention because they could combine unique biocompatibility and bioactivity of HA ceramics with excellent mechanical properties of ZrO2. In this study, dense and uniform HA/ZrO2 composite coatings was fabricated on titanium substrates by pulsed electrochemical deposition. The composition, morphologies, biocompatibility and physiological stability of the composite coatings were studied. X-ray diffraction showed that OCP in the coating was converted into HA and the coating was composed of HA and ZrO2 after heat treatments. Scanning electron microscopy indicated that ZrO2 was uniformly distributed in the coatings and the coatings became dense after heat treatments. Simulated body fluid immersion test proved that the as-prepared composite coatings had good bioactivity to induce calcium phosphate formation under simulated physiological environment. Atomic absorption spectrometry analysis was used to measure Ca ion release rate of the coatings immersed in PBS. It was found that the release rate of Ca ion of HA/ZrO2 was lower than that of pure HA coatings. Nanoscratching tests and tensile tests revealed that HA/ZrO2 coatings had better interfacial bonding strength than that of pure HA coatings. Osteoblasts were cultured on the coatings to evaluate the biocompatibility of coatings. The results of the Alamar blue and ALP test indicated that the composite coatings could favor the proliferation and differentiation of the osteoblasts, which indicated that the as-prepared HA/ZrO2 nanocomposite coatings had good biocompatibility.
     In summary, three types of HA-contained composite coatings, HA/CS, HA/geltin and HA/ ZrO2, have been successfully produced on titanium substrates. The results of present study provided valuable reference for the further research in developing composite coatings for biomedical applications.
引文
[1]俞耀庭,张兴栋.生物医用材料.天津:天津大学出版社,2000.
    [2]顾忠伟,程俊秋,张兴栋.中国新材料产业发展报告.北京:化学工业出版社,2008.
    [3]Garita B, Rapoff AJ. Biomimetic designs from bone. Experimental Techniques, 2003,27(1),36-39.
    [4]Park JB. Biomaterial science and engineering. New York:Pergamon Press,1984:48.
    [5]Bonfield W. Composites for bone replacement. Journal of Biomedical Engineering. 1988,10(6):522-526.
    [6]Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Journal of Materials Research. 1998,13(1):94-117.
    [7]沈序辉,宋晨路,沈鸽,翁文剑,韩高荣.有机-羟基磷灰石复合骨替代材料.材料科学与工程.1999,4(17):88-93.
    [8]Parks GA. The isoelectric point of solid oxides, solid hydroxides,and aqueous hydroxy complex system. Chemical Reviews,1965,65:177-198.
    [9]杨述华,邱贵兴.关节置换外科学.北京:清华大学出版社,2005.
    [10]McAuley JP, Szuszczewicz ES, Young A, Engh CA. Total hip arthroplasty in patients 50 years and younger. Clinical Orthopaedics and Related Research.2004,418:119-125.
    [11]Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Journal of Materials Research. 1998,1(13):94-117.
    [12]李玉宝.生物医学材料.北京:化学工业出版社,2003.
    [13]肖秀峰.水热电化学沉积羟基磷灰石涂层的工艺、结构和性能研究.博士论文,2006.
    [14]Groot K, Wolke JGC, Jansen JA. Calcium phosphate coatings for medical implants. Proceedings of the Institution of Mechanical Engineers.1998,212:137-147.
    [15]Tranquili PL, Merolli A, Palmacci O, Gabbi G, Cacchioli A, Gonizzi G. Evaluation of different preparation of plasma-spray hydroxyapatite coating on titanium-alloy and duplex stainless steel in the rabbit. Journal of Materials Science Materials in Medicine. 1994,5:345-349.
    [16]Sui JL, Li MS, Lu YP, Bai YQ. The effect of plasma spraying power on the structure and mechanical properties of hydroxyapatite deposited onto carbon/carbon composites. Surface Coatings Technology.2005,190(2-3):287-292.
    [17]Suvorova El, Khamchukov YD, Buffat PA. Nanostructure of hydroxyapatite coatings sprayed in argon plasma. Bioceramics.2004,16:891-894.
    [18]Sui JL, Li MS, Lu YP, Yin LW, Song YJ. Plasma-sprayed hydroxyapatite coatings on carbon/carbon composites. Surface Coatings Technology.2004,176(2):188-192.
    [19]Ozyegin LS, Oktar FN, Goller G, Kayali ES, Yazici T. Plasma-sprayed hydroxyapatite coatings. Materials Letters.2004,58(21):2605-2609.
    [20]Khor KA, Kumar R, Cheang R. Process-phase-properties relationship in radio frequency (rf) plasma synthesized hydroxyapatite (HA). Surface CoatingsTechnology. 2004,177:740-746.
    [21]常程康,朱然怡,毛大立,吴建生,丁传贤.等离子喷涂羟基磷灰石涂层的材料学特征.无机材料学报.2000,15(5):952-956.
    [22]吕宇鹏,李士同,梁栋科,朱瑞富,李木森,雷廷权.等离子体熔融钛与羟基磷灰石混合粉颗粒的形态和相组成.金属学报.2002,38(12):62-64.
    [23]Renghinia C, Girardind E, Fomine AS, Manescua A, Sabbionif A, Barinove SM, et al. Plasma sprayed hydroxyapatite coatings from nanostructured granules. Materials Science and Engineering B.2008,152(1-3):86-90.
    [24]Carayon MT, Lacout JL. Study of the Ca/P atomic ratio of the amorphous phase in plasma-sprayed hydroxyapatite coatings. Journal of Solid State Chemistry. 2003,172(2):339-350.
    [25]Huang Y, Qu Y, Yang B, Li W, Zhang B, Zhang X. In vivo biological responses of plasma sprayed hydroxyapatite coatings with an electric polarized treatment in alkaline solution. Materials Science and Engineering C.2009,29(8):2411-2416.
    [26]Yang S, Man HC, Xing W, Zheng X. Adhesion strength-of plasma-sprayed hydroxyapatite coatings on laser gas-nitrided pure titanium. Surface and Coatings Technology.2009,203(20-21):3116-3122.
    [27]Xue WC, Tao SY, Liu XY, Zheng XB, Ding CX. In vivo evaluation of plasma sprayed hydroxyapatite coatings having different crystallinity. Biomaterials. 2004,25(3):415-421.
    [28]Kumar R, Cheang P, Khor KA. Phase composition and heat of crystallisation of amorphous calcium phosphate in ultra-fine radio frequency suspension plasma sprayed hydroxyapatite powders. Acta Materialia.2004,52(5):1171-1181.
    [29]Cofino B, Fogarassy P, Millet P, Lodini A. Thermal residual stresses near the interface between plasma-sprayed hydroxyapatite coating and ttitanium substrate:Finite element analysis and synchrotron radiation measurements. Journal of Biomedical Materials Research Part A.2004,70A(1):20-27.
    [30]Sun LM, Berndt CC, Grey CP. Phase, structural and microstructural investigations of plasma sprayed hydroxyapatite coatings. Materials Science and Engineering A. 2003,360(1-2):70-84.
    [31]吕宇鹏,李士同,朱瑞富,李木森,雷廷权.等离子喷涂羟基磷灰石涂层的晶化及其结构特征.无机化学学报.2002,(18)8:92-96.
    [32]Yang YC, Chang E. Residual stress in plasma-sprayed hydroxyapatite coating measured by the material removal method. Journal of Materials Science Letters. 2003,22(13):919-922.
    [33]Yang YC, Chang E. Measurements of residual stresses in plasma sprayed hydroxyapatite coatings on titanium alloy. Surface and Coatings Technology. 2005,190(1):122-131.
    [34]Han Y, Nan JM, Xu KW, Lu J. Residual stresses in plasma-sprayed hydroxyl-apatite coatings. Journal of Materials Science Letters.1999,18(13):1087-1089.
    [35]曲海波,宋晨路,程逵,沈鸽,翁文剑,杜丕一,等.纳米含氟磷灰石涂层及其在模拟溶液中的行为.过程工程学报.2002,2(4):370-374.
    [36]憨勇,徐可为.羟基磷灰石生物陶瓷涂层制备方法评述.硅酸盐通报.1997,16(5):47-49.
    [37]Liu DM, Troczynski T, Tseng WJ. Water-based sol-gel synthesis of hydroxyapatite: process development. Biomaterials.2001,22(13):1721-1730.
    [38]Liu DM, Troczynskia T, Tseng WJ. Aging effect on the phase evolution of water-based sol-gel hydroxyapatite. Biomaterials.2002,23(4):1227-1236.
    [39]Balamurugana A, Rebeloa AHS, Lemosa AF, Rochab JHG, Venturaa JMG, Ferreiraa JMF. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response. Dental Materials. 2008,24(10):1374-1380.
    [40]A. Carrado, N. Viart. Nanocrystalline spin coated sol-gel hydroxyapatite thin films on Ti substrate:Towards potential applications for implants. Solid State Sciences,2010,in press
    [41]Boanini E, Bigi A. Biomimetic synthesis of carbonated hydroxyapatite thin films. Thin Solid Films.2006,497(1-2):53-57.
    [421]Zhao CY, Zhu XD, Yuan T, Fan HS,. Zhang XD. Fabrication of biomimetic apatite coating on osteointegration in femurs of dogs. Materials Science and Engineering C. 2010,30(1):98-104.
    [43]Wan YZ, Huang Y, Yuan CD, Raman S, Zhu Y, Jiang HJ, et al.Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Materials Science and Engineering C.2007,27(4):855-864.
    [44]Xiao X, He D, Liu F, Liu R. Preparation and characterization of hydroxyapatite/ chondroitin sulfate composites by biomimetic synthesis. Materials Chemistry and Physics.2008,112(3):838-843.
    [45]Javidi M, Javadpour S, Bahrololoom ME, Ma J. Electrophoretic deposition of natural hydroxyapatite on medical grade 316L stainless steel. Materials Science and Engineering C.2008,28(8):1509-1515.
    [46]Kwok CT, Wong PK, Cheng FT, Man HC. Characterization and corrosion behavior of hydroxyapatite coatings on Ti6A14V fabricated by electrophoretic deposition. Applied Surface Science.2009,255(13-14):6736-6744.
    [47]Yang X, Zhang B, Lu J, Chen J, Zhang X, Gu Z. Biomimetic Ca-P coating on pre-calcified Ti plates by electrodeposition method. Applied Surface Science. 2010,256(9):2700-2704.
    [48]Kwok CT, Wong PK,Cheng FT, Man HC. Characterization and corrosion behavior of hydroxyapatite coatings on Ti6A14V fabricated by electrophoretic deposition. Applied Surface Science.2009,255(13-14):6736-6744.
    [49]Yang X, Zhang B, Lu J, Chen J, Zhang X, Gu Z. Biomimetic Ca-P coating on pre-calcified Ti plates by electrodeposition method. Applied Surface Science. 2010,256(9):2700-2704.
    [50]Jayidi M, Javadpour S, Bahrololoom ME, Ma J. Electrophoretic deposition of natural hydroxyapatite on medical grade 316L stainless steel. Materials Science and Engineering C.2008,28(8):1509-1515.
    [51]左友松,刘榕芳,肖秀峰.电沉积磷酸钙生物陶瓷涂层的研究进展.材料保护.2004,37(3):42-46.
    [52]Zhao Z,Zhang G, Li H. Preparation of calcium phosphate coating on pure titanium substrate by electrodeposition method. Journal of Central South University of Technology.2004,11(2):147-151.
    [53]Kuo MC, Yen SK. The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Material Science Engineering,2002, 20(1-2):153-160
    [54]Shirkhanzadeh M. Calcium Phosphate coatings prepared by electrocrystallization from aqueous electrolytes. Journal of Materials Science Materials in Medicine. 1995,6(2):90-93.
    [55]Yuan Q, Golden TD. Electrochemical study of hydroxyapatite coatings on stainless steel substrates. Thin Solid Films.2009,518(1):55-60.
    [56]Shirkhanzadeh M. Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes. Journal of Materials Science Materials in Medicine. 1998,9(2):67-72.
    [57]Ban S, Maruno S. Effect of pH buffer on electrochemical deposition of calcium phosphate. Journal of Applied Physics.1994,11 A(33):1545-1548.
    [58]Ban S, Maruno S. Effect of temperature on electrochemical deposition of calcium phosphate coating in a situlated body fluid. Biomaterials.1995,16:977-981.
    [59]Ban S, Maruno S, Arimoto N, Harada A, Hasegawa J. Effect of electrochemically deposited apatite coating on bonding of bone to the HA-G-Ti composite and titanium. Journal of Biomedical Materials Research.1997,36(1):9-15.
    [60]Ban S, Maruno S, Harada A. Effect of temperature on morphology of calcium phosphates deposited by electrochemical method. Dental Materials Journal. 1996,15(13):31-38.
    [61]Ban S, Kamiya A, Sonoda T. Calcium-ion incorporation into titanium surfaces accompanied by electrochemical apatite-deposition. Dental Materials Journal. 2002,21(4):306-313.
    [62]Blackwood DJ, Seah KHW. Electrochemical cathodic deposition of hydroxyapatite: Improvements in adhesion and crystallinity. Materials Science and Engineering C. 2009,29(4):1233-1238.
    [63]张刚,赵中伟,霍广生,孙召明.阴极电沉积法制备钛基生物陶瓷复合材料的研究进展.稀有金属与硬质合金.2003,31(3):21-26.
    [64]赵中伟,李洪桂,孙培梅,李运姣,霍广生,兴户正纯,等.电化学沉积生物陶瓷新方法.稀有金属与硬质合金.2002,30(1):6-8.
    [65]刘芳,李志友,周科朝,黄伯云,刘咏,韩金鸽.低Ca/P比溶液电沉积羟基磷灰石涂层.中南工业大学学报.2002,33(1):66-69.
    [66]付涛,李浩,徐可为.羟基磷灰石梯度涂层的制备及其结构特征.硅酸盐学报.1999,27(5):112-115.
    [67]付涛,李浩,张玉梅,徐可为.电流密度对电结晶羟基磷灰石生物涂层性能的影响.稀有金属材料与工程.2000,29(4):32-35.
    [68]胡皓冰,林昌健,陈菲,胡仁,郭明.电化学沉积制备羟基磷灰石涂层及机理研究.电化学.2002,8(3):48-54.
    [69]Lu X, Zhao Z, Leng Y. Calcium phosphate crystal growth under controlled atmosphere in electrochemical deposition. Journal of Crystal Growth.2005,284(3-4):506-516.
    [70]胡仁,时海燕,林理文,庄燕燕,林昌健.电化学沉积羟基磷灰石过程晶体生长行为.物理化学学报.2005,21(2):197-201.
    [71]Chen S, Liu W, Huang Z, Liu X, Zhang Q, Lu X. The simulation of the electrochemical cathodic Ca-P deposition process. Materials Science and Engineering C. 2009,29:108-114.
    [72]袁华,陈宁,吕晓迎,郑步中,宋晓陵.天然羟基磷灰石-壳聚糖复合材料修复骨缺损的实验研究.口腔医学,2005,2(25):65-67.
    [73]Wilson OC, Hull JR. Surface modification of nanophase hydroxyapatite with chitosan. Materials Science and Engineering C,2008,28:434-437.
    [74]Pang X, Zhitomirsky I. Electrophoretic deposition of composite hydroxyapatite-chitosan coatings. Materials Characterization.2007,58(4):339-348.
    [75]Chang MC, Ko CC, Douglas WH. Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials.2003,24(17):2853-2862.
    [76]Chen M, Tan J, Lian Y, Liu D. Preparation of gelatin coated hydroxyapatite nanorods and the stability of its aqueous colloidal. Applied Surface Science.2008,254(9): 2730-2735.
    [77]Roveri N, Falini G, Sidoti MC, Tampieri A, Landi E, Sandri M, et al. Biologically inspired growth of hydroxyapatite nanocrystals inside self- assembled collagen fibers. Materials Science and Engineering C,2003,23:441-446.
    [78]Ficai A, Andronescu E, Voicu G, Ghitulica C, Vasile BS, Ficai D, et al. Self-assembled collagen/hydroxyapatite composite materials. Chemical Engineering Journal,2010, in press
    [79]Manara S, Paolucci F, Palazzo B, Marcaccio M, Foresti E, Tosi G, et al. Electrochemically-assisted deposition of biomimetic hydroxyapatite-collagen coatings on titanium plate. Inorganica Chimica Acta.2008,361(6):1634-1645.
    [80]Fu L, Khor KA, Lim JP. Yttria stabilized zirconia reinforced hydroxyapatite coatings. Surface and Coatings Technology.2000,127(1):66-75.
    [81]Gu YW, Khor KA, Pan D, Cheang P. Activity of plasma sprayed yttria stabilized zirconia reinforced hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid. Biomaterials.2004,25(16):3177-3185.
    [82]Balamurugan A, Balossier G, Kannan S, Michel J, Faure J, Rajeswari S. Electrochemical and structural characterisation of zirconia reinforced hydroxyapatite bioceramic sol-gel coatings on surgical grade 316L SS for biomedical applications. Ceramics International.2007,33(4):605-614.
    [83]Li H, Khor KA, Cheang P. Impact formation and microstructure characterization of thermal sprayed hydroxyapatite/titania composite coatings. Biomaterials,2003,24: 949-957.
    [84]Wen CE, Xu W, Hu WY, Hodgson PD. Hydroxyapatite/titania sol-gel coatings on titanium-zirconium alloy for biomedical applications. Acta Biomaterialia,2007,3: 403-410.
    [85]Chung RJ, Hsieh MF, Huang CW, Perng LH, Wen HW, Chin TS. Antimicrobial effects and human gingival biocompatibility of sol-gel-derived hydroxyapatite coatings. Journal of Biomedical Materials Research,2006,76B:169-178.
    [86]Shirkhanzadeh M, Azadegan M, Liu GQ. Bioactive delivery systems for the slow release of antibiotics:incorporation of Ag+ ions into micro-porous hydroxyapatite coatings. Materials Letters,1995,24:7-12.
    [87]Hu R, Hu HB, Lin CJ. Preparation and characterization for a codeposited hybrid coating of calcium phosphate/chitosan on Ti alloy surface. Chemical Journal of Chinese Universities.2002,23(11):2142-2146.
    [88]Hu R, Shi HY, Lin LW, Zhuang YY, Lin CJ. The crystal growth behavior of hydroxyapatite coating on titanium substrate under electrochemical deposition conditions. Acta Physico-chimica Sinica.2005,21 (2):197-201.
    [89]Lu X, Leng Y, Zhang QY. Electrochemical deposition of octacalcium phosphate micro-fiber/chitosan composite coatings on titanium substrates. Surface and Coatings Technology.2008,202(13):3142-3147.
    [90]Pang X, Zhitomirsky I. Electrodeposition of composite hydroxyapatite-chitosan films. Materials Chemistry and Physics.2005,94(2-3):245-251.
    [91]徐艳丽,林龙翔,耿志旺,林昌健.电化学共沉积HA/胶原复合涂层其生物性能初探.电化学.2007,13(3):238-241.
    [92]Hu R, Lin C, Wang H, Tao T. Modulation effects of collagen I on the structure of electrochemically deposited hydroxyapatite coating. Materials Letters.2010,64(8):915-917.
    [93]刘榕芳,肖秀峰,林岚云,倪军,陈古镛.电沉积HA/TiO2复合涂层的结合强度和热稳定性研究.无机化学学报.2004,20(2):113-118.
    [94]肖秀峰,刘榕芳,左友松,林岚云,许道旋.电沉积羟基磷灰石/TiO2复合涂层.应用化学.2004,21(7):687-691.
    [95]Xiao XF, Liu RF, Zheng YZ. Characterization of hydroxyapatite/titania composite coatings codeposited by a hydrothermal-electrochemical method on titanium. Surface and Coatings Technology.2006,200(14-15):4406-4413.
    [96]左友松,刘榕芳,肖秀峰.电沉积HA/Ti复合涂层的研究.电镀与涂饰.2003,22(4):1-4.
    [97]刘榕芳,肖秀峰,左友松,唐晓恋,高燕娇.电沉积HA-Ti-HA复合涂层及其生物学性能.生物医学工程学杂志,2007;24(2):350-355.
    [98]肖秀峰,刘榕芳,郑炀曾.水热电化学法制备HA/ZrO2复合涂层.稀有金属材料与工程.2005,34(11):1798-1801.
    [99]Xiao XF, Liu RF, Zheng YZ. Hydrothermal-electrochemical codeposited hydoxyapatite/yttria-stabilized zirconia composite coating. Journal of Materials Science.2006,41(11):3417-3424.
    [100]刘榕芳,肖秀峰,许道璇.复合电沉积制备HA/Ag生物陶瓷涂层.硅酸盐学报.2003,31(6):87-91.
    [101]耿志旺,王卉,林昌健.电化学沉积含纳米银羟基磷灰石涂层及抗菌性能研究.2008,14(3):243-247.
    [102]王玉,袁学韬,俞宏英,孙冬柏,李辉勤.脉冲电沉积工艺对镍镀层结构与硬度的影响.材料科学与工艺,2010,1(18):89-95.
    [103]Shirkhanzadeh M. Electrochemical preparation of bioactive calcium phosphate coating on porous substrates by the periodic pulse technique. Journal of Materials Science Letters.1993,12(1):16-19.
    [104]Blackwood DJ, Seah KHW. Galvanostatic pulse deposition of hydroxyapatite for adhesion to titanium for biomedical purposes. Materials Science and Engineering C. 2010,30(4):561-565.
    [105]Peng P, Kumar S, Voelcker NH, Szili E, Smart RC, Griesser HJ. Thin.calcium phosphate coatings on titanium by electrochemical deposition in modified simulated body fluid. Journal Biomedial Materials Research A.2006,76A(2):347-355.
    [106]Hou KH, Hwu WH, Ke ST, Ger MD. Ni-P-SiC composite produced by pulse and direct current plating. Materials Chemistry and Physics.2006,100(1):54-59.
    [107]Huang Z, Xiong D. MoS2 coated with Al2O3 for Ni-MoS2/Al2O3 composite coatings by pulse electrodeposition.Surface and Coatings Technology.2008,202(14):3208-3214.
    [108]Ger MD. Electrochemical deposition of nickel/SiC composites in the presence of surfactants. Materials Chemistry and Physics.2004,87(1):67-74.
    [109]李保强,胡巧玲,汪茫,沈家骢.原位复合法制备层状结构的壳聚糖/羟基磷灰石纳米材料.高等学校化学学报.2004,,25(10):1949-1952.
    [110]Wang JH, Wei CW, Liu HC, Young TH. Behavior of MG63 cells on nylon/chitosan-blended membranes. Journal of Biomedial Materials Research.2003,64A(4):606-615.
    [111]Sivakumar M, Manjubala I, Panduranga RK. Preparation,characterization and in-vitro release of gentamicin from coralline hydroxyapatite-chitosan composite microspheres Carbohydrate Polymers.2002,49(3):281-288.
    [112]Kim SB, Kim YJ, Yoon TL, Park SA, Cho IH, Kim EJ,et al. The characteristics of a hydroxyapatite-chitosan-PMMA bone cement. Biomaterials.2004,25(26):5715-5723.
    [113]Denkbas EB, Kilicay E, Birlikseven C, Ozturk E. Magnetic chitosan microspheres:Preparation and characterization. Reactive and Functional Polymers. 2002,50(3):225-232.
    [114]杨洪,傅山岗.尿素共沉淀法制备纤维状羟基磷灰石/壳聚糖复合粉料.应用化学.2005,22(1):87-90.
    [115]Sun F, Pang X, Zhitomirsky I. Electrophoretic deposition of composite hydroxyapatite-chitosan-heparin coatings. Journal of Materials Processing Technology. 2009,209(3):1597-1606.
    [116]Jin HH, Lee CH, Lee WK. In-situ formation of the hydroxya-patite/ehitosan-alginate composite scaffolds. Materials Letters.2008,62(10-11):1630-1633.
    [117]胡仁,胡皓冰,林昌健.CaP/壳聚糖复合膜层的电化学共沉积研究.高等学校化学学报.2002,23(11):2142-2146.
    [118]Martin HJ. The Chemical And Mechanical Effects of Binding Chitosan to Implant Quality Titanium. Mississippi State:State Univ. of Mississippi.2006.
    [119]Cheng X, Li Y, Zuo Y, Zhang L, Li J, Wang H. Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Materials Science and Engineering C.2009,29(1):29-35.
    [120]Lu X, Wang Y, Liu Y, Wang JX, Qu SX, Feng B, et al. Preparation of HA/chitosan composite coatings on alkali treated titanium surfaces through sol-gel techniques.
    Materials Letters.2007,61(18):3970-3973.
    [121]王英波,鲁雄冯波,屈树新,翁杰,陈建敏.钛表面制备羟基磷灰石/壳聚糖复合涂层研究.无机材料学报.2008,23(6):1241-245.
    [122]Manara S, Paolucci F, Palazzo B, Marcaccio M, Foresti E, Tosi G, et al. Electrochemically-assisted deposition of biomimetic hydroxyapatite-collagen coatings on titanium plate. Inorganica Chimica Acta.2008,361(6):1634-1645.
    [123]王英波,鲁雄,冯波,屈树新,翁杰.脉冲电沉积制备HA/ZrO2纳米复合涂层的稳定性及生物相容性评价.高等学校化学学报.2010,31(2):253-259.
    [124]Kuo MC, Yen SK. The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Materials Science and Engineering C. 2002,20(1-2):153-160.
    [125]Ban S, Maruno S. Effect of temperature on electrochemical deposition of calcium phosphate coatings in a simulated body fluid. Biomaterials.1995,16(13):977-981.
    [126]王英波,鲁雄,赵婧,冯波,汪建新:屈树新,等.脉冲电化学沉积制备n-HA/ZrO2复合涂层.稀有金属材料与工程.2009,38(6):1071-1075.
    [127]刘榕芳,肖秀峰,林岚云,陈古镛.水热电沉积羟基磷灰石涂层的研究.高等学校化学学报.2004,25(2):304-308.
    [128]Hou XH, Liu X, Xu J, Shen J, Liu X. A self-optimizing electrodeposition process for fabrication of calcium phosphate coatings. Materials Letters.2001,50(2-3):103-107.
    [129]Redepenning J, Venkataraman G, Chen J, Stafford N. Electrochemical preparation of chitosan/hydroxyapatite composite coatings on titanium substrates. Journal of Biomedial Materials Research.2003,66A(2):411-416.
    [130]Wang JW, Apeldoorn AV, De GK. Electrolytic deposition of calcium phosphate/ chitosan coating on titanium alloy:growth kinetics and influence of current density, acetic acid, and chitosan. Journal of Biomedial Materials Research.2006,76A(2):503-511.
    [131]Shanmugasundaram N, Ravichandran P, Reddy PN, Ramamurty N, Pal S, Rao KP. Collagen-chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials.2001,22(14):1943-1951.
    [132]Cheng XM, Li YB, Zuo Y, Zhang L, Li JD, Wang HN. Properties and in vitro
    biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Materials Science and Engineering C.2009,29(1):29-35.
    [133]Pawlak A, Mucha M. Thermogravimetric and FTIR studies of chitosan blends. Thermochimica Acta.2003,396(1-2):153-166.
    [134]Zhang JM, Shi QZ, Yang CC, Xu JM. Influence of current density on the composition and structure of calcium phosphate coatings. Chemical Research,2002;13:5-7.
    [135]Ban S, Shigeo M. Morphology and microstructure of electrochemically deposited calcium phosphates in a modified simulated body fluid. Biomaterials.1998, 19(14):1245-1253.
    [136]刘慧.壳聚糖及其表面活性剂复合物的杭菌性与抗菌机理的研究.武汉大学硕士论文,2004.
    [137]周建略,陈树滋,左长明,吉晓江.羟基磷灰石中氢键的XPS考察.物理化学学报.1990,6(5):629-632.
    [138]Lu X, Wang Y, Yang X, Zhang Q, Zhao Z, Leng Y. Spectroscopic analysis of titanium surface functional groups under various surface modification and their behaviors in vitro and in vivo. Journal of Biomedical Materials Research,2008,84A(2):523-534.
    [139]Klokkevold PR, Vandemark L, Kenney EB, Bernard GW. Osteogenesis enhanced by chitosan (poly-N-acetyl glucosaminoglycan) in vitro. Journal of Periodontology,1996, 67(11):1170-1175.
    [140]倪斌,侯春林,贾连顺等.几丁质膜引导兔桡骨缺损骨再生的实验研究.中华骨科杂志,1995,9(9):607-609.
    [141]Tian A, Wang C, Xue XX, Wu AH, Guan GF, Wang L, et al. Inhibitory effect of nano-HA particles on human U87 glioblastoma cells viability. Journal of Inorganic Materials.2010,25(1):101-106.
    [142]Weiner S, Wagner HD. The material bone:structure-mechanical function relations. Annual Review Materials Science.1998,28(1):271-298.
    [143]Manso M, Jimenez C, Morant C, Herrero P, Martinez-Duart JM. Electrodeposition of hydroxyapatite coatings in basic conditions. Biomaterials.2000,21(17):1755-1761.
    [144]Redepenning J, Mclssac JP. Electrocrystallization of rushite coatins on prosthetic alloys. Chem Mater.1990,2(6):625-627.
    [145]Hu HB, Lin CJ, Hu R, Wang W, Wang T. A study on hybrid bioceramic coatings of HA/poly (vinyl acetate) co-deposited electrochemically on Ti-6A1-4V alloy surface. Materials Science Engineering C.2002,20(1-2):209-214.
    [146]Mohamed KR, Mostafa AA. Preparation and bioactivity evaluation of hydroxyapatite-titania/chitosan-gelatin polymeric biocomposites. Materials Science Engineering C.2008,28(7):1087-1099.
    [147]Fan Y, Duan K, Wang. R. A composite coating by electrolysis-induced collagen self-assembly and calcium phosphate mineralization. Biomaterials. 2005,26(14):1623-1632.
    [148]Kuo MC, Yen SK. The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Materials Science Engineering C. 2002,20(1-2):153-160.
    [149]张柏林,王英波,鲁雄,等.脉冲电化学沉积法制备钛基HA/Ag复合涂层[J].稀有金属材料与工程,2010,in press.
    [150]Ban S, Maruno S. Effect of temperature on electrochemical deposition of calcium phosphate coatings in a simulated body fluid. Biomaterials.1995,16(13):977-981.
    [151]Hou XH; Liu X, Xu JM, Shen J, Liu XH. A self-optimizing electrodeposition process for fabrication of calcium phosphate coatings. Material letters.2001,50(2-3):103-107.
    [152]Morks MF. Fabrication and characterization of plasma-sprayed HA/SiO2 coatings for biomedical application. Journal of the Mechanical Behavior of Biomedical Materials. 2008,1(1):105-111.
    [153]Inagaki M, Kameyama T. Phase transformation of plasma-sprayed hydroxyapatite coating with preferred crysta-lline orientation. Biomaterials.2007,28(19):2923-2931.
    [154]Balani K, Chen Y, Harimkar SP, Dahotre NB, Agarwal A. Tribological behavior of plasma-sprayed carbon nanotube-reinforced hydroxyapatite coating in physiological solution.Acta Biomaterialia.2007,3(6):944-951.
    [155]Manara S, Paolucci F, Palazzo B. Marcaccio M, Foresti E, Tosi G, et al. Electrochemically-assisted deposition of biomimetic hydroxyapatite-collagen coatings on titanium plate. Inorganica Chimica Acta.2007,361(6):1634-1645.
    [156]Wang H, Eliaz N, Xiang Z. Early bone apposition in vivo on plasma-sprayed and electrochemically deposited hydroxya-patite coatings on titanium alloy. Biomaterials. 2006.27(23):4192-4203.
    [157]Sung YM, Kim DH. Crystallization characteristics of yttria-stabilized zirconia/hydroxyapatite composite nanopowder. Journal of Crystal Growth. 2003,254(3-4):411-417.
    [158]赵中伟,李洪桂.电化学沉积生物陶瓷新方法.稀有金属与硬质合金.2002,30(1):6-8.
    [159]Inuzuka M, Nakamura S, Kishi S, Yoshida K, Hashimoto K, Toda Y, et al. Hydroxyapatite-doped zirconia for preparation of biomedical composites ceramics. Solid State Ionics.2004,172(1-4):509-513.
    [160]Balamurugan A, Balossier G, Kannan S, Michel J, Faure J, Rajeswari S. Electrochemical and structural characterisation of zirconia reinforced hydroxyapatite bioceramic sol-gel coatings on surgical grade 316L SS for biomedical applications. Ceramics International.2007,33(4):605-614.
    [161]Kumar R, Prakash KH, Cheang P, Khor KA. Microstructure and mechanical properties of spark plasma sintered zirconia-hydroxyapatite nano-composite powders. Acta Materialia.2005,53(8):2327-2335.
    [162]Dasarathy H, Riley C. Hydroxyapatite/metal composition coatings formed by electrocodeposition. Journal of Biomedical Materials Research.1996,31(1):81-89.
    [163]胡皓冰,林昌健.电化学沉积制备有机高聚物/钙磷复合陶瓷膜层-XRD、SEM表征及生物活性研究.生物医学工程杂志.2003,20(1):4-7.
    [164]Lu X, Leng Y. Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials.2005,26:1097-1108.
    [165]Engin K, Leeper DB, Cater JR, Thistlethwaite AJ, Tupchong L, McFarlane JD. Extracellular pH distribution in human tumours. Hyperthermia,1995,11(2):211-216
    [166]Lee ES, Kun N, Bae YH. Polymeric micelle for tumor pH and folate-mediated targeting. Journal of Controlled Release.2003,91:103-113.
    [167]钱捷,杨策尧,盛迅,丁仲鹃.钛种植体表面微形态对成骨细胞生长影响的体外研.临床口腔医学杂志.2005,21:384-350.
    [168]王身国.组织工程细胞支架.中国康复理论与实践.2002,5:267-269.
    [169]Zhang C, Leng Y, Chen J. In vitro mechanical integrity of hydroxyapatite coatings on Ti-6A1-4V implants under shear loading, Journal of Biomedical Materials Research. 2001,3(56):342-350.
    [170]Huang L, Xu K, Lu J, Guelorget B, Chen H. Nano-scratch and fretting wear study of DLC coatings for biomedical application. Diamond and Related Materials.2001;10: 1448-1456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700