纯钛种植体表面氨基等离子体改性的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从Branemark教授提出骨整合(Osteointegration)理论以来,种植体与周围骨组织的骨性结合是目前人们公认的评价种植义齿成功与否的最重要的标准之一。为了达到这一标准,许多学者在种植体材料及表面处理方面做了大量的工作,目前研究的焦点主要是如何提高种植体周围骨形成速度、缩短骨愈合时间及提高邻近骨组织的矿化程度,从而缩短种植义齿的疗程。传统的种植体表面改性方法,如等离子体喷涂技术由于存在涂层的溶解、剥脱等问题,限制了其在临床的应用。因此本研究采用射频低温等离子体方法,以庚胺为聚合单体,在纯钛种植体表面引入具有生物活性的氨基功能团,利用原子力显微镜、X射线光电子能谱仪、接触角测量仪等对改性后表面的理化性能及稳定性进行分析,筛选、确定了最佳的等离子体放电实验参数。并以未处理的纯钛表面作为对照,研究了三种不同放电模式等离子体改性表面的生物相容性。通过本实验,得出以下结论:
     1、连续波放电在钛表面产生高度交联的聚合膜,在纯水及75%的酒精中浸泡后最稳定,但表面引入的氨基量最少;
     2、脉冲放电模式表面引入的氨基较多,但形成的表面不稳定,在纯水及75%酒精中浸泡后表面聚合膜变得不连续;
     3、连续波偶联脉冲模式表面引入的氨基量最多,并且最稳定,为低温等离子体纯钛表面改性的最佳处理模式;
     4、通过射频低温等离子体氨基改性,大大改善了纯钛种植体表面的生物相容性,促进了成骨样细胞早期的黏附及伸展,增强了成骨样细胞的增殖活性,同时抑制了成纤维细胞的黏附及生长;
     5、连续波偶联脉冲模式改性表面具有最佳的细胞相容性。
     上述结果表明,连续波偶联脉冲的放电模式在纯钛表面引入的氨基密度最高,并且改性后表面最稳定。体外实验证实,等离子体氨基改性后明显提高了纯钛表面的生物相容性,促进了成骨样细胞的黏附及伸展,增强了成骨样细胞在种植体表面的增殖能力。本研究证实此方法作为纯钛种植体表面改性方法是可行的,可以在纯钛种植体表面引入大量、稳定的氨基,为氨基等离子体改性技术在种植体表面的应用奠定了实验基础,提供了理论依据。
Experimental research on amine-containing plasma modification of pure titanium implant surface
     Since Professor Branemark proposed the Osteointegration theory, the direct contact between implant and bone has been regarded as one of the most important standards to evaluate whether the implant is successful or not. Therefore, to conform to this standard, many scholars have put lots of effort on the fundamental and clinical research to get the best healing effect. At present, more attentions are paid to surface modification of dental implants, to get the better biocompatibility on dental implant surface through physical, chemical or biological methods. As a result, the speed of formation of new bone around implant will be accelerated and the connection of implant and bone will be strengthened, which will improve the stability and success rate of implant.
     Presently the surface modification methods mainly include:the methods to change the roughness of implant surface (for example sand blasting, acid etching, sand blasting+acid etching and so on), surface coating technology (plasma spray coating, sol-gel coating, ion beam assistance deposition, electrical deposition and so on), oxidation treatment (for example anodic oxidation, micro arc oxidation, thermal oxidization and so on), nitriding, alkali or alkali heat treatment, ion implanting, biochemical modification, self-assembling monolayers technology, physical vapor deposition, chemical vapor deposition and so on. Although some methods have been used in clinical work, most of methods above are still in research stage, and there are some problems about them, such as the unstable coating, dissolution, delamination, the release increase of titanium ion, the acid, alkali or electrolyte remaining, the complex operation, the unstable modified surface and the difficult controlled effect. Therefore, it is urgent to seek an effective and easily controlled method to modify the implant surface without high-temperature treatment or stress on interface of implant and coating.
     Some research indicated that the chemical character of biomaterial surface will influence the adsorption of protein and molecule, such as fibronectn、integrin、ECM、paxillin、actin and so on, and adjust the response of cell on it, deciding the healing response and speed of implant. This experiment is precisely based on this point, to seek a method to improve the adhesion and growth of osteoblast-like cells and accelerate the osteointegration of implant.
     The amino group is one of organic functional groups of organism. In human body, protein and many carbohydrate compound contain massive amino groups, thus the amino group has the high affinity in the structure with tissue. Moreover, the amino groups could be the locating site of protein and enzyme. Obviously, modification with amino group will improve the biocompatibility of biomaterial.
     The low temperature discharge plasma, namely the plasma enhanced chemistry vapor deposition (PECVD), means under high energy from discharge the chemical bond of vapor will be broken and recombine on material surface, and develop a functional coating with different chemical composition. This method has following merits:firstly, the radio frequency does not need the electrode in the plasma reaction chamber, which cannot introduce the impurity from the electrode, avoiding the contamination to modified surface; secondly, the modification is conducted at low temperature, which results in no-stress interface between polymer film and Ti; thirdly, low temperature plasma can modify all kinds of shape materials, especially complicated implant surface, with ultra thin, uniform and pinhole-free film, and the film bonding substrate by covalent bond with strong connection; finally, the most important thing is the low temperature plasma modification belongs to dry chemical method, which is easy to operate with well-controlled result, and the repeatability of result is good. At the same time, plasma can sterilize samples while surface modified. In addition, the low-temperature treatment combined with pulse, which introduces duty cycle, will activate some sole organic molecule and do not destroy their basic chemistry function, which result in producing stable, specific and functional surface.
     This experiment is mainly divided into two parts as followed:
     The first part:to determine plasma parameters and to analyze the physics and chemistry performance and stability of modified surface with different parameters.
     The present experiment mainly studied low-temperature plasma polymerization on titanium implant surface and its biological application. Using Heptylamine as monomer, through the radio frequency (RF,13.56 MHz) low temperature plasma, we modified titanium surface with the-NH2 functional group, to improve its biocompatibility. Firstly, to determine the plasma experiment parameter, we modified titanium surface with different plasma parameters, such as the electric discharge power, the discharge time, the electric discharge pattern, the duty cycle and the sample position and so on. We studied the effect of these parameters on the structure, chemical composition and density of functional group of polymer film and the stability of polymer film in pure water and 75% ethanol. The X-ray photoelectron spectroscopy, atomic force microscopy and contact angle measurement instruments were used to study the structure, composition, texture, solubility, stability of modified surface.
     The second part:taking untreated titanium as a control group, to evaluate the biocompatibility in vitro of modified surface with different plasma parameters.
     The inverted microscope, the fluorescence microscope and scanning electronic microscope were used to investigate the initial adhesion, shape and distribution of osteoblast (SaOs-2) and fibroblast (L929) on modified surface. The cells on samples were automaticlly counted with ImageXpress system. The functional state of actin on different samples dyed with FITC was analyzed with laser scanning confocal microscope, and the shape and adhesion area of SaOs-2 dyed with PKH26 on different modified surface were analyzed. In addition, the effect of different modification on the proliferation of SaOs-2 was statistical analyzed with MTT method.
     The results indicated as follows:
     1. Comparing three different plasma discharge modes, the continuous wave discharge produced cross-linked polymer film with the best stability in pure water and 75% ethanol, but the amino groups introduced were least;
     2. The pulse discharge introduced more amino groups, but the modified surface was unstable, and the polymer film became not continuous with signal of substrate emerging in XPS result after soaking in pure water and 75% ethanol for 30 min;
     3. The continuous wave coupled pulse mode discharge introduced the most amino groups with better stability in pure water and 75% ethanol, which means this is the optimal mode for modifying titanium with plasma;
     4. Through the radio frequency low temperature plasma modification with amino groups, the biocompatibility of titanium was improved, facilitating the adhesion, spreading and proliferation of osteoblast. At the same time inhibited the adhesion and growth of fibroblast;
     5. The cell compatibility of titanium modified with continuous wave coupled pulse mode was the best.
     On the base of the results above, we can conclude as follows:
     The biocompatibility of titanium implant modified with amino-containing plasma functionalization was improved significantly, developing the functional surface with bioactivity; in which continuous wave coupled pulse mode was the best condition for modifying titanium with plasma discharge. The radio frequency low temperature plasma modification was practicable to introduce amino group on titanium surface, and as a new method for titanium implant surface modification, it has a broad prospect.
引文
[1]林野,李健慧,邱立新.口腔种植修复临床效果十年回顾研究[J].中华口腔医学杂志,2006;41(3):131-5.
    [2]Cooper L F, Masuda T, Whitson S W, et al. Formation of Mineralizing Osteoblast Cultures on Machined, Titanium Oxide Grit-blasted, and Plasma-sprayed Titanium Surfaces [J]. Int J Oral Maxillofac Implants,1999; 14(1):37-47.
    [3]Schliephake H, Scharnweber D. Chemical and biological functionalization of titanium for dental implants [J]. Journal of Materials Chemistry,2008; 18(21):2404-14.
    [4]Wieland M, Textor M, Spencer ND, et al. Wavelength-dependent roughness:a quantitative approach to characterizing the topography of rough titanium surfaces [J]. Int J Oral Maxillofac Implants,2001; 16(2):163-81.
    [5]Sykaras N, Iacopino AM, Marker VA, et al. Implant materials, designs, and surface topographies:their effect on osseointegration. A literature review [J]. Int J Oral Maxillofac Implants,2000; 15(5):675-90.
    [6]Wennerberg A, Hallgren C, Johansson C, et al. A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses [J]. Clin Oral Implants Res,1998; 9(1):11-9.
    [7]Ronold HJ, Ellingsen JE. Effect of micro-roughness produced by TiO2 blasting: tensile testing of bone attachment by using com-shaped implants [J]. Biomaterials,2002; 23(21):4211-9.
    [8]Iustafa K, Wennerberg A, Wrobewski J, et al. Determining optimal surface roughness of TiO2 blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone [J]. Clin Oral Implant Res,2001; 12(5):515-25.
    [9]Sittig C, Textor M, Spencer ND, et al. Surface characterization of implant
    materials c.p. Ti, Ti-6Al-7Nb and Ti-6A1-4V with different pretreatments [J]. J Mater Sci Mater Med,1999; 10(1):35-46.
    [10]郑美华,庾尧炜,阮毅.酸蚀面螺纹状牙种植体的表面分析[J].实用医学杂志,2006;22(18):2107-8.
    [11]Buser D, Nydegger T, Hirt HP, et al. Removal torque values of titanium implants in the maxilla of miniature pigs [J]. Int J Oral Maxillofac Implants,1998; 13(5):611-9.
    [12]Perrin D, Szmukler-Moncler S, Echikou C, et al. Bone response to alteration of surface topography and surface composition of sandblasted and acid etched (SLA) implants [J]. Clin Oral Impl Res,2002; 13(5):465-9.
    [13]李德华,刘宝林,宋应亮.改良喷砂钛种植体表面加快骨愈合的细胞学研究[J].中华口腔医学杂志,2003;38(4):254-6.
    [14]Refai AK, Textor M, Brunette DM. Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines [J]. J Biomed Mater Res,2004;1(2):194-205.
    [15]Boukari A, Francius G, Hemmerle J. AFM force spectroscopy of the fibrinogen adsorption process onto dental implants [J]. J Biomed Mater Res A,2006; 78(3):466-72.
    [16]Postiglione L, Di Domenico G, Ramaglia L, et al. Behavior of SaOs-2 cells cultured on different titanium surfaces [J]. J Dent Res,2003; 82(9):692-6.
    [17]Cooper LF. A role for surface topography in creating and maintaining bone at titanium endosseous implants [J]. J Prosthet Dent,2000; 84(5):522-34.
    [18]Lossdorfer S, Schwartz Z, Wang L, et al. Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity [J]. J Biomed Mater Res A,2004; 70(3):361-9.
    [19]Martin JY, Schwartz Z, Hummert W, et al. Effect of titanium surface roughness on proliferation differentiation, and protein synthesis of human osteoblast-like cells (MG63) [J]. J Biomed Mater Res,1995; 29(3):389-401.
    [20]Takebe J, Champagne CM, Offenhacher S, et al.. Titanium surface topography alters cell shap and modulates bone morphogenetic protein 2 expression in the J774A.1 macrophage cell line [J]. J Biomed Mater Res A,2003; 64A(2):207-16.
    [21]Boyan BD, Bonewald LF, Paschalis EP, et al. Osteoblast-mediated mineral deposition in culture is dependent on surface microtopography [J]. Calcified Tissue International,2002; 71 (6):519-29.
    [22]Kieswetter K, Schwartz Z, Hummert TW, et al. Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells [J]. J Biomed Mater Res,1996; 32(1):55-63.
    [23]Luethen F, Lange R, Becker P, et al. The influence of surface roughness of titanium on b1-and b3-integrin adhesion and the organization of fibrbnectin in human osteoblastic cells [J]. Biomaterials,2005; 26(15):2423-40.
    [24]Quirynen M, Van Der Mei HC, Bollen CML, et al. An in vivo study of the influence of the surface roughness of implants on the microbiology of supragingival plaque [J]. J Dent Res,1993; 72(9):1304-9.
    [25]Kweh SW, Khor KA, Cheang P. An in vitro investigation of plasma sprayed hydroxyapatite (HA) coatings produced with flame-spheroidized feedstock [J]. Biomaterials,2002; 23(3):775-85.
    [26]Vercaigne S, Wolke JG, Naert I, et al. Histomorphometrical and mechanical evaluation of titanium plasma-spray-coated implants placed in the cortical bone of goats [J]. J Biomed Mater Res,1998; 41(1):41-8.
    [27]Gottlander M, Johanssen VB, Nennerberg A. Bone tissue reactions to electrophoretically applied calcium phosphate coating [J]. Biomaterials,1997; 18(7):551-7.
    [28]Bouos MI, Fauchais P, Vardelle A. Plasma Spraying:Theory and Appplication [M]. Singapore:World Scientific,1993.
    [29]Gil-Albarova J, Salinas AJ, Bueno-Lozano AL, et al. The in vivo behaviour of a sol-gel glass and a glass-ceramic during critical diaphyseal bone defects healing [J]. Biomaterials,2005; 26(21):4374-82.
    [30]杨成,孟丽娥,丁涛.磷酸钙溶胶涂层对多孔型种植体表面骨内向生长的影响[J].中国口腔颌面外科杂志,2006;4(2):136-9.
    [31]贺刚,陈治清,盛祖立.纯钛种植体表面纳米含氟磷灰石涂层的构建和表征[J].中国口腔种植学杂志,2007;12(2):51-64.
    [32]Ramires PA, Romito A, Cosentino F, et al. The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour [J]. Biomaterials,2001; 22(12):1467-74.
    [33]Cui FZ, Luo ZS. Biomaterials modification by ion-beam processing [J]. Surface and Coatings Technology,1999; 112(1-3):278-85.
    [34]Jones FH. Teeth and bones:applications of surface science to dental materials [J]. Surface Science Reports,2001; 42(3-5):75-205.
    [35]Lakstein D, Kopelovitch W, Barkay Z, et al. Enhanced osseointegration of grit-blasted, NaOH-treated and electrochemically hydroxyapatite-coated Ti-6Al-4V implants in rabbits [J]. Acta Biomaterialia,2009; 5(6):2258-69.
    [36]Walschus U, Hoene A, Neumann HG, et al. Morphometric immunohistochemical examination of the inflammatory tissue reaction after implantation of calcium phosphate-coated titanium plates in rats [J]. Acta Biomaterialia,2009; 5(2):776-84.
    [37]Zablotsky MH. Hydroxyapatite coatings in implant dentistry [J]. Implant Dent, 1992;1(4):253-7.
    [38]Yang B, Uchida M, Kim HM, et al. Preparation of bioactive titanium metal via anodic oxidation treatment [J]. Biomaterials,2004; 25(6):1003-10.
    [39]马威,刘宝林,熊信柏.钛种植体表面微弧氧化处理后的生物力学及组织形态学研究[J].现代口腔医学杂志,2005;19(2):189-91.
    [40]宋应亮,徐君伍,马轩祥.不同氧化温度处理下钛75合金耐孔蚀的研究[J].中华口腔医学杂志,2001;36(1):277-9.
    [41]严洪海,赵士芳,陈关福.不同温度热氧化处理钛种植体耐腐蚀性能和离子释放速度的体外研究[J].中国口腔种植学杂志,2001;6(3):109-15.
    [42]Rostlund T, Thomsen P, Bjursten LM, et al. Difference in tissue response to nitrogen-ion-implanted titanium and c. p. titanium in the abdominal wall of the rat [J]. J Biomed Mater Res,1990; 24(7):847-60.
    [43]Xuanyong L, Paul K.C, Chuanxian D. Surface modification of titanium, titanium alloys, and related materials for biomedical applications [J]. Materials Science and Engineering R,2004; 47(3-4):49-121.
    [44]Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties [J]. Biomaterials,2003; 24(13):2161-75.
    [45]Kim HM, Miyaji F, Kokubo T, et al. Bonding strength of bonelike apatite layer to Ti metal substrate [J]. J Biomed Mater Res(Appl Biomater),1997; 38(2):121-7.
    [46]Yan WQ, Nakamura T, Koboyashi M, et al. Bonding of chemically treated titanium implants to bone [J]. J Biomed Mater Res,1997; 34(2):267-75.
    [47]Alonso F, Loinaz A., Onate JI, et al. Characterization of Ti-6Al-4V modified by nitrogen plasma immersion ion implantation [J]. Surface & Coatings Technology, 1997;93(2):305-8.
    [48]Suzuki Y, Kusakabe M, Kaibara M, et al. Cell adhesion control by ion implantation into extra-cellular matrix [J]. Nuclear Instruments and Methods in Physics Research B,1994; 91(1-4):588-92.
    [49]Hanawa T. In vivo metallic biomaterials and surface modification [J]. Microstruct Process,1999; 267(2):260-6.
    [50]白薇,陈治清,张敏.氨基注入钛表面及其微观分析[J].华西口腔医学杂志,2003;21(1):22-4.
    [51]Puleo DA, Nanci A. Understanding and controlling the bone-implant interface [J]. Biomaterials,1999; 20(23-24):2311-21.
    [52]Lebaron RG, Athanasiou KA. Extracellular Matrix Cell Adhesion Peptides: Functional Applications in Orthopedic Materials [J]. Tissue Eng,2000; 6(2):85-103.
    [53]Grzesik WJ, Robey PG. Bone matrix RGD glycoproteins:immunolocalization and interaction with human primary osteoblastic bone cells in vitro [J]. J Bone Min Res,1994; 9(4):487-96.
    [54]Xiao SJ, Textor M, Spencer ND, et al. Immobilization of the cell-adhesive peptide Arg-Gly-Asp-Cys (RGDC) on titanium surfaces by covalent chemical attachment [J]. J Mater Sci Mater Med,1997; 8(12):867-72.
    [55]De Giglio E, Sabbatini L, Colucci S, et al. Synthesis, analytical characterization, and osteoblast adhesion properties on RGD-grafted polypyrrole coatings on titanium substrates [J]. J Biomater Sci Polym Ed,2000; 11 (10):1073-83.
    [56]Barber TA, Golledge SL, Castner DG, et al. Peptide-modified p(AAm-co-EG/AAc) IPNs grafted to bulk titanium modulate osteoblast behavior in vitro [J]. J Biomed Mater Res A,2003; 64A(l):38-47.
    [57]Zreiqat H, Akin FA, Howlett CR, et al. Differentiation of human bone-derived cells grown on GRGDSP-peptide bound titanium surfaces [J]. J Biomed Mater Res A,2003;64A(1):105-13.
    [58]Schuler M, Owen GR, Hamilton DW, et al. Biomimetic modification of titanium dental implant model surfaces using the RGDSP-peptide sequence:a cell morphology study [J]. Biomaterials,2006; 27(21):4003-15.
    [59]Ku Y, Chung CP, Jang JH. The effect of the surface modification of titanium using a recombinant fragment of fibronectin and vitronectin on cell behaviour [J]. Biomaterials,2005; 26(25):5153-7.
    [60]Ferris DM, Moodie GD, Dimond PM. RGD-coated titanium implants stimulate increased bone formation in vivo [J]. Biomaterials,1999; 20(23-24):2323-31.
    [61]Elmengaard B, Bechtold JE, Soballe.K. In vivo study of the effect of RGD treatment on bone ongrowth on press-fit titanium alloy implants [J]. Biomaterials, 2005;26(17):3521-6.
    [62]Nagai M, Hayakawa T, Fukatsu A. In vitro study of collagen coating of titanium implants for initial cell attachment [J]. Dent Mater J,2002; 21(3):250-60.
    [63]Roehlecke C, Witt M, Kasper M. Synergistic effect of titanium alloy and collagen type I on cell adhesion, proliferation and differentiation of osteoblast-like cells [J]. Cells Tissues Organs,2001; 168(3):178-87.
    [64]Bierbaum S, Hempel U, Geissler U. Modification of Ti6AL4V surfaces using collagen I, III, and fibronectin. II. Influence on osteoblast responses [J]. J Biomed Mater Res A,2003; 67(2):431-8.
    [65]Pham MT, Reuther H, Maitz MF. Native extracellular matrix coating on Ti surfaces [J]. J Biomed Mater Res,2003; 66A(2):310-6.
    [66]Morra M, Cassinelli C, Fini M. Enhanced osteointegration by biochemical surface modification:covalent linking of collagen I to intervertebral metal disk surface [J]. Eur Cell Mater,2005; 10(suppl 3):6.
    [67]Rammelt S, Schulze E, Bernhardt R. Coating of titanium implants with type-I collagen [J]. J Orthop Res,2004; 22(5):1025-34.
    [68]Esenwein SA, Esenwein S, Herr G, et al. Osteogenetic activity of BMP-3-coated titanium specimens of different surface texture at the orthotopic implant bed of giant rabbits [J]. Chirurg,2001; 72(11):1360-8.
    [69]Aebli N, Stich H, Schawalder P. Effects of bone morphogenetic protein-2 and hyaluronic acid on the osseointegration of hydroxyapatite-coated implants:an experimental study in sheep [J]. J Biomed Mater Res A,2005; 73(3):295-302.
    [70]Becker J, Kirsch A, Schwarz F, et al. Bone apposition to titanium implants biocoated with recombinant human bone morphogenetic protein-2 (rhBMP-2). A
    pilot study in dogs [J]. Clin Oral Investig,2006; 10(3):217-24.
    [71]Lan J, Wang ZF, Shi B, et al. The influence of recombinant human BMP-2 on bone-implant osseointegration:biomechanical testing and histomorphometric analysis [J]. Int J Oral Maxillofac Surg,2007; 36(4):345-9.
    [72]Liu Y, Huse RO, de Groot K, et al. Delivery mode and efficacy of BMP-2 in association with implants [J]. J Dent Res,2007; 86(l):84-9.
    [73]Kaiyong C, Marion F, Joerg B, et al. Surface functionalized titanium thin films: Zeta-potential, protein adsorption and cell proliferation [J]. Colloids and Surfaces B:Biointerfaces,2006; 50(1):1-8.
    [74]Benjamin G, Keselowsky, David M, et al. Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding [J]. Biomaterials,2004; 25(28):5947-54.
    [75]LeClair P, Berera G.P, Moodera J.S. Titanium Nitride Thin Films Obtained by a Modified Physical Vapor Deposition Process [J]. Thin Solid Films,2000; 376(1-2):9-15.
    [76]Mardare C.C, Mardare A.I, Fernandes J.R.F, et al. Deposition of bioactive glass-ceramic thin-films by RF magnetron sputtering [J]. Journal of the European Ceramic Society,2003; 23(7):1027-30.
    [77]Wolke JG, de Groot K, Jansen JA. In vivo dissolution behavior of various RF magnetron sputtered Ca-P coatings [J]. J Biomed Mater Res,1998; 39(4):524-30.
    [78]Ding SJ, Ju CP, Lin JH. Immersion behavior of RF magnetron-assisted sputtered hydroxyapatite/titanium coatings in simulated body fluid [J]. J Biomed Mater Res,1999; 47(4):551-63.
    [79]Ding SJ, Ju CP, Lin JH. Characterization of hydroxyapatite and titanium coatings sputtered on Ti-6Al-4V substrate [J]. J Biomed Mater Res,1999; 44(3):266-79.
    [80]Ding SJ. Properties and immersion behavior of magnetron-sputtered multi- layered hydroxyapatite/titanium composite coatings [J]. Biomaterials,2003; 24(23):4233-8.
    [81]Watanabe H, Sato Y, Nie C, et al. The mechanical properties and microstructure of Ti-Si-N nanocomposite films by ion plating [J]. Surface and Coatings Technology,2003; 169-170:452-5.
    [82]Uchida M, Nihira N, Mitsuo A, et al. Friction and wear properties of CrAIN and CrVN films deposited by cathodic arc ion plating method [J]. Surface and Coatings Technology,2004; 177-178:627-30.
    [83]Ohring M. Materials Sciences of Thin Film:Deposition and Structure [M]. USA: Academic Press Ltd,1999.
    [84]Hendricks S.K, Kwok C, Shen M, et al. Plasma-deposited membranes for controlled release of antibiotic to prevent bacterial adhesion and biofilm formation [J]. Journal of Biomedical Materials Research,2000; 50(21):60-170.
    [85]Nebe B, Finke B, Luethen F, et al. Improved initial osteoblast functions on amino-functionalized titanium surfaces [J]. Biomolecular Engineering,2007; 24(5):447-54.
    [86]Aronsson BO, Lausmaa J, Kasemo B. Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials [J]. J Biomed Mater Res,1997; 35(1):49-73.
    [87]Chu P.K, Chen J.Y, Wang L.P, et al. Plasma-surface modification of biomaterials [J]. Materials Science and Engineering R,2002; 36(5-6):143-206.
    [88]唐霞,王少安.种植体的表面改性与促进成骨[J].国际口腔医学杂志,2008;35(S1):225-8.
    [89]Koch C.F, Johnson S, Kumar D. Pulsed laser deposition of hydroxyapatite thin films [J]. Materials Science and Engineering C,2007; 27(3):484-94.
    [90]Paolo T, Daulton JK, Sabina R. Human histologic and histomorphometric analyses of hydroxyapatite-coated implants after 10 years of function:a case
    report [J]. Int J Oral Malillofac Implants,2005; 20(1):124-30.
    [91]王玉琛,王家伟.等离子喷涂HA涂层种植体的长期稳定性[J].中国口腔种植学杂志,2009;14(1):41-5.
    [92]Forch R, Chifen A.N, Bousquet A, et al. Recent and Expected Roles of Plasma-Polymerized Films for Biomedical Applications [J]. Chem Vap Deposition,2007; 13(6-7):280-94.
    [93]Shwetha K, Dhiman B, Chandana P, et al. Surface chemistry influences implant-mediated host tissue responses [J]. Journal of Biomedical Materials Research Part A,2008; 86(3):617-26.
    [94]Finke B, Luethen F, Schroeder K, et al. The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces [J]. Biomaterials,2007; 28(30):4521-34.
    [95]Andrew L.H, Helmut T, Jamie Q, et al. Comparison of the binding mode of plasmid DNA to allylamine plasma polymer and poly(ethylene glycol) surfaces [J]. Surface Science,2008; 602(10):1883-91.
    [96]Marco M. Biochemical modification of titanium surfaces:peptides and ECM proteins [J]. MEu Mroopreraan Cells and Materials,2006; 12:1-15.
    [97]Gancarz I, Bryjak J, Pozniak G, et al. Plasma modified polymers as a support for enzyme immobilization Ⅱ. Amines plasma [J]. European Polymer Journal,2003; 39(11):2217-24.
    [98]Bogaerts A, Neyts E, Gijbels R, et al. Gas discharge plasmas and their applications [J]. Spectrochimica Acta Part B,2002; 57(4):609-58.
    [99]Ponsonnet L, Reybier K, Jaffrezic N, et al. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour [J]. Materials Science and Engineering C,2003; 23(4):551-60.
    [100]Thi Tran D, Mori S, Suzuki M. Characteristics of polyimide-based composite membranes fabricated by low-temperature plasma polymerization [J]. Thin Solid Films,2008; 516(13):4384-90.
    [101]Strietzel R; Hosch A, Kalbfleisch H, et al. In vitro corrosion of titanium [J]. Biomaterials,1998; 19(16):1495-9.
    [102]Liu X, Lim JY, Donahue HJ, et al. Influence of substratum surface chemistry/energy and topography on the human fetal osteoblastic cell line hFOB 1.19:Phenotypic and genotypic responses observed in vitro [J]. Biomaterials, 2007; 28(31):4535-50.
    [103]Puleo DA, Kissling RA, Sheu MS. A technique to immobilize bioactive proteins, including bone morphogenetic protein-4 (BMP-4), on titanium alloy [J]. Biomaterials,2002; 23(9):2079-87.
    [104]Anselme K. Osteoblast adhesion on biomaterials [J]. Biomaterials,2000; 21(7):667-81.
    [105]Schroeder K, Finke B, Polak M, et al. Gas-discharge plasma-assisted functionalization of titanium implant surfaces [J]. Mat Sci Forum,2010; 638-642:700-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700