高频地波雷达干扰与海杂波信号处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,高频地波雷达在军事和民用领域得到了广泛应用。该体制雷达能弥补常规微波雷达的低空盲区和天波超视距雷达的近距盲区,具有远程预警、反隐身、反超低空突防和反辐射导弹等优点。采用综合脉冲与孔径体制(SIAR)的岸舰双/多基高频地波雷达,接收平台可置于移动舰船上,具有良好的机动作战能力。影响高频地波雷达目标检测的主要因素是干扰和海杂波,前者包括短波通信、广播电台、雷电、流星余迹和电离层干扰等,后者包括接收平台运动或海态自身变化等因素产生的频谱展宽海杂波。
     本论文针对高频地波(综合脉冲与孔径)雷达工作中的各类干扰和展宽海杂波的抑制处理问题展开研究,主要内容和创新点如下:
     1.详细分析了射频干扰的相关性与能量分布特征,并对雷电、流星余迹瞬态干扰和电离层干扰特征进行了总结。分析表明,射频干扰的相关和能量分布在时域和距离域上都存在明显特征。如果利用干扰相关特性进行抑制,可从距离域出发只针对若干感兴趣距离单元处理,比时域直接处理运算量小。如果利用干扰能量分布特征进行抑制,可以从快时域出发直接进行剔除,剔除过程将减小目标的能量积累,并对海杂波产生时域加窗效应而在频域产生虚假旁瓣。雷电瞬态干扰在距离单元之间不具有相关性,低通滤波输出端上出现区间随调频周期变化,并会出现在所有的距离—多普勒分辨单元上,因此,可以考虑从时域出发利用干扰与目标杂波信号的差异进行检测与剔除。
     2.从单路接收信号出发,对已有射频干扰抑制方法进行了分析与改进:针对剔除法,借鉴线性调频体制中的时域剔除思想,提出了适合于脉冲编码体制的频域剔除法;针对特征子空间法,引入负距离单元训练样本,提出了通过相关性大小进行距离加权来估计相关矩阵的加权子空间法;针对相消法,根据射频干扰能量分布和信号本身参数之间的关系,给出了单频干扰特征频率的估计方法,然后从时域上反演构造出与原始干扰回波完全相干的参考信号,以此为基础提出了反演相消法。最后,针对包含单频和窄带成分的混合干扰,结合反演相消法给出了综合法的处理流程。仿真结果表明,与其它方法相比,反演相消综合法能够有效抑制射频干扰,具有较高的目标增益。本章方法和结论即适合于常规地波雷达,也适合于综合脉冲孔径雷达。
     3.基于雷电和流星余迹干扰信号的差异,改进了瞬态干扰抑制方法。对于雷电,提出了小波分析—矩阵分解抑制法:首先应用小波分析检测确定干扰出现区间,然后选取干扰邻近数据构造采样矩阵并进行奇异值分解,最终实现干扰的剔除和目标分量的有效积累。方法可以减小直接对原始序列等分处理进行矩阵构造与分解的计算量,提高置零区间回波的恢复精度。针对流星余迹,给出了海杂波约束条件下的空域自适应滤波法。方法在次累积时间内构造相关矩阵进行自适应波束形成抑制干扰时,考虑了时间分段处理对海杂波调制所产生的频谱展宽影响,使得回波中一阶海杂波时域相关特性不会发生破坏而在频域上虚假展宽,有利于后续频域处理中对落入Bragg峰附近的舰船目标进行检测。
     4.结合综合脉冲与孔径雷达信号处理流程,对电离层的干扰信号模型进行了分析。通过阵元和快时域联合采样构造空时快拍,给出了基于海杂波主成分随机约束的空时二维自适应滤波抑制法。其中,针对回波中的海杂波主成分,通过构造Hankel矩阵与SVD分解方法实现其瞬时频率的估计与预处理。仿真与实测数据结果验证了电离层干扰抑制方法的有效性。
     5.对综合脉冲孔径雷达接收平台运动情况下一阶海杂波频谱特征进行分析后,结合海杂波谱空时分布随距离变化和系统参数的先验信息,提出了直接数据域和时空插值联合的海杂波空时二维自适应处理抑制方法。方法首先对训练单元上的非均匀杂波样本进行空时二维插值,然后使用直接数据域法对得到的独立同分布训练样本矩阵进行目标相消与滑窗处理,以扩大空时二维快拍训练样本个数。通过这些训练样本对检测单元杂波相关矩阵进行估计后,构造空时二维滤波器实现了运动平台下的海杂波自适应抑制。
     6.在非平稳海杂波频谱变化特征与高分辨谱估计方法基础上,提出了基于AR过程的非平稳海杂波时域参数联合估计方法,对非平稳序列包含的多个AR过程出现区间和对应滤波系数进行最优估计,目的是从时域出发对非平稳参数进行估计以提高频谱分析的精度。期间,引入小波分析中的奇异信号检测缩小了各段AR过程分界点的搜索范围,给出了AR子段出现区间和阶数的快速搜索算法。在非平稳海杂波时域参数分析基础上,结合Wigner-Ville时频分析与Radon变换的机动目标运动参数估计,提出了基于海杂波时域参数估计的机动目标检测方法。仿真实验表明,方法能有效抑制非平稳一阶海杂波的频谱展宽与功率,提高机动目标的检测能力。
In recent years, HF Surface Wave Radar (HF-SWR) has been widely used in military and civilian fields. Its detection range is up to 300-400Km which can compensate blind spots of conventional microwave radar at low altitude and that of Sky Wave Over-the-Horizon Radar in near ranges. HF-SWR take the advantages of long distance and early warning surveillance, anti-stealth, anti-altitude penetration and ARM(Anti-Radiation Missiles). As a new kind of HF-SWR, coast-ship bistatic/multistatic Surface Wave Over-The-Horizon Radar can adopt Synthetic Impulse and Aperture Radar(SIAR) mechanism and can be installed receiver on maneuvering boats, so the system has good maneuverability during military operation over ocean. HF interference and sea clutter are two adverse factors during target detection of HF-SWR. The former includes the short-wave radio communications, lightning, meteor trail echoes, ionospheric interference and so on. The latter relate to spectrum broadening of sea clutter caused by factors such as bistatic structure and receiver movement. This dissertation is focused on suppression processing of HF interference and sea clutter in HF-SWR and SIAR. The main contents and innovation are summarized as follows:
     1. Correlation and energy distribution characteristics of Radio Frequency interference were analyzed. Meanwhile, characteristics of transient interference including thunder lightning and meteor trails and ionospheric interference are briefly summarized. Simulation results show that the correlation and energy distribution properties of Radio Frequency interference have distinct characteristics in time and range domain. When using correlation characteristics, interference suppression can be obtained by a number of training samples from interested ranges, and computing load is smaller than suppression processing from time domain. When using characteristic of interference energy distribution, suppression can be obtained by excising process in fast time domain but which has side effectives such as target energy loss and windowing effects to sea clutter and consequently high side-lobe in frequency domain. Correlation coefficients of lightning interference between ranges are small and appear time of interference changes between frequency-modulation periods in the low-pass filtering output. Lightning energy are distributed in all Range-Doppler cell and can be detected and removed in time domain by its difference from target and clutter echoes.
     2. RF interference suppression methods are analyzed and improved based on single channel echo. During excising suppression, excising method in frequency domain is proposed for coding-modulation system which is similar to time domain excising in FMICW system. During eigen-subspace suppression, interference subspace is well estimation by adopting negative range training samples and range weights for correlation matrix calculation. During cancellation suppression, estimation algorithm for characteristic frequency of RF interference is proposed according to signal parameters and power distribution location. Then Construction-Cancellation suppression method is proposed based on Wiener filter where the reference signal coherent to interference is constructed by the carrier frequency estimated. Finally the comprehensive suppression procedure based on Construction-Cancellation suppression is proposed for composite interference comprise of single-frequency and narrowband components. Simulation results show that comprehensive suppression procedure can get effective results than other methods and with higher target gain. Suppression algorithms above are suitable for conventional ground wave radar and SIAR.
     3. Transient interference suppression algorithms were introduced and improved based on the difference between lightning and Meteor trail echoes. The algorithm combining wavelet analysis and matrix decomposition for lightning suppression is proposed. First, wavelet analysis is applied for interference detection and then the sample matrix is constructed adaptively by training data near interference component. Then SVD is applied to the matrix by process of which interference components are removed and target energy is effectively accumulated using AR extrapolation. This method can reduce computing load and increase recovery accuracy of target component when compared to the process of uniform truncation for training matrix construction and decomposition which is regardless of interference information. In Meteor trail suppression, interference covariance matrix is constructed adaptively in sub-CPI and an improved adaptive beamforming algorithm introducing clutter constraints is presented which do not destroy time coherence of the first-order Sea clutter after interference suppression and benefits target detection in frequency domain subsequently.
     4. With Synthetic Impulse and Aperture Radar signal processing the ionosphere interference is analyzed. Using space-time snapshots constructed jointly through array elements and fast time samples, interference adaptive suppression algorithm is proposed by the virtue of random constraint to sea clutter in space-time domain. Meanwhile, main component of sea clutter is effectively traced by constructing Hankel matrix and instantaneous frequency is estimated by SVD decomposition. Simulation and experimental results validate the suppression algorithm for ionospheric interference.
     5. Sea clutter spreading spectrum is analyzed under the condition of receiver moving in Synthetic Impulse and Aperture Radar, and joint space-time adaptive processing for non-stationary clutter between range cells is discussed. Based on two dimensional distribution characteristics of sea clutter spectrum, space-time adaptive processing (STAP) algorithm is applied to suppress spreading sea clutter: space-time interpolation is applied to non-uniform training samples according to relationship between clutter spectrum and system geometry parameters , thenafter, Direct Data Domain method is adopt to get enough training samples for Sea clutter STAP.
     6. Characteristics of nonstationary sea clutter sequence are analyzed and high resolution spectral estimation methods are introduced. To improve the accuracy of frequency-domain analysis for non-stationary radar echoes, joint estimation of multi-parameter method in time domain is proposed for the number of stable AR processes and corresponding filter coefficients. During optimal estimation of signal parameters for nonstationary sequence, wavelet analysis for singular signal detection has reduced the searching ranges which contain borderlines of AR sections. Thenafter, maneuvering target detection method according to time-domain characteristics of sea clutter is proposed after target motion parameter estimation process by Wigner-Ville time-frequency analysis (TFA) and Radon transform. Simulation shows that time-domain parameter estimation and maneuvering target detection methods for high-frequency ground wave radar echo can effectively reduce the first-order spectrum width and suppress second-order spectrum and then improve the detection capability to maneuvering target.
引文
[1] Anderson S J, Remote sensing with the JINDALEE skywave radar[J]. IEEE J. Ocean. Eng., 1986, 11(2): 158-163.
    [2] Georges T M, Harlan J A, et al. A test of ocean surface current mapping with Over-The-Horizon radar[J]. IEEE Trans. On GRS,1998,36(1): 101-110.
    [3] Fernandez D M, Vesecky J F, Teague C C, et al. Ship detection with high-frequency phased-array anddirection-finding radar systems[C]. IGARSS’98, 1998, 204-206.
    [4] King R W P. Surface-Wave radar and its application [J]. IEEE Trans. On Antennas Propagation, 2003, 51(10): 3000-3002.
    [5] Liu H T. Target detection and tracking with a high frequency ground wave over-the-horizon radar[C]. IEEE Int. Conf. on Radar,2003, 593-598.
    [6]刘春阳,王义雅.高频地波超视距雷达述评[J].现代防御技术, 2002, 30(6): 38-46.
    [7]吴晓进,谢世富.超视距雷达及其防空应用[J].信息与电子工程, 2003, 1(2): 75-78.
    [8] Barrick D E. History, present status, and future directions of HF Surface-Wave Radars in the U.S [C]. IEEE International Radar Conference, 2003: 652-655.
    [9] Anderson S J, Edwards P J, Marrone P, et al. Investigations with SECAR– a bistatic HF Surface Wave Radar [C]. IEEE International Radar Conference, 2003: 717-722.
    [10]周浩,文必洋.高频地波雷达生成海洋表面矢量流图[J].海洋与湖沼, 2001, 33(1): 1-7.
    [11]文必洋.高频地波雷达探测海洋表面状态参数研究[D].武汉大学博士学位论文, 1998.
    [12] Barnum J R, Simpson E E. Over-the-horizon radar Sensitivity Enhancement by Impulsive Noise Excision [C]. IEEE National Radar Conference, 1997: 252-256.
    [13] Turley M D. Impulsive Noise Rejection in HF Radar Using a Linear Prediction Technique [C]. IEEE International Radar Conference, 2003: 358-362.
    [14] Thayaparan T. Numerical Analysis of the Response of HF Radar to Meteor Backscatter Detection [J]. IEE Proc. Radar Sonar Navig. , 2002, 149(3): 125-135.
    [15] Abramovich Y I, Spencer N K, Anderson S J, et al. Stochastic-constraints method in nonstationary hot clutter cancellation—Part I: fundamentals and supervisedtraining applications [J]. IEEE Trans. On Aerospace and Electronic Systems, 1998, 34(4): 1271-1292.
    [16] Abramovich Y I, Spencer N K, Anderson S J. Stochastic-constraints method in nonstationary hot clutter cancellation—Part II: unsupervised training applications [J]. IEEE Trans. On Aerospace and Electronic Systems, 2000, 36(1): 132-150.
    [17]唐晓东,周文瑜.短波雷达干扰与抗干扰技术[J].现代雷达, 2003(2): 21-25.
    [18] David J. High frequency atmospheric noise mitigation. IEEE National Radar Conference,1994, 1040-1043.
    [19] James R Barnum and Erik E Simpson. Over-the-horizon radar sensitivity enhancement by impulsive noise excision. IEEE National Radar Conference,1997, 252-256.
    [20] Xing M D, BAO Z, Qiang Y. Transient interference excision in OTHR[J]. ACTA ECTRONICA SINICA,2002, 30(6): 823-826.
    [21]宁百齐,李钧.电离层不规则体结构的多普勒谱特性[J].空间科学学报, 1996, 16(1): 36-42.
    [22] Blake T M. Ship detection and tracking using high frequency surface wave radar [C]. HF Radio Systems and Techniques, IEE, Conference, 1997, 411(7): 291-295.
    [23] Wang J, Dizaji R, Ponsord A M. Analysis of clutter distribution in bistatic high frequency surface wave radar [C]. Proceedings of CCECE2004, Canada, 5: 1301-1303.
    [24] Lapierre M, Van Droogenbroeck, Verly J G. New methods for handling the range dependence of the clutter spectrum in non-sidelooking STAP radars [C]. ICASSP2003, 73-76.
    [25] Gill E W, Walsh J. A relationship between external noise and the ocean clutter models for bistatic operation of a pulsed High-Frequency radar [C]. Proceedings, IEEE Canadian Conference on Electrical and Computer Engineering, 2001, 5: 153-158.
    [26] Melvin W L, Callahan M J, Wicks M C. Adaptive clutter cancellation in bistatic radar [C]. Conference on Signals, Systems and Computers, 2000(2): 1125-1130.
    [27]谢俊好,袁业术,段凤增.基于时域插值的舰载高频地波雷达空时处理[J].哈尔滨工业大学学报, 1998,30(6): 89-93.
    [28] Ponsford A M, Dizaji R M, et al. HF Surface Wave Radar operation in adverse conditions [C]. IEEE International Radar Conference, 2003, 593-598.
    [29] Xie J H, Yuan Y S, Liu Y T. Super-resolution processing for HF Surface Wave Radar based on pre-whitened MUSIC [J]. IEEE Journal of Oceanic Engineering, 1998, 23(4): 313-321.
    [30]陈志群,赵淑清,权太范.高频雷达多波束最优天线方向图综合[J].现代防御技术, 2002, 30(1): 56-60.
    [31] Crombie D D, Doppler spectrum of sea echo at 13.56Mc./s[J]. Nature,1955,175: 681-682.
    [32] Wait J R. Theory of HF ground wave backscatter from sea waves[J]. Geophys Res. 1966(71): 4842-4839.
    [33] Barrick D. First-order theory and analysis of MF/HF/VHF scatter from the sea[J].IEEE Transactions on Antennas and Propagation,1972,20(1): 2-10.
    [34] Gill E W, Walsh J. High-frequency bistatic cross sections of the ocean surface, Radio Sci., 2001,36(6):1459-1475.
    [35] Walsh J, Gill E W. An analysis of the scattering of high-frequency electromagnetic radiation from rough surfaces with application to pulse radar operating in backscatter mode, Radio Sci., 2000,35(6):1337-1359.
    [36] Headrick J M, Skolnik M I. Over-the-Horizon radar in the HF band [J]. Proceedings of the IEEE, 1974, 62 (6): 665-673.
    [37] Barrick D E. History, present status, and future direction of HF surface-wave radars in USA[J]. Int. Conf. on Radar, Australia, 2003, 9: 652-655.
    [38] Anderson S J, Anderson P J, Edwards P J, et al. Investigations with SECAR-a bistatic HF surface wave radar[J]. IEEE International Conference on Radar, 2003: 717-722.
    [39] Z. K. Luck, R. Wyatt, et al. OSCR wave measurements-some preliminary result[J]. IEEE Journal of Ocean Eng.,1996,21(1): 64-76.
    [40] Rafaat Khan, Brian Gamberg, et al. Target detection and tracking with High Frequency Ground Wave Radar[J]. IEEE Journal of ocean engineering,1994,19(4): 540-548.
    [41] Gurgel K W, Antonischki G, et al. Wellen Radar(WERA): a new ground-wave based HF radar for ocean remote sensing[J]. Coastal Engineering,1999,8(37): 219-234.
    [42] Liu Y T, Xu R Q, Zhang N. Progress in HFSWR research at Harbin Institute of Technology [C]. IEEE International Radar Conference, 2003, 522-528.
    [43]王威.高频地波超视距雷达目标检测与估值的研究[D].哈尔滨工业大学博士论文, 1997.
    [44]谢俊好.舰载高频地波雷达目标检测与估值研究[D].哈尔滨工业大学博士论文, 2001.
    [45]冀振元,孟宪德,周和秘.高频地波超视距雷达海杂波信号分析[J].系统工程与电子技术, 2000, 22(5): 12-15.
    [46]位寅生,刘永坦.随机断续高频雷达波形设计和处理[J].电子学报, 2002,30 (3): 437-440.
    [47]吴世才,柯亨玉.高频地波雷达OSMAR2000通过验收[J].电子学报, 2001,29(5): 584.
    [48]柯亨玉,吴世才,杨子杰等. OSMAR2000相控阵天线的分析与设计[J].武汉大学学报(理学版), 2001,47(5): 536-540.
    [49]杨子杰,吴世才,侯杰昌等.频地波雷达总体方案及工程实现中的几个主要问题[J].武汉大学学报(理学版), 2001, 47(5): 513-518.
    [50]田建生,杨子杰,吴世才等. FMICW雷达海洋回波信号采集处理系统[J].武汉大学学报(理学版), 2001,47(5): 565-568.
    [51]时玉彬,杨子杰.海洋环境监测高频地波雷达的研究现状与发展趋势[J].电讯技术, 2002, 42(3): 128-133.
    [52]杨绍麟.高频地波雷达天线阵设计及海浪回波MUSIC空间分辨算法研究[D].武汉大学博士学位论文, 2001.
    [53]陈伯孝,许辉,张守宏.舰载无源综合脉冲/孔径雷达及其若干关键问题[J].电子学报, 2003, 31(12): 1776-1779.
    [54]周浩.高频雷达信号处理中的若干问题研究[D].武汉大学博士学位论文, 2004.
    [55]杨俊.高频地波雷达干扰消除[D].武汉大学博士学位论文, 2004.
    [56]万显荣.高频地波雷达数字接收机设计与抗干扰研究[D].武汉大学博士学位论文, 2005.
    [57]张国毅,刘永坦.高频地波雷达多干扰的极化抑制[J].电子学报, 2001, 29 (9): 1206-1209.
    [58]高兴斌,宗成阁,袁业术.高频地波舰载超视距雷达的海杂波对消[J].电子学报, 2000, 28 (3): 5-8.
    [59]权太范,李健巍,于长军等.高频雷达抑制冲击干扰的研究与实验[J].电子学报, 1999, 27(12): 23-25.
    [60]谢俊好.舰载高频地波雷达目标检测与估值研究[D].哈尔滨工业大学博士学位论文, 2001.
    [61]李高鹏,李雷,许荣庆.高频地波雷达干扰抑制方法研究[J].电子学报,2005,33(3): 514-516.
    [62]苏洪涛.超视距雷达目标检测与干扰抑制方法研究[D].西安电子科技大学博士学位论文, 2004.
    [63]尚海燕.岸舰双/多基地地波超视距雷达机动目标的检测[D].西安电子科技大学博士学位论文, 2008.
    [1]RAFAAT K, BRIAN G, DESMOND P, et al. Target detection and tracking with a high frequency ground wave radar[J]. IEEE Journal of Oceanic Engineering, 1994, 19(4): 540-548.
    [2] GEORGES T M, HARLAN J A, LEBEN R R. A test of ocean surface-current mapping with Over-The-Horizon Radar[J]. IEEE Trans. on Geoscience and Remote Sensing, 1998, 36(1): 101-109.
    [3]唐晓东,周文瑜.短波雷达干扰与抗干扰技术[J].现代雷达, 2003(2): 21-25.
    [4]王建涛,张国毅,谭忠吉.高频地波雷达短波电台干扰频谱特性研究[J].哈尔滨工业大学学报, 2005, 37(7): 1003-1005.
    [5]周浩.高频雷达信号处理中的若干问题研究[D].武汉大学博士学位论文, 2004.
    [6]权太范,李健巍,于长军等.高频雷达抑制冲击干扰的研究与实验[J].电子学报, 1999, 27(12): 23-25.
    
    [7]陈伯孝,许辉,张守宏.舰载无源综合脉冲/孔径雷达及其若干关键问题[J].电子学报, 2003, 31(12): 1776-1779.
    [8]陈伯孝,陈多芳,张红梅等.双/多基地综合脉冲孔径地波雷达的信道化接收技术研究[J].电子学报, 2006, 34(9): 1566-1570.
    [9]邢孟道,保铮,强勇.天波超视距雷达瞬态干扰抑制[J].电子学报, 2002, 30(6)823-826.
    [10] Kiang Y W, Liu C H. Multiple phase-screen simulation of HF waves propagation in the turbulent stratified ionosphere[J].Radio Science,1985,20: 652-668.
    [11] Denisov N G, and Yerukhimov L M, Statistical properties of phase fluctuations upon complete reflection of waves from an ionospheric layer[J], Geomagn. Aeron., Engl. Transl.,1966, 6: 531-536.
    [12]Yagitani S, Nagano I, Miyamura K, and Kimura I. Full wave calculation of ELF/VLF propagation from a dipole source located in the lower ionosphere[J], Radio Science, 1994, 29(1): 39–54.
    [13] Nagano I, Mambo M, and Hutatsuishi G. Numerical calculation of electromagnetic waves in an anisotropic multilayered medium[J], Radio Science, 1975, 10(6): 611–617.
    [14]赵龙.高频地波雷达抗电离层Es干扰技术的研究[D].哈尔滨工业大学博士论文, 2005.
    [15] Wan X R, Ke H Y, Wen B Y. Adaptive ionospheric clutter suppression based on subarray in monostatic HF surface wave radar[J]. IEE Proc. Radar Sonar Navigation, 2005:12(2):162-165.
    [16]黄亮,文必洋,吴立明等.高频地波雷达电离层干扰抑制研究[J].电波科学学报,2007,22(4): 626-630.
    [17]熊新农,万显荣,柯亨玉等.基于时频分析的高频地波雷达电离层杂波抑制[J].系统工程与电子技术,2008,30(4): 1399-1402.
    [18]宁百齐,李钧.电离层不规则体结构的多普勒谱特性[J].空间科学学报, 1996, 16(1): 36-42.
    [19] Yuri I A, Nicholas K S, Stuart J A.Stochastic-constraints method in nonstationary hot-clutter cancellation-Part I: Fundamentals and supervised training applications[J]. IEEE Transactions on Aerospace and Electronic Systems,1998,34(4): 1271-1291.
    [1] RAFAAT K, BRIAN G, DESMOND P, et al. Target detection and tracking with a high frequency ground wave radar[J]. IEEE Journal of Oceanic Engineering, 1994, 19(4): 540-548.
    [2] GEORGES T M, HARLAN J A, LEBEN R R. A test of ocean surface-current mapping with Over-the-Horizon Radar[J]. IEEE Trans. on Geoscience and Remote Sensing, 1998, 36(1): 101-109.
    [3] Earl G F, Ward B D. Frequency management support for remote sea-state sensing using the JINDALEE skywave radar[J]. IEEE Journal of Oceanic Engineering,1986,11(2): 164-173.
    [4] FABRIZIO G A, ABRAMOVICH Y I, Anderson S J. Adaptive cancellation of nonstationary interference in HF antenna arrays[J]. IEE Proc. Radar Sonar Navig., 1998, 145(1): 19-24.
    [5]张国毅,刘永坦.高频地波雷达多干扰的极化抑制[J].电子学报, 2001, 29(9): 1206-1209.
    [6]苏洪涛,保铮,张守宏.自适应地波超视距雷达高频通信干扰抑制[J].电波科学学报, 2003, 18(3): 270-274.
    [7]苏洪涛,保铮,张守宏.地波超视距雷达高频通信干扰抑制[J].西安电子科技大学学报, 2003, 30(4): 442-445.
    [8] Zhou H, Wen B Y, and Wu SH C. Dense radio frequency interference suppression in HF radars[J]. IEEE Signal Processing Letters, 2005, 12(5): 361-364.
    [9] Zhou H, Wen B Y, and Wu SH C et al. Radio frequency interference suppression in HF radars[J]. IEE Proc. of Electronics Letters , 2003, 39(12): 925-926.
    [10] Wan X R, Ke H Y, and Wen B Y. Adaptive co-channel interference suppression based on subarrays for HFSWR[J]. IEEE Signal Processing Letters, 2005, 12(2): 162-165.
    [11] Wan X R, Zeng S F, Ke H Y, Wen B Y. Target detection with high frequency surface wave radar in co-channel interference[J]. IEE Proc. Radar Sonar Navig., 2005, 152(2): 97-103.
    [12] Yang J, Wen B Y, Wu S C. Method to suppress radio-frequency interference in HF radars[J]. IEE Proc. of Electronics Letters, 2004, 40(2): 145-146.
    [13]刘春波.岸-舰双基地高频地波SIAR系统相关技术研究[D].西安电子科技大学博士学位论文, 2008.
    [14]周浩.高频雷达信号处理中的若干问题研究[D].武汉大学博士学位论文, 2004.
    [15]向敬成,张明友.雷达系统[M].电子工业出版社, 2001:139-150.
    [16] Widrow B, et al. Adaptive noise cancelling: priciple and application[J]. Proc. IEEE, 1975,63(12): 1692-1716.
    [17]保铮.自适应天线旁瓣相消的几个主要问题[J].西北电讯工程学院学报, 1980(4): 1-17.
    [18]张贤达.现代信号处理[M].清华大学出版社, 2002:192-195.
    [19]张雅斌,陈伯孝,张守宏,尚海燕.舰载无源综合脉冲孔径雷达射频干扰抑制[J].西安电子科技大学学报, 2007, 34(4): 514-517.
    [20]李健巍,范太权.基于线性预测模型的高频雷达多普勒信号恢复[J].哈尔滨工业大学学报, 2000, 32 (5): 186-29.
    [21]许瑜昀,文必洋,吴雄斌等.基于短时傅里叶变换的高频地波雷达射频干扰抑制[J].武汉大学学报(理学版), 2004, 50 (5): 645-648.
    [1] James R, Barnum, Erik E Simpson. Over-The-Horizon Radar sensitivity enhancement by impulsive noise excision[A]. IEEE National Radar Conference [C]. Syracuse, NY USA, 1997: 252-256.
    [2]唐哓东,周文瑜.短波雷达干扰与抗干扰技术[J].现代雷达, 2003, 25(2): 21-25.
    [3]范太范,于长军等.高频地波雷达抗雷电干扰研究[J].宇航学报, 1999, 20(2): 75-80.
    [4]邢孟道,保铮,强勇.天波超视距雷达瞬态干扰抑制[J].电子学报, 2002, 30(6): 823-826.
    [5]陈希信,黄银河.基于矩阵奇异值分解的高频雷达瞬态干扰抑制[J].电子与信息学报, 2005, 27(12): 1880-1882.
    [6]权太范,李健巍,于长军等.高频雷达抑制冲击干扰的研究与实验[J].电子学报, 1999, 27(12): 23-25.
    [7]强勇,侯彪,焦李成等.天波超视距雷达抑制流星余迹干扰方法的研究[J].电波科学学报, 2003, 18(1): 23-27.
    [8]黄亮,文必洋,邓巍.高频地波雷达抑制瞬态干扰研究[J].电波科学学报, 2004, 19(2): 760-765.
    [9] Mallat. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
    [10] Turley M. Impulsive noise rejection in HF radar using a linear prediction technique[C]. IEEE Radar Conference, Adelaide, 2003: 358-362.
    [11]张贤达,现代信号处理[M].清华大学出版社, 2003:93-96.
    [12] FABRIZIO G A, ABRAMOVICH Y I, et al. Adaptive cancellation of nonstationary interference in HF antenna arrays[J]. IEE Proc Pt F, 1998, 145(1): 19-24.
    [13] SHEARMAN E D R. Propagation and scattering in MF/HF groundwave radar[J]. IEE Proceedings, Part F,1983, 130(7): 579-590.
    [14] FABRIZIO G A, Gershman A B, Turley M D. Non-stationary interference cancellation in HF surface wave radar[C]. Radar Conference, 2003: 672-677.
    [15]冀振元.舰载超视距雷达目标与海杂波特性分析与模拟[D].哈尔滨工业大学博士学位论文, 2001.
    [16]扬子杰,柯亨玉,文必洋.高频地波雷达波形参数设计[J].武汉大学学报(理学版), 2001, 47(5): 528-531.
    [17]苏洪涛,保铮,张守宏.地波超视距雷达高频通信干扰抑制[J].西安电子科技大学学报, 2003, 30(4): 442-445.
    [18] Wall, Michael E., Andreas Rechtsteiner, Luis M. Rocha. Singular Value Decomposition and principal component analysis. in A Practical Approach to Microarray Data Analysis. D.P. Berrar, W. Dubitzky, M. Granzow, eds. pp. 91-109, Kluwer: Norwell, MA (2003). LANL LA-UR-02-4001.
    [1]赵龙,张宁.高频地波雷达中电离层杂波的自适应抑制[J].现代雷达, 2005, 27(1): 36-37.
    [2]邢孟道,保铮.电离层电波传播相位污染校正[J].电波科学学报, 2002,17(2): 129-133.
    [3] Lu K, Liu X Z. Ionopheric decontamination and sea clutter suppression for HF Skywave Radars[J]. IEEE Journal for Oceanic Enginerring,2005,30(2): 455-461.
    [4] Wan X R, Ke H Y, Wen B Y. Adaptive ionospheric clutter suppression based on subarray in monostatic HF surface wave radar[J]. IEE Proc. Radar Sonar Navig.,2005,152(2): 89-96.
    [5]张国毅,刘永坦.高频地波雷达多干扰的极化抑制[J].电子学报, 2001, 29(9): 1206-1209.
    [6]杨俊,文必洋,吴世才等.用水平天线消除天波干扰的算法研究[J].电波科学学报,2004,19(2): 177-181.
    [7]熊新农,万显荣,柯亨玉,肖怀国.基于时频分析的高频地波雷达电离层杂波抑制[J].系统工程与电子技术, 2008, 30(8): 20-25.
    [8] Yuri I A, Nicholas K S, Stuart J A. Stochastic-constraints method in nonstationary hot-clutter cancellation-Part I: Fundamentals and supervised training applications[J]. IEEE Transactions on Aerospace And Electronic Systems, 1998,34(4): 1271-1291.
    [9] Yuri I A, Nicholas K S, Stuart J A. Stochastic-constraints method in nonstationary hot-clutter cancellation-Part II: Unsupervised training applications[J]. IEEE Transactions on Aerospace And Electronic Systems, 2000,36(1): 132-147.
    [10]尚海燕.岸舰双/多基地地波超视距雷达机动目标的检测[D].西安电子科技大学博士论文, 2008,4: 87-100.
    [11] Poon M W Y, Khan R H, Le-Ngoc S. A singular value decomposition based method for suppressing ocean clutter in high frequency radar[J]. IEEE Trans. on Signal Processsing, 1993, 41(3): 1421-1424.
    [12] FANTE R L, TORRES J A. Cancellation of diffuse jammer multipath by an airborne adaptive radar[J]. IEEE Ttransactions on Aerospace and Electronic Systems 1995,31(2): 805-820.
    [13] Bourdillon A, Gauthier F. Use of maximum entropy spectral analysis to improve ship detection by Over-The-Horizon Radar[J]. Radio Science, 1987, 22(2): 313-320.
    [14] JACQUES PARENT, ALAIN BOURDILLON. A method to correct HF skywave backscattered signals forionospheric frequency modulation[J]. IEEE Transactions on Antennas and Propagation, 1988, 36(1): 127-134.
    [15]刘春波.岸-舰双基地高频地波SIAR系统相关技术研究[D].西安电子科技大学博士学位论文, 2008.
    [16]张雅斌,陈伯孝,张守宏,尚海燕.舰载无源综合脉冲孔径雷达干扰抑制[J].电子与信息学报, 2008, 30(1): 206-209.
    
    [1] Crombie D D. Doppler spectrum of sea echo at 13.56c./s[J]. Nature,1955, 175: 681-682.
    [2] Barrick D. First-order theory and analysis of MF/HF/VHF scatter from the sea[J]. IEEE Transactions on Antennas and Propagation,1972,20(1): 2-10.
    [3] D Trizna, J Moore, J Headrick, R Bogle, Directional sea spectrum determination using HF doppler radar techniques[J]. IEEE Journal of Oceanic Engineering, 1977,25(1):4-11.
    [4] Teague C, Tyler G, Stewart R, Studies of the sea using HF radio scatter[J]. IEEE Journal of Oceanic Engineering,1977,25(1): 12-18.
    [5] Barrick D E, Snider J B. The statistics of HF sea-echo doppler spectra [J]. IEEE Transactions on Antennas and Propagation,1977,25(1):19-28.
    [6]刘春波.岸-舰双基地高频地波SIAR系统相关技术研究[D].西安电子科技大学博士学位论文, 2008.
    [7] Brennan L E; Reed L S. Theory of adaptive radar, , IEEE Transactions on Aerospace and Electronic Systems, 1973,9(2):237-252.
    [8] Ward J. Space-time adaptive for airborne radar.Technical Report 1015,MIT Lincoln laboratory,1994.
    [9]王永良,彭应宁.空时自适应信号处理[M].北京:清华大学出版社, 2000.
    [10] MELVIN W L. A STAP Overview[J]. IEEE AES Magazine. 2004,19(1):19-32.
    [11]谢俊好.舰载高频地波雷达目标检测与估值研究[D].哈尔滨工业大学博士学位论文, 2001.
    [12] VARADARAJAN V, KROLIK J. Space-Time interpolation for adaptive arrays with limited training data[J]. ICASSP 2003,36(1): 101-109.
    [13] VARADARAJAN V, KROLIK J. Joint Space–Time Interpolation for distorted linear and bistatic array geometries[J]. IEEE Transactions on Signal Processing, 2006,54(3):848-860.
    [14]王万林.非均匀环境下的相控阵机载雷达STAP研究[D].西安电子科技大学博士学位论文, 2004.
    [15] Gierull C H, Balaji B. Minimal sample support space-time adaptive processing with fast subspace techniques[J]. IEE Proc. Radar Sonar Navig., 2002,149(5): 209-220.
    [16] Gierull C H. Fast and effective method for low-rank interfere suppression in presence of channel errors[J]. Electronics Letters, 1998,34(6): 518-520.
    [17]尚海燕.岸舰双/多基地地波超视距雷达机动目标的检测[D].西安电子科技大学博士学位论文, 2008.
    [18] Wang H, Cai L. On adaptive spatial-temporal processing for airborne surveillance radar system[J]. IEEE Transactions on AES,1994,30(3): 660-669.
    [19] Marshall D. Evaluation of STAP Training Strategies with Mountaintop Data. MIT Lincoln Laboratory TR MTP-5,1996.
    [20] Adve R S, Hale T B, Wicks M C. Transform domain localized processing using measured steeringvectors and non-homogeneity detection[J]. IEEE Trans. AP., 2000,48(1): 86-94.
    [21] Sarkar T K, Sangruji N. An adaptive nulling system for a narrow-band signal with a look-direction constraint utilizing the conjugate gradient method[J]. IEEE Trans. AP.,1989,37(7):940-944.
    [22] Sarkar T K, Wang H, Park S, et al. A Deterministic Least-Squares approach to Space–Time Adaptive Processing (STAP)[J]. IEEE Trans. AP.,2001,49(1):91-103.
    [23]保铮,廖桂生,吴仁彪等.相控阵机载雷达杂波抑制的空时二维自适应滤波[J].电子学报, 1993, 21(9): 1-7.
    [24] Dipietro R. Exend factored space-time processing for airborne radar system[C]. Proceeding of the 26th Asilomar conference on Signals, System and Computing, Pacific Grove, CA, 1992: 425-430.
    [25] Kreyenkamp O, Klemm R. Doppler compensation in forward-looking STAPradar[J]. IEE proc. Radar, sonar and navig., 2001(148): 253-258.
    [26] Lapierre F D, Verly J G, Droogenbroeck M V. New solution to the problem of range dependence in bistatic STAP radars[C]. Proc of the 2003 IEEE Radar Conference, the Huntsville Marriott, Alabama, May, 2003: 452-459.
    [1] Poon M W Y, Khan R H, Le-Ngoc S. A Singular Value Decomposition based method for suppressing ocean clutter in high frequency radar[J]. IEEE Transaction on Signal Processsing, 1993, 41(3): 1421-1424.
    [2] Lu K, Liu X Z, Liu Y T. Ionospheric decontamination and sea clutter suppression for HF Skywave Radar[J]. IEEE Journal of Oceanic Engineering, 2005,30(2): 455-461.
    [3] Maria Greco, Federica Bordoni, Fulvio Gini. X-Band Sea-Clutter Nonstationarity: Influence of Long Waves[J]. IEEE Journal of Oceanic Engineering,2004,29(2): 269-282.
    [4] Vizinho A, Wyatt L R. Evaluation of the use of the Modified-Covariance method in HF Radar ocean measurement [J]. IEEE Journal of Oceanic Engineering, 2001,26(4): 832-840.
    [5]尚海燕.岸舰双/多基地地波超视距雷达机动目标的检测[D].西安电子科技大学博士学位论文, 2008.
    [6]苏洪涛,刘宏伟,保铮.天波超视距雷达机动目标检测方法[J].系统工程与电子技术, 2004,26(3): 283-287.
    [7] Djuric P M, Kay S M, Faye Boudreaux-Bartels G. Segmentation of Nonstationary Signals [J]. Proceeding of the IEEE ICASSP,San Francisco,1992,5: 161-164.
    [8] Djuric P M, Kay S M. Order selection of autoregressive models [J]. IEEETransactions on Signal Processing,1992,40(11): 2829-2833.
    [9]王文华,王宏禹.分段平稳随机过程的参数估计方法[J].电子科学学刊,1997,19(3): 311-317.
    [10]陈颖,李在铭.一种改进的分段平稳随机过程的参数估计方法[J].电子与信息学报, 2003,25(6): 735-739.
    [11] Dinesh R, Jeffrey K. Target detection in abruptly non-stationary Doppler-spread clutter[C]. ICASSP 2006:185-188.
    [12] Olkin J A, Nowlin W C, Barnum J R. Detection of ships using OTH Radar with short intergration times[C]. IEEE National Radar Conference, Syracuse,1997(5): 1-6.
    [13] KIE B, EOM. Analysis of Acoustic Signatures from moving vehicles using time-varying autoregressive models[J]. Multidimensional System and Signal processing, 1999,10: 357-378.
    [14] Jebu J. Rajan, Peter J. W. Rayner. Generalized Feature Extraction for Time-Varying Autoregressive Models[J]. IEEE Transactions on Signal Processing, 1996,44(10): 2498-2507.
    [15]张贤达.现代信号处理[M].北京:清华大学出版社.
    [16]苏晓庆,曲国庆.仇环变形信号中突变点的检测[J].山东理工大学学报, 2008, 22(2): 4-5.
    [17]周春华,龙源,晏俊伟等.李氏指数在爆破振动信号奇异性分析中的应用[J].解放军理工大学学报, 2006,7(5): 471-475.
    [18] Mallat Stephane, Wen Liang Hwang. Singularity detection and processing with wavelets[J]. IEEE Transactions on Information Theory, 1992, 38(2): 617-643.
    [19] Bracewell, Ronald N., Two-Dimensional Imaging[M], Englewood Cliffs, NJ, Prentice Hall, 1995: 505-537.
    [20] Yuri I A, Nicholas K S, Stuart J A. Stochastic-constraints method in nonstationary hot-clutter cancellation-Part I: Fundamentals and supervised training applications[J]. IEEE Transactions on Aerospace And Electronic Systems, 1998,34(4): 1271-1291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700