微波阵列天线成像处理中干扰抑制及快速成像方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波阵列天线成像技术在国防安全、工业生产、医学成像等诸多领域都有着广泛而重要的应用。其在不同的应用领域既有一些共同的技术特点,也存在一些各自领域独特的技术问题。本论文针对微波阵列天线在穿墙成像和医学断层成像应用中的干扰抑制等问题进行了研究,主要的工作及创新点如下:
     1.针对线性阵列天线BP算法成像结果中存在虚假目标图像的问题,提出使用成像概率函数滤波的抑制方法。利用成像计算中目标单元信号是同相叠加,而非目标单元信号是异相叠加的特点,以此来定义成像概率函数,通过选用适当的滤波门限可有效消除虚假目标图像。应用中,由于部分像素单元的成像概率函数计算存在误差,导致使用成像概率函数滤波后,仍然会残留部分虚假目标图像。针对这一问题,提出利用图像位置信息反向求解滤波的方法,可进一步抑制残留的虚假目标图像。仿真成像处理的结果表明,所提出的抑制方法效果显著,实现方便,不受墙体参数误差的影响,可有效提高线性阵列天线穿墙成像的质量。
     2.针对射频干扰对微波医学成像系统的影响,利用系统激励源与干扰源的非相关性,提出对系统激励信号初始相位按照均匀分布在[-π,π]的随机相位序列编码的方法,将射频干扰转变为零均值的随机序列,进而再使用均值滤波的方法进行抑制。以乳腺肿瘤二维微波断层成像系统的应用为例,给出了随机相位编码方法的实现过程,通过仿真成像实验验证了该方法的有效性。
     3.针对环形阵列天线信号测量中,传统的直接测量模式数据存在动态范围广、参数灵敏度差异大和信噪比特性较差等不足,提出了测量天线对信号差值的测量模式。以16天线的乳腺肿瘤环形阵列成像系统为例,通过数值分析和成像实验的方法,对差值测量模式的数据特性进行了对比研究。结果表明,差值测量模式能有效改善直接测量模式的不足,具备更优越的测量数据特性。
     4.分析了基于非线性迭代方法的微波断层成像计算中,矩阵方程的阶数与有限元网格密度的内在关系。分析表明,随着计算网格密度的提高,求解方程的计算复杂度和计算时间,都呈指数级数增长。为便于微波断层成像技术的普及应用,针对乳腺肿瘤二维微波断层成像在个人计算机上的实现,提出了一种二次成像的快速方法。其基本原理是对感兴趣的图像区域采用高密度网格计算以保证成像精度,对于不太感兴趣的图像区域采用较低密度网格计算以减少计算单元数量,提高成像效率。介绍了二次成像快速方法的实现过程。经理论分析和成像实验的结果表明,在乳腺肿瘤二维微波断层成像应用系统中,所提出的二次成像方法可以对常见的乳腺肿瘤目标进行成像检测,与传统的使用全局精细网一次成像方式相比,这种二次成像方法可以节省成像时间80%左右,同时可以获得相近似的目标成像质量。
     5.针对手指关节的微波断层成像检测应用,提出利用X射线成像结果来获取微波断层成像的先验信息,通过优化迭代计算的初值分布,来改善迭代成像的效果。基于所设计的手指关节简化模型进行了仿真成像实验。仿真成像结果表明,利用X射线图像获得的手指关节结构先验信息来成像,可以对手指关节模型中2mm宽的关节区域进行成像检测,模拟的病态关节参数变化特征可以在成像结果中检测出来。
Microwave array imaging (MAI) technology is widely used in national security, industrial measurement, medical diagnosis, and etc. It is playing an important role in variety applications. There are common technical features in the different areas, and there are also some unique technical problems in their respective field. This thesis focuses on the study of interference suppressing and fast imaging method to solve the problems encountered in through-wall-imaging and microwave medical tomography applications. The main contents and innovations of this thesis are as follows:
     1. To suppress ghost image brought in by backward projection (BP) imaging algorithm, the imaging probability function (IPF) method is proposed to reduce the ghost images. Due to the addition operation in target pixel unit is in phase, and the addition operation in non-target pixel unit is out of phase, we define the imaging probability function based on imaging addition operation, and suppress the ghost images using proper gate value of IPF to filter. In practice, there are calculation errors of IPF in part of pixel unit. These errors make part of ghost images can’t be suppressed using IPF to filter. To solve this problem, using location inverse solution (LIS) method is proposed to reduce residual ghost images. The simulation results show that the proposed methods can’t be affected by errors of wall parameters, and can effectively suppress ghost images.
     2. To reduce the effect of radio frequency interference (RFI) in microwave medical tomography system, according to the non-correlation feature between RFI sources and system illuminating source, a phase random coding method is proposed to transform RFI into zero mean random sequence, then the RFI can be suppressed simply using traditional mean-value filter algorithm. We conducted a set of 2D breast cancer imaging experiments using simulated data to test and verify the proposed method. Simulation results show that the proposed method is feasible and effective.
     3. Due to the measured data obtained by direct measurement pattern in circular antenna array is wide in dynamic range, unbalanced in parameter sensitivity and poor in signal to noise ratio (SNR), a difference measurement pattern is proposed to improve those deficiencies. Theoretical analysis and imaging experiments were conducted to evaluate the performance of proposed difference measurement pattern on 16-antenna microwave tomography system. Results demonstrate that difference measurement pattern have better performance of measured data.
     4. Analysis shows that the computational complexity and time-cost of imaging algorithm, based on nonlinear iterative method, will evidently increase with a speed of exponential progression while the density of computational mesh increases. To facilitate the spread of 2D microwave tomography for breast cancer detection, a fast imaging method is proposed in the realization of a personal computer, which uses a coarse mesh to image and locate the site of target firstly, then builds a locally refined fine mesh to image secondly. Imaging experiments were conducted using simulated and experimental data for breast cancer detection, the imaging results demonstrate that compared with the conventional imaging method using an overall fine mesh, the proposed twice imaging method can remarkably reduce the complexity of computation and save time-cost up to 80% while the equivalent image quality of target can be obtained.
     5. To detect finger arthritis using microwave tomography, an imaging method using priori information obtained from X-ray image is proposed, which optimize initial distribution of imaging parameters to improve quality of image. Imaging experiments were conduced using simulated data based on a simplified finger joint model. Experimental results show that a 2mm-wide finger joint can be quantitatively imaged based on its microwave property, and the pathological feature of finger joint can be detected from imaging result.
引文
[1] M. D. Desai, W. K. Jenkins. Convolution backprojection image reconstruction for spotlight mode synthetic aperture radar. IEEE Trans. on Image Processing, 1992, 1(4), 505-516.
    [2] C. Inigo, G. S. Manuel. Furniture effects on the wideband indoor radio channel at microwave frequencies. Microwave and Optical Technology Letters, 2001, 29(5), 336-340.
    [3] Y. Kim, H. Ling. Human activity classification based on mico-Doppler signatures using a support vector machine. IEEE Trans. on Geoscience and Remote Sensing, 2009, 47(5): 1328–1337.
    [4] L. Ulander, H. Hellsten, G. Stenstrom. Synthetic-aperture radar processing using fast factorized back-projection. IEEE Trans. on Aerospace and Electronic Systems, 2003, 39(3): 760–776.
    [5] S. S. Ram, H. Ling. Through-wall tracking of human movers using joint Doppler and array processing. IEEE Geoscience and Remote Sensing Letters, 2008, 5(3): 537–541.
    [6] M. Mahfouz, A. Fathy, Y. Yang, et al.. See-through-wall imaging using ultra wideband pulse systems. Proc. of the 34th Applied Imagery Patten Recognition Workshop. Washington, DC, United States, 2005, 48-53.
    [7] M. G. Amin. Radar, Signal, and image processing techniques for through the wall imaging. Proc. of SPIE, 2005, 5819: 33-45.
    [8] D. D. Fetris, N. C. Currie. Microwave and millimeter-wave systems for wall Penetration. Proc. of SPIE, Oriando, FL, United States, 1998, 3375: 269-279
    [9] S. Nag, M. A. Barnes, T. Payment, et al.. An ultra-wideband through-wall radar for detecting the motion of people in real time. Proc. of SPIE, 2002, 4744: 48-57.
    [10] A. Beeri, R. Daisy. High-resolution through-wall imaging. Proc. of SPIE, Kissirnrnee, FL, United States, 2006, 6201:62010.
    [11] S. Gauthier, W. Chamma. Surveillance through concrete walls. Proc. of SPIE,Orlando, FL, United States, 2004, 5403: 597-60.
    [12] A. S. Bugaev, V. V. Chapursky, S. I. Ivashov, et al.. Though wall sensing of human breathing and heart beating by monochromatic radar. Proc. of the 10th International Conference on Ground Penetrating Radar, Delft, Netherlands, 2004, 291-294.
    [13] E. Engin, B. Ciftcioglu, m. Ozcan, et al.. High resolution ultrawideband wall penetrating radar. Microwave and Optical Technology Letters, 2007, 49(2): 320-325.
    [14] J. Black. Motion and ranging sensor through-the-wall surveillance system. Proc. of SPIE, Orlando, FL, United States, 2002, 4708: 114-121.
    [15] E. F. Greneker. Radar flashlight for through the wall detection of humans. Proc. of SPIE, Orlando, FL, United States, 1998, 3375: 280-285.
    [16]朱亚平,沈庭芝,王卫江,等.穿墙雷达系统中信号检测的新算法.北京理工大学学报, 2005, 25(8): 734-738.
    [17]李禹. UWB-TWDR的运动目标检测及定位.硕士学位论文,长沙:国防科学技术大学, 2003.
    [18]陈洁.超宽带雷达信号处理及成像方法研究.博士学位论文,北京:中国科学院电子学研究所, 2007.
    [19] M. Aftanas, K. Rovnakova, M. Drutarovsky, et al.. Efficient method of TOA estimation for through wall imaging by UWB radar. Proc. of the 2008 IEEE international conference on ultra-wideband, 2008, 2:101-104.
    [20] I. Catapano, L. Crocco. An imaging method for concealed targets. IEEE Trans. on Geoscience and Remote Sensing, 2009, 47(5): 1301-1309.
    [21]崔国龙.超宽带穿墙雷达合成孔径成像算法研究与实现.硕士学位论文,成都:电子科技大学, 2008.
    [22] C. Le, T. Dogaru, L. Nguyen, et al.. Ultrawideband (UWB) radar imaging of building interior: measurements and predictions. IEEE Trans. on Geoscience and Remote Sensing, 2009, 47(5): 1409-1420.
    [23] S. Hantscher, A. Reisenzahn, C. G. Diskus. Though-wall imaging with a 3-D UWB SAR algorithm. IEEE signal processing letters, 2008, 15: 269-272.
    [24] E. Ertin, R. L. Moses. Through-the-wall SAR attributed scattering center feature estimation. IEEE Trans. on Geoscience and Remote Sensing, 2009, 47(5): 1338-1348.
    [25] A. R. Hunt. Use of a frequency-hopping radar for imaging and motion detection through walls. IEEE Trans. on Geoscience and Remote Sensing, 2009, 47(5): 1402-1408.
    [26] M. G. Amin, F. Ahmad. Wideband synthetic aperture beamforming for through-the-wall imaging. IEEE signal processing magazine, 2008, 25(4): 110-113.
    [27] Y. Yunqiang, A. E. Fathy. See-through-wall imaging using ultra wideband short-pulse radar system. Proc. IEEE Antennas and Propagation Society International Symposium—SpecialSession Through-Wall Imaging Sensing, 2005, 334–337.
    [28] R. M. Narayanan, Y. Xu, P. D. Hoffmeyer, et al.. Design, performance, and applications of a coherent ultra-wideband random noise radar. Optical Engineering, 1998, 27(6): 1855-1869.
    [29] F. Ahmad, M. G. Amin, S. A. Kassam. Synthetic aperture beamformer for imaging through a dielectric wall. IEEE Trans. on Aerospace and Electronic Systems, 2005, 41(1): 271–283.
    [30] F. Ahmad, G. J. Frazer, S. A. Kassam, et al.. Design and implementation of near-field wideband synthetic aperture beamformers. IEEE Trans. on Aerospace and Electronic Systems, 2004, 40(1): 206–220.
    [31] J. Rovnakova, M. Svecova, D. Kocur, et al.. Signal processing for through wall moving target tracking by M-sequence UWB Radar. IEEE Radioelektronika, 2008 18th International Conference, Prague, April 2008, 1-4.
    [32] R. Chandra, A. N. Gaikwad, D. Singh, et al.. An approach to remove the clutter and detect the target for ultra-wideband through-wall imaging. Journal of Geophysics and Engineering, 2008, 5:412-419.
    [33] M. Dehmollaian, K. Sarabandi. Refocusing Through Building Walls Using Synthetic Aperture Radar. IEEE Trans. on Geoscience and Remote Sensing, 2008, 26(6): 1589-1599.
    [34] K. M. Yemelyanov, N. Engheta, A. Hoorfar, et al.. Adaptive Polarization Contrast Techniques for Through-Wall Microwave Imaging Applications. IEEE Trans. on Geoscience and Remote Sensing, 2009, 47(5): 1362-1374.
    [35] Genyuan Wang, Moeness G. Amin, Yimin Zhang. New approach for target locations in the presence of wall ambiguities. IEEE Trans. On Aerospace and Electronic Systems, Vol.42, No.1, pp.301-315, Jan. 2006.
    [36] M. Dehmollaian, M. Thiel, K. Sarabandi. Through-the-Wall Imaging Using Differential SAR. IEEE Trans. on Geoscience and Remote Sensing, 2009, 47(5), 1289-1296.
    [37] M. G. Amin. Radar, Signal, and image processing techniques for through the wall imaging. Proc. of SPIE, 2005, 5819, 33-45.
    [38] K. M. Chen, Y. Huang, J. Zhang. Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier. IEEE Trans. on Biomedical Engineering, 2000, 47(1):105–113.
    [39] M. Kikuchi, M. Ishihara, T. Matsui, et al.. Biomedical engineering's contribution to defending the homeland. IEEE Engineering in Medicine and Biology Magazine, 2004, 23(1): 175-186.
    [40] T. Matsui, T. Ishizuka, B. Takase, et al.. Non-contact determination of vital sign alterations inhypovolaemic states induced by massive haemorrhage: An experimental attempt to monitor the condition of injured persons behind barriers or under disaster rubble. Medical and Biological Engineering and Computing, 2006, 42(6): 807-811.
    [41] I. Arai. Survior search radar systems for persons trapped under earthquake rubble. Proc. of APMC2001, Taipei, Taiwan, 2001, 663-668.
    [42]郭山红,孙锦涛,谢仁宏,等.穿墙生命探测技术研究.南京理工大学学报, 2005, 29(2): 186-192.
    [43] S. Suzuki, T. Matsui, H. Kawahara, et al.. A non-contact vital sign monitoring system for ambulances using dual-frequency microwave radars. Medical and Biological Engineering and Computing, 2009, 47(1): 101-105
    [44] J. Silvious, J. Clark, T. Pizzillo, et al.. Micro-Doppler phenomenology of Humans at UHF and Ku-band for biometric characterization. Proc.of SPIE, 2009, 7308.
    [45]荆西京,王健琪,路国华,等.雷达式非接触生命参数检测的信号预处理.医疗卫生装备, 2003: 21-29.
    [46] L. M. Frazier. Surveillance through walls and other opaque materials. Proc. IEEE National Radar Conference Electronic Systems, 1996, 27-31.
    [47] D. D. Ferris, N. C. Currie. A survey of current technologies for through-the-wall surveillance (TWS). SPIE Conference on Sensors, C31 Information, and Training Technologies for Law Enforcement, Boston, MA, November. 1998, 3577: 62-72.
    [48] E. F. Greneker III. Radar flashlight for through-the-wall detection of humans. Proc. of SPIE Targets and Backgrounds: Characterization and Representation IV, 1998, 3375: 280-285.
    [49] S. Nag, M. A. Barnes, T. Payment, et al.. An ultra-wideband through-the-wall radar for detecting the motion of people in real time. Proc. of SPIE: Radar Sensor Technology and Data Visualization, 2002, 4744: 48-57.
    [50] M. Dawood and R. M. Narayanan. Doppler Measurements Using a Coherent Ultrawideband Random Noise Radar. IEEE Antennas and Propagation Society International Symposium, 1999, 2226-2229.
    [51] L. P. Song, C. Yu, Q. H. Liu. Through-wall imaging (TWI) by radar: 2-D tomographic results and analyses. IEEE Trans. on Geoscience and Remote Sensing, 2005, 43(12): 2793- 2798.
    [52] S. E. Borek. An Overview of Through the Wall Surveillance for Homeland Security. Applied Imagery and Pattern Recognition Workshop, 2005, 6.
    [53]王宏.超宽带穿墙雷达成像及多普勒特性研究.博士学位论文,成都:电子科技大学,2009.
    [54] S. Bertl, A. Dallinger, J. Detlefsen. Broadband circular interferometric millimeter-wave ISAR for threat detection. Advances in Radio Science, 2007, 5, 147-151.
    [55] E. J. Baranoski. Through wall imaging: historical perspective and future directions. IEEE ICASSP, 2008: 5173-5176.
    [56] Z. Slimane, A. Abdelmalek, M. Feham. OFDM based UWB synthetic aperture through-Wall imaging radar. IEEE International Conference on Broadband Communications, Information Technology & Biomedical Applications, 2008, 293-300.
    [57] O. Sisma, A. Gaugue, C. Liebe, et al.. UWB radar: vision through a wall. Telecommun Systems, 2008, 28, 53-59.
    [58] Y. Q. Yang, A. E. Fathy. Development and implementation of a real-time see-through-wall radar system based on FPGA. IEEE Trans. on Geoscience and Remote Sensing, 2009, 47(5): 1270-1280.
    [59] E. Alanen, T. Lahtinen and J. Nuutinen. Measurement of dielectric properties of subcutaneous fat with open-ended coaxial sensors[J]. Phys. Med. Biol., 1998, 43: 475–485.
    [60] L. Larsen and J. Jacobi. Microwave scattering parameter imagery of an isolated canine kidney[J]. Med. Phys., 1979, 6:399–403.
    [61] W. T. Joines, Y. Zhang, C. Li, and R. Jirtle. The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz[J]. Med. Phys., 1994, 21:547–550.
    [62] S. S. Chaudhary, R. K. Mishra, A. Swarup, and J. Thomas. Dielectric properties of normal and malignant human breast tissues at radiowave and microwave frequencies[J]. Indian J. Biochem. Biophys., 1984, 21:76–79.
    [63] Mariya Lazebnik, Dijana Popovic, Leah McCartney, et al. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries[J]. Phys. Med. Biol., 2007, 52:6093-6115.
    [64] Essex J. Bond, Xu Li, Susan C. Hagness, and Barry D. Van Veen. Microwave imaging via space-time beamforming for early detection of brease cancer[J]. IEEE Transaction on antennas and propagation, 2003, 51(8):1690-1705.
    [65] Wee Chang Khor, Marek E. Bialkowski, Amin abbosh el al. An ultra wideband microwave imaging system for breast cancer detection[J]. IEICE Trans. Commun., 2007, E90-B(9):2376-2381.
    [66] Serguei Semenov. Microwave tomography: review of the progress towards clinicalapplications. Phil. Trans. R. Soc. A (2009) 367, 3021–3042.
    [67]王保义.电磁场在生物医学中的应用.基础医学与临床, 2000, 20(1):8-11.
    [68] David W. Winters, Jacob D. Shea, Susan C. Hagness et al. Three-dimensional microwave breast imaging: dispersive dielectric properties estimation using patient-specific basis functions. IEEE Trans. Med. Imag., 2009, 28(7):969-981.
    [69] Yifan Chen, Erry Gunawan, Kay Soon Low et al. Pulse design for time reversal method as applied to ultrawideband microwave breast cancer detection: a two-dimensional analysis. IEEE Trans. Antennas Propag., 2007, 55(1):194-204.
    [70] E. Wadbro, M. Berggren. High contrast microwave tomography using topology optimization techniques. Journal of Computational and Applied Mathematics (2009), doi:10.1016/j.cam.2009.08.027
    [71] Shakti K. Davis, Barry D. Van Veen, Susan C. Hagness et al. Breast tumor characterization based on ultra wide band microwave backscatter. IEEE Trans. Biomed. Eng., 2008, 55(1):237-246.
    [72] Wee Chang KHOR, Marek E. BIALKOWSKI, Amin ABBOSH et al. An ultrawide band microwave imaging system for breast cancer detection. IEICE TRANS. COMMUN., 2007, E90–B(9):2376-2381.
    [73] Paul M. Meaney, Margaret W. Fanning, Timothy Raynolds et al. Initial clinical experience with microwave breast imaging in women with normal mammography. Acad Radiol, 2007, 14(2): 207–218.
    [74] D. G. Drogoudis, G. A. Kyriacou, J. N. Sahalos. A Sensitivity Matrix Based Microwave Tomography Exploiting an Adjoint Network Theorem. PIERS Proceedings, August 27-30, 2007, Prague, Czech Republic, 272-276.
    [75] Jean Charles Bolomey. Recent European developments in active microwave imaging for industrial, scientific and medical applications. IEEE Trans MTT 1989, 37(12):2109-2113.
    [76] Serguei Y Semenov, Robert H Sevenson, Alexander E Boulyshov et al. Microwave tomography: two-dimensional system for biological imaging. IEEE Trans on Biomedical Engineering, 1996, 43(9):869-872.
    [77] L Jofre. Medical imaging with a microwave tomographic scanner. IEEE Trans on BME, 1990, 37, 303-312.
    [78] Antoni Broguetas, Jordi Romeu, Juan M Rius. Cylindrical geometry, a further step in active microwave tomography. IEEE Trans on MTT, 1991, 39(5):836-839.
    [79] Xu Li, Essex J. Bond, Susan C. Hagness et al. An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection. IEEE Trans. Antennas Propag., 2005, 47(1):19-34.
    [80] Sill J,Fear E C.Tissue sensing adaptive radar for breast cancer detection-experimental investigation of simple tumor models. IEEE Trans. Microw. Theory Tech, 2005,53(11):3312-3319.
    [81] Williams T C, Fear E C, Westwick D T. Tissue sensing adaptive radar for breast cancer detection—investigations of an improved skin-sensing method. IEEE Trans. Microw. Theory Tech, 2006, 54(4):1308-1314.
    [82] Sill J M, Fear E C. Tissue sensing adaptive radar for breast cancer detection: study of immersion liquids. Electronics Letters, 2005, 41(3):113-115.
    [83] Huabei Jiang and Changqing Li. Ultrasound-guided microwave imaging of breast cancer: Tissue phantom and pilot clinical experiments. Med. Phys., 2005, 32(8):2528-2535.
    [84] Souvorov, Alexandre E., Semenov et al. Microwave tomography: a two-dimensional Newton iterative scheme. IEEE Trans. MTT, 1998, 46(11): 1654–1658.
    [85] Semenov, S. Y., Svenson et al. Microwave spectroscopy of myocardial ischemia and infarction. 1. Experimental study. Ann. Biomed. Eng, 2000, 28, 48–54.
    [86] Semenov, S. Y. et al. Three dimensional microwave tomography: experimental imaging of phantoms and biological objects. IEEE Trans. MTT, 2000, 48, 1071–1074.
    [87] Semenov, S. Y., Bulyshev, et al. Microwave tomography for detection of tissue malignancies: lung, liver and kidney sites. In Progress in Electromagnetics Research Symposium, 2003, Honolulu, Hawaii, USA, 13–16 October.
    [88] Semenov, S. Y., Bulyshev, et al. Microwave tomography for detection/imaging of myocardial infarction. 1. Excised canine hearts. Ann. Biomed. Eng, 2003, 31, 262–270.
    [89] Semenov, S. Y., Posukh, et al. Microwave tomographic imaging of the heart in intact swine. J. Electromagn. Waves Appl, 2006, 20, 873–890.
    [90] Semenov, S. Y., Kellam, et al. Microwave tomography for functional imaging of extremity soft tissues: feasibility assessment. Phys. Med. Biol., 2007, 52, 5705–5719.
    [91]张国基,吴祥应,季飞,等.小腿微波医学成像三维分析模型.中国生物医学工程学报, 2000, 2(19).
    [92]陈星,黄卡玛,袁渊,等.微波生物医学成像算法中的病态及伪逆问题.电波科学学报, 2000, 15(1): 65-69.
    [93]赵亦波,李建龙,丁亮.基于雷达原理的脉冲微波共焦成像检测乳腺癌.生物医学工程研究, 2010, 29(1): 50-54.
    [94]龚杏,汪元美.微波断层成像全局优化重建方法.微波学报, 2001, 17(2): 47-53.
    [95] Yong-Zhong Hu, Zheng-Ou Zhou. Simulation on 2D microwave imaging of finger joint with a Newton iterative method, 2010 International Conference on Bioinformatics and Biomedical Technology, 16-18 Apr. 2010, Chengdu, Sichuan, China, 279-282.
    [96] F. Ahmad, M. G. Amin, P. Setlur. Through-the-wall Target Localization using Dual-Frequency CW Radars. Proc. of SPIE, 2006, 6201: 62010.
    [97] David. D. Ferris, Nicholas C. Currie. Microwave and millimeter-wave systems for wall penetration. SPIE Conference on Targets and Backgrounds: Characterization and Representation IV, Orlando, Florida, April, 1998.
    [98] L. Frazier. MDR for Law Enforcement. IEEE Potentials, 1998, 16(5):23 - 26.
    [99] Allan R. Hunt. Image formation through walls using a distributed radar sensor array. Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop (AIPR’03), 2003 IEEE.
    [100] F. Ahmad, M. G. Amin, G. Mandapati. Autofocusing of through-the-wall radar imagery under unknown wall characteristics. IEEE Trans. on Image Process., 2007, 16(7): 1785–1795.
    [101]王秉中.计算电磁学. 2002,北京:科学出版社.
    [102]金建铭.电磁场有限元方法. 1998,西安:西安电子科技大学出版社.
    [103]郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用. 2003,北京:机械工业出版社.
    [104]冯林,杨显清,王圆,等.电磁场与电磁波. 2004,北京:机械工业出版社.
    [105] CIOCAN R, JIANG H. Model-based microwave image reconstruction: simulations and experiments. Med Phys, 2004, 31:3231–3241.
    [106]刘国强.医学电磁成像. 2006,北京:科学出版社.
    [107] REIGBER A, LAURENT FERRO-FAMIL. Interference suppression in synthesized SAR images. IEEE Geoscience and Remote Sensing Letters. 2005, 2(1): 45–49.
    [108]董臻,梁甸农,黄晓涛. VHF/UHF UWB SAR基于通道均衡的RFI抑制方法.电子与信息学报, 2008, 30(3): 550-553.
    [109]李廷军,孔令讲,周正欧.随机相位编码抑制步进频率探地雷达RFI的研究.电子与信息学报, 2009, 31(7): 1771-1774.
    [110]李晓峰,李在铭,周宁,等.随机信号分析. 2009,北京:电子工业出版社.
    [111] ABAS SABOUNI, SIMA NOGHANIAN. The robustness of HGA/FDTD in the presence ofnoise for microwave breast cancer detection. IEEE Antennas Propag Soc AP S Int Symp, North Charleston, SC, USA, 2009(6): 5171906.
    [112] C EYRAUD, A LITMAN, A HERIQUE, et al. Microwave imaging from experimental data within a Bayesian framework with realistic random noise. Inverse Problems, 2009, 25 (024005):1-16.
    [113] Zhen Yuan, Qizhi Zhang, Eric S. Sobel, et al. Tomographic x-ray–guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints. Journal of Biomedical Optics, 2008, 13(4): 1-10.
    [114] D. J. Hart and T. D. Spector. Definition and epidemiology of os-teoarthritis of the hand: a review. Osteoarthritis Cartilage, 2000, 8(SupplA): S2-S7.
    [115] Qizhi Zhang, Huabei Jiang. Three-dimensional diffuse optical imaging of hand joints: System description and phantom studies. Optics and Lasers in Engineering, 2005, 43:1237–1251.
    [116] Anil Lonappan, Vinu Thomas, G. Bindu, at al. Synovial fluid at microwave frequencies. Microwave and Optical Technology Letters, 2007, 49(7): 1700-1702.
    [117] S. Gabriel, R.W. Lau, and C. Gabriel. The dielectric properties of biological tissues. II. Measurements on the frequency range 10 Hz to 20GHz literature survey. Phys Med Biol., 1996, 41 (1996): 2251-2269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700