基于IR-UWB穿墙成像系统的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
穿墙成像可以对被障碍物遮挡的目标进行主动、非入侵式地探测识别,在军事、救援等领域具有广泛的应用前景,是当前研究的热点之一。作为穿墙成像的探测信号,IR-UWB信号具有穿透能力强、分辨率高、目标识别能力强、多径分辨能力强、抗干扰能力强、探测盲区小等众多优点,近年来得到了广泛的关注。基于IR-UWB信号的穿墙成像系统主要由探测和成像两部分组成,不同的探测环境、探测方式和穿墙成像算法使系统具有不同的性能。实际应用中,系统设计的目标是使系统的性能满足应用的需求,这使得对IR-UWB穿墙成像系统性能的研究成为了系统设计实现的关键问题。与传统探空成像系统相比,基于IR-UWB的穿墙成像系统往往具有墙体阻挡、超宽带、实孔径和近场工作等特点,在系统性能的研究中必须充分考虑这些特点的影响。然而,已有的成像系统性能的研究成果对这些特点的考虑有限,还无法对IR-UWB穿墙成像系统性能进行有效预测和分析,更不能准确地指导相应的系统设计。因此,深入研究IR-UWB穿墙成像系统的性能,对实际系统的设计和应用具有重要意义。
     本文在分析国内外相关文献的基础上,结合IR-UWB穿墙成像系统的上述特点,根据目标的散射点模型,以二维平面内的墙后理想点目标成像为背景,在假设目标可以被检测到的前提下,对IR-UWB穿墙成像系统的主要性能指标进行了深入研究,同时以性能指标分析为主线研究了IR-UWB穿墙成像系统中主要系统参数及穿墙成像算法设计的一些关键问题,为实际穿墙成像系统的设计和应用提供了理论指导。论文的研究内容主要包括以下几个方面:
     第一,IR-UWB穿墙成像系统及性能评价指标。本文在明确IR-UWB穿墙成像基本原理的基础上,介绍了穿墙探测环境、目标模型和探测方式,基于IR-UWB信号和实孔径天线阵,给出了一种二维穿墙成像探测系统的基本结构。同时,为了判定穿墙成像系统工作在远场还是近场,推导了IR-UWB天线阵的远近场分界。在此基础上,介绍了对回波信号进行直达波抑制的方法,同时重点研究了墙体参数已知的一种常用穿墙成像算法——后向投影穿墙成像(BP-TWI)算法,并针对天线与墙体之间存在一定距离时,BP-TWI算法中信号穿墙传播时延计算复杂的问题,提出了利用等效二层介质模型计算信号穿墙传播时延的方法。最后分析了IR-UWB穿墙成像系统的主要性能指标。
     第二,墙体参数未知的IR-UWB穿墙成像中定位误差修正的研究。定位误差是IR-UWB穿墙成像系统的一个重要性能指标。对于墙体参数未知的应用情况,它的一个主要来源是墙体参数的估计误差。本文首先基于BP-TWI算法,明晰了墙体参数估计误差对IR-UWB穿墙成像中定位误差的影响。在此基础上,通过对BP-TWI算法中的聚焦时延差进行补偿间接地实现了墙体参数估计误差的补偿。同时以图像对比度作为衡量指标,提出了一种对IR-UWB穿墙成像中定位误差进行自动修正的穿墙成像算法,自动对焦BP-TWI算法。然后为了降低BP-TWI算法的计算复杂度,使其具有实用性,通过对实际聚焦时延差进行近似补偿,提出了等时延-速度补偿自动对焦BP-TWI(ITD-VCAF-BP-TWI)算法。数值仿真结果表明,该算法很好地修正了墙体参数未知时穿墙成像中的定位误差,所得成像结果与墙体参数已知时BP-TWI算法的成像结果相当,并且解决了已有算法代价高和通用性差的问题。
     第三,IR-UWB穿墙成像分辨率的研究。当对墙后目标轮廓或多目标进行成像时,成像分辨率是IR-UWB穿墙成像系统需要重点关注的另一个性能指标。鉴于本文给出的IR-UWB穿墙成像系统具有超宽带、近场、实孔径天线阵以及墙体阻挡的特点,已有分辨率计算方法不再适用,无法对IR-UWB穿墙成像分辨率进行有效预测。故本文针对IR-UWB穿墙成像系统的上述特点,首先在不考虑墙体影响的条件下,提出了一种自由空间下近场成像分辨率的计算方法。然后进一步结合墙体影响,基于墙体参数已知的BP-TWI算法,提出了一种IR-UWB穿墙成像分辨率的近似计算方法。同时通过数值仿真验证了所提出的分辨率计算方法的有效性。并为指导穿墙成像系统的参数设计,明确了IR-UWB穿墙成像分辨率的空间分布以及分辨率与系统参数的关系。
     第四,IR-UWB穿墙成像中虚假像抑制的研究。定位误差、分辨率对于检测到的真实目标才有意义,然而虚假像的存在会增加真实目标的检测难度等,是影响系统性能的重要因素之一。本文首先对IR-UWB穿墙成像中虚假像的成因进行了分析,明确了虚假像的一个主要来源是IR-UWB天线阵近场时域波束形成的旁瓣。在此基础上,通过对IR-UWB近场时域波束形成原理进行深入研究,明确了影响波束形成性能的系统参数。并给出了均匀线阵对应的近场峰值旁瓣比的计算公式,同时为了降低旁瓣水平以抑制虚假像,明确了均匀线阵近场峰值旁瓣水平与系统参数的关系,还通过数值仿真比较了均匀线阵与随机阵列的近场旁瓣性能,为IR-UWB穿墙成像系统中天线阵的设计提供了理论指导。最后,为节省实现低旁瓣所需的系统资源,探索性地提出了一种利用MIMO阵列对IR-UWB穿墙成像系统中天线阵进行稀疏化处理的方法。
Through wall imaging (TWI) can realize an active non-invasive detection and recognization of the object behind the building wall or fraise, with a wide range of applications in military, rescue and other fields, and it has become one focus of current research. IR-UWB is one of the most widely used detecting signal in through wall imaging for its advantages such as its penetration capability, high resolution, target identification capability, resolving multipath capability, anti-interference and small blind region. The TWI system based on IR-UWB consists of detection part and imaging part. The system performance is closely dependent on detection environment, detection manner and imaging algorithm. The goal of through wall imaging system design is to make the system performance meet the performance requirements of applications. So, the study of IR-UWB TWI system performance is a key issue for the system design. Compared with traditional imaging systems, the IR-UWB through wall imaging system often has its own characteristics such as wall blocking, ultra wide band, real aperture and near field, which are needed to be fully considered in the system performance analysis. However, these characteristics have not been fully considered in the existing imaging system performance results, which can not be used to effectively predict and analyze the IR-UWB through wall imaging system performance, and can not be used to guide the corresponding system design appropriately too. Therefore, to study the IR-UWB TWI system performance in-depth is of great significance for system design in practical applications.
     Based on the analysis of the research status quo at home and abroad, combined with the above characteristics for IR-UWB TWI system, according to the target scattering point model, taking the two-dimensional through-wall imaging for ideal point targets as the background, and with the assumption that the target can be detected, the main performance of IR-UWB TWI system is studied intensively, by the way, the key issues of system parameters design and through wall imaging algorithm design in IR-UWB TWI system is investigated, which can provide a theoretical guidance for the TWI system design and application. Principal contents of this dissertation are summarized as follows:
     Firstly, the through wall imaging system and performance evaluation indicators are presented. The principles of TWI, detection environment, target scattering point model and detection manner are presented, based on which the basic structures of a two-dimension TWI system using IR-UWB and real aperture antenna array to detect is given. In order to determine the TWI system works in the near or far field, the boundary of near and far field of IR-UWB array is explored. After that, the methods to suppress the direct echoes in receiving echoes are presented, and the commonly used TWI algorithm under known wall parameters, back projection through wall imaging algorithm, i.e. BP-TWI algorithm, is investigated comprehensively, and the two-layer equivalent media model is used to reduce the computational complexity of traveling time delay of signal through wall, when there is a certain distance between wall and antenna. At last, the main performance evaluation indicators of IR-UWB TWI system are analyzed.
     Secondly, Researches on the correction of localization errors in IR-UWB TWI under wall ambiguities are carried out. Localization error is an important performance of IR-UWB TWI system. One of the main sources of the localization error in the case that the wall parameters are unknown in prior is the wall estimation errors in practical application. Based on BP-TWI algorithm, the effect of wall ambiguities on the localization errors of imaged targets is analyzed. Based on the result, the compensation of wall parameters estimation errors is achieved indirectly by compensating the focusing time delay errors in BP-TWI. At the same time, by taking image contrast as the focusing metrics, a TWI algorithm to automatically compensate the wall parameters errors, which is autofocusing BP-TWI algorithm, is proposed. And in order to reduce the computational complexity and make it practical, by compensating the focusing time delay with some approximation algorithms, an imaging algorithm, which is named as Identical Time Delay and Velocity Compensated Autofocusing BP-TWI (ITD-VCAF-BP-TWI) algorithm, is proposed. Numerical simulation results show that the errors of image targets under wall ambiguities are corrected well and the imaging results obtained by this algorithm is comparable to the imaging results by BP-TWI under known wall parameters. And the high cost and poor generality of existing algorithms has been solved.
     Thirdly, Resolution of IR-UWB TWI system is studied. When the shape of target or multiple targets behind the wall is needed to be detected, imaging resolution is another performance, which must be focused, for IR-UWB through wall imaging system. The IR-UWB TWI system presented in this dissertation works with characteristics of ultra wideband, near field, real aperture and wall blocking. The existing resolution computation methods are no longer applicable and can not effectively predict the resolution of IR-UWB TWI system. So, based on the above characteristics of the IR-UWB TWI system, a computation method of imaging resolution in free space and near field is proposed firstly, without considering the characteristics of wall blocking. After that, by taking into account the effect of wall, an approximate computation method of the resolution of through- wall imaging system is proposed, based on BP-TWI algorithm under known wall parameters. At the same time, the computation methods are verified by numerical simulations, the space distribution of the IR-UWB TWI resolution and the effect of system parameters on the resolution are analyzed, in order to guide the design of system parameters of TWI.
     Fourthly, Researches on suppressing the ghost image in IR-UWB TWI are carried out. The localization error and resolution is attached to the detected real target. However, the existence of ghost image will make the detection of real target difficult. In order to suppress the ghost image, the causes of ghost image in IR-UWB TWI is analyzed, and it can be seen that, a major source of the ghost image is the sidelobe of IR-UWB antenna array near field time domain beamforming. Based on this result, the principle of IR-UWB near field time domain beamforming is investigated comprehensively, and the parameters that affect the performance of beamforming are determined. The closed form of peak side lobe ratio for uniform linear array is derived, and in order to suppress the sidelobe level so as to suppress the ghost image, the effect of system parameters is analyzed, the side lobe performance of the uniform linear array and random array are compared by numerical simulations, and the results provide theoretical support for antenna array design in IR-UWB TWI system. At last, in order to reduce the cost of the system which is required for low sidelobe level in the premise of ensuring the system performance, the method to thin the antenna array by using Multiple Input and Multiple Output (MIMO) array in IR-UWB TWI system is explored.
引文
1 D. D. Ferris, N. C. Currie. Survey of Current Technologies for Through-the-Wall Surveillance (TWS). Proceedings of SPIE on Sensors, C3I, Information, and Training Technologies for Law Enforcement, Denver, CO, USA, 1999, 3577:62~72
    2 J. G. Gerard. Ultra Wide Band (UWB) Radar Detection Analysis. RL-TR-95-67 Final Technical Report. 1995, 2(2):488-491
    3 E. J. Baranoski. Through wall imaging: Historical perspective and future directions. IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, 2008:5173~5176
    4 E. F. Greneker. RADAR Flashlight for Through-the-wall Detection of Humans. Proceedings of SPIE on Targets and Backgrounds: Characterization and Representation IV, Orlado, FL, United States, 1998, 3375:280-285
    5 S. Nag, M. A. Barnes, T. Payment, et al. An Ultra-wideband Through-the-wall Radar for Detecting the Motion of People in Real Time. Proceedings of SPIE on Radar Sensor Technology and Data Visualization, Orlando, FL, United States, 2002, 4744:48-57
    6 L. Song, C. Yu, Qing H. Liu. Through-Wall Imaging (TWI) by Radar: 2-D Tomographic Results and Analyses. IEEE Transactions on Geoscience and Remote Sensing. 2005, 43(12):2793-2798
    7 F. Ahmad, Y. Zhang, M. G. Amin. Three-dimensional Wideband Beamforming for Imaging Through a Single Wall. IEEE Geoscience and Remote Sensing Letters. 2008, 5(2):176-179
    8 V. Venkatasubramanian, H. Leung, X. Liu. Chaos UWB Radar for Through-the-wall Imaging. IEEE Transactions on Image Processing. 2009, 18(6):1255-1265.
    9 S. Kidera, T. Sakamoto, T. Sato. High-resolution 3-D Imaging Algorithm with an Envelope of Modified Spheres for UWB Through-the-wall Radars. IEEE Transactions on Antennas and Propagation. 2009, 57(11):3520-3529
    10 H. Wang, R. M. Narayanan, Z. O. Zhou. Through-wall Imaing of Moving Targets using UWB Random Noise Radar. IEEE Antennas and Wireless Propagation Letters. 2009, 8:802-805
    11 Q. Huang, L.Qu, B. Wu, et al. UWB Through-wall Imaging Based on Compressive Sensing. IEEE Transactions on Geoscience and Remote Sensing. 2010, 48(3):1408-1415.
    12 L. M. Frazier. Surveillance through Walls and Other Opaque Materials. IEEE Aerospace and Electronic Systems Magazine. 1996, 11(10):6-9
    13 G. Barrie. Ultra-wideband Synthetic Aperture Imaging: Data and Image Processing. Defence R&D Canada-Ottwa Technical Memorandum. 2003:1-10
    14 C. L Bennett, G. F. Ross. Time Domain Electromagnetics and Its Applications. Proceedings of the IEEE. 1978, 66(3):299~318
    15 Assessment of Ultra-Wide-band (UWB) Technology. OSD/DARPA, Ultra-Wide-band Radar Review Panel, R-6280,1990
    16 M. Hewish, S. R. Gourley. Ultra-wideband Technology Opens up New Horizons. Janes International Defense Review. 1999, 2:20-22
    17 Federal Communications Commission. First Report and Order, Revision of Part 15 of the Commission’s Rules Regarding Ultra Wideband Transmission Systems. ET Docket, 2002:98-153
    18 O. Sisma, A. Gaugue, C. Liebe, J.M. Ogier. UWB Radar: Vision through a Wall. The 12th IFIP International Conference on Personal Wireless Communications, Springer Boston. 2007, 245:241~251
    19徐之海,李奇.现代成像系统.国防工业出版社, 2001:132~214
    20 J. Hsieh. Computed Tomography Principle, Design, Artifacts and Recent Advances.张朝宗等译.科学出版社, 2006:20~71
    21 S. Vitebskiy. Ultra-Wideband, Short-Pulse Ground-Penetrating Radar: Simulation and Measurement. IEEE Transactions on Geosciences Remote Sensing. 1997, 35(3):762~772.
    22 G. Fang. The Research Activities of Ultrawide-band (UWB) Radar in China. IEEE International Conference on Ultra-Wideband, Singapore, 2007:43-45
    23李禹,粟毅,黄春琳.冲激雷达接收中的随机射频干扰抑制方法.电子与信息学报. 2004, 26(5):733~738
    24 R. Sikl, D. Dvorak, J. Mrkvica. Comparison of Pulse and Continuous Wave Propagation through the Wall. IEEE 17th International Conference on Radio Electronic, Brno, Czech Republic, 2007: 1~4
    25 I. I. Immoreev, D. V. Fedotov. Ultra Wideband Radar Systems: Advantages and Disadvantages. 2002 IEEE Conference on Ultra Wideband Systems and Technologies, Baltimorem MD, USA, 2002, 5:201~205
    26袁雪林,张洪德.超宽带冲激雷达的特点及军事应用前景.科技资讯. 2009, 2:16.
    27常文革,梁甸农,周智敏.轨道超宽带SAR实验技术研究.电子学报. 2001, 29(9):1213~1216
    28 M. Mahfouz, A. Fathy, Y. Yang, et al. See-through-wall Imaging Using Ultra Wideband Pulse Systems. 34th Applied Imagery and Pattern Recognition Workshop: Multi-modal Imaging, Washington, DC, 2005:48-53
    29 G. Barrie, J. Tunaley. An Analysis of Through-and In-the-wall UWB ImpulseRadar: System Design Considerations. Defence R&D Canada-Ottwa Technical Memorandum. 2003:1-11
    30保铮,邢孟道,王彤.雷达成像技术.电子工业出版社, 2005:105-118 20-21 106 48-52 53-54
    31 L.M. Frazier. Radar Surveillance through Solid Materials. Proceedings of SPIE on Command, Control, Communications, and Intelligence Systems for Law Enforcement, Boston, MA, United States, 1997, 2938:139-146
    32 F. Ahmad, M.G. Amin, S. A. Kassam. Synthetic Aperture Beamformer for Imaging Through a Dielectric Wall. IEEE Transactions on Aerospace and Electronic Systems. 2005, 41(1):271-283
    33 A. Beeri, R. Daisy. High-resolution Through-wall imaging. Proceedings of SPIE on Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense V, Kissimmee, FL, United States, 2006, 6201:62010J.
    34 E. Engin, B. Ciftcioglu, M. Ozcan, et al. High Resolution Ultrawideband Wall Penetrating Radar. Microwave and Optical Technology Letters. 2007, 49(2):320-325
    35 D. L. Sostanovsky, A. O. Boryssenko, E.S.Boryssenko. UWB Radar Imaging System with Two-Element Receiving Array Antenna. 5th International Conference on Antenna Theory and Techniques, Kyiv, Ukraine, 2005:357-360.
    36 W. A. Chamma, S. Kashyap. Detection of Targets Behind Walls Using Ultra Wideband Short Pulse: Numerical simulation. Defence R&D Canada-Ottwa Technical Memorandum. 2003:1-24
    37 A. R. Hunt. Image Formation through Walls Using a Distributed Radar Sensor Array. Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop, Washington, DC, USA, 2003:232-237
    38 F. Ahmad, M. G. Amin. Noncoherent Approach to Through-the-Wall Radar Localization. IEEE Transactions on Aerospace and Electronic Systems. 2006, 42(4):1405~1419
    39 F. Ahmad, M. G. Amin, G. Mandapati. Autofocusing of Through-the-Wall Radar Imagery under Unknown Wall Characteristics. IEEE Transactions on Image Processing. 2007, 16(7):1785-1795
    40 C. Debes, M. G. Amin, A. M. Zoubir. Target Detection in Single-and Multiple-View Through-the-Wall Radar Imaging. IEEE Transactions on Aerospace and Electronic Systems. 2009, 47(5):1349-1361
    41陈洁,方广有,李芳.时域波束形成在超宽带穿墙成像雷达中的应用.电子与信息学报. 2008, 30(6):1341-1344
    42陈洁,方广有,李芳.超宽带穿墙雷达非相干成像算法.中国科学院研究生院学报. 2007, 24(6):829-834
    43朱延平,沈庭芝,王卫江,等.穿墙雷达系统中信号检测的新算法.北京理工大学学报. 2005, 25(8):734-738.
    44李禹. UWB-TWDR的运动目标检测与定位.国防科学技术大学硕士论文. 2003:17-19
    45赵彧,黄春琳,粟毅,等.超宽带穿墙探测雷达的反向投影成像算法.雷达科学与技术. 2007, 5(1):49-54
    46赵彧.穿墙控测雷达的多目标定位与成像.国防科学技术大学硕士论文. 2006:1-56
    47 G. Cui, L. Kong, J. Yang. A Back-Projection Algorithm to Stepped-Frequency Synthetic Aperture Through-the-Wall Radar Imaing. 2007 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 2007:123-126
    48崔国龙.超宽带穿墙雷达合成孔径成像算法研究与实现.电子科技大学硕士论文. 2008:1-73
    49 Chen lei, Shan Ouyang. A Time-domain Beamformer for UWB Through-wall Imaging. IEEE Region 10 Annual International Conference, Taipei, Taiwan, 2007:1-4
    50马琳,张中兆,谭学治,等.改进的UWB TWI成像算法及分辨率研究.哈尔滨工业大学学报. 2008, 40(11):1696~1698
    51 Ma Lin, Zhang Zhongzhao, Tan Xuezhi. Two-step Imaging Method and Resolution for UWB Through Wall Imaging. International Conference on Wireless Communications, Networking and Mobile Computing, Dalian, China, 2008: 1-5
    52房志斌.冲激超宽带信号在穿墙雷达中的应用.南京理工大学硕士论文. 2009:1-50
    53荆西京,王健琪,路国华,等.雷达式非接触生命参数检测的信号预处理.医疗卫生设备. 2003, 11:21-22.
    54 F. Soldovieri, R. Solimene. Through-wall Imaging via a Linear Inverse Scattering algorithm. IEEE Geoscience and Remote Sensing Letters. 2007, 4(4):513-517
    55 W. Zhang, L. Li, F. li. Autofocusing Imaging through the Unknown Building Walls. 2008 Asia-Pacific Microwave Conference. Hong Kong, 2008:1-5
    56 Y. -S. Yoon, M. G. Amin. High-Resolution Through-the-wall Radar Imaging Using Beamspace MUSIC. IEEE Transactions on Antennas and Propagation. 2008, 56(6):1763-1774
    57 J. Li, P. Stoica, Z. Wang. On Robust Capon Beamforming and Diagonal Loading. IEEE Transactions on Signal Processing. 2003, 51(7):1702-1715
    58 T. Sakamoto, T. Sato. A Target Shape Estimation Algorithm for Pulse Radar Systems Based on Boundary Scattering Transform. IEICE Transactions on Communications. 2004. E87-B(5):1357-1365
    59 S. Nag, M. A. Barnes, T. Payment, et al. An Ultra-wideband Through-wall Radar for Detecting the Motion of People in Real Time. Proceedings of SPIE on Radar Sensor Technology and data Visualisation, Orlando, FL, United States, 2002, 4744:48-57
    60 E. M. Johansson, J. E. Mast. Three-dimensional Ground Penetrating Radar Imaging Using Synthetic Aperture Time-Domain Focusing. Proceedings of SPIE on Advanced Microwave and Millimeter Wave Detectors, San Diego, CA, USA, 1994, 2275:205-214
    61 Y. Zhao, W. Shao, G. Wang. UWB Microwave Imaging for Early Breast Cancer Detection: Effect of Two Synthetic Antenna Array Configurations. 2004 IEEE International Conference on Systems, Man and Cybernetics, The Hague, Netherlands, 2004:4468-4473.
    62 X. Li, S. C. Hagness. A Confocal Microwave Imaging Algorithm for Breast Cancer Detection. IEEE Microwave and Wireless Components Letters. 2001, 11(3):130-132
    63 E. J. Bond, X. Li, S. C. Hagness, et al. Microwave Imaging via Space-Time Beamforming for Early Detection of Breast Cancer. IEEE Transactions on Antennas and Propagation. 2003, AP-51(8):1690-1705
    64粟毅,匡纲要,陆仲良.反向投影成像算法的理论分析及目标特征恢复.系统工程与电子技术. 2000, 22(2):70~72
    65 H. Hellsten, L. M. Ulander, A. Gustavsson, et al. Development of VHF CARABAS II SAR. Proceedings of SPIE on Radar Sensor Technology, Orlando, FL, USA, 1996, 2747:48-60
    66 A. Boag, Y. Bresler. A Mutilevel Domain Decomposition Algorithm Far Fast O(N2logN) Reprojection of Tomographic Images. IEEE Transactions on Imaging Processing. 2000, 9(9):1573~1581
    67 S. Nilsson, L. E. Andersson. Application of Fast Backprojection Techniques for Some Inverse Problems of Synthetic Aperture Radar. Proceedings of SPIE on Algorithm for Synthetic Aperture Radar Imagery V, Orlando, FL, United States, 1998, 3370:62-72
    68 L. M. H. Ulander, H. Hellsten, G. Stenstrom. Synthetic-aperture Radar Processing Using Fast Factorized Back-projection. IEEE Transactions on Aerospace and Electronic Systems. 2003, 39(3):760-766
    69刘光平,梁甸农.适用大场景高分辨合成孔径雷达的快速BP算法.系统工程与电子技术. 2003, 25(5):546~549
    70 M. Aftanas, E. Zaikov, M. Drutarovsky, J. Sachs. Through Wall Imaging of the Objects Scanned by M-sequence UWB Radar System. Proceedings of the 18th International Conference Radioelektronika, Prague, Czech Republic, 2008:1~4
    71 M. G. Amin, F. Ahmad. Wideband Synthetic Aperture Beamforming for Through-the-wall Imaging. IEEE Signal Processing Magazine. 2008, 25(4):110~113
    72 T. Dogaru, L. Calvin. Recent Investigations in Sensing Through the Wall Radar Modeling. IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, San Diego, CA, United States, 2008:1~4
    73 M. Abramowitz, I. A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. 9th printing. U.S. Department of Commerce, 1972:17
    74 W. H. Beyer. CRC Standard Mathematical Tables. 28th ed. CRC Press, 1987:12.
    75 G. Wang, M. G. Amin, Y. Zhang. New Approach for Target Locations in the Presence of Wall Ambiguity. IEEE Transactions on Aerospace and Electronic Systems. 2006, 42(1): 301-315
    76 G. Wang, M. G. Amin. Imaging through Unknown Walls Using Different Standoff Distances. IEEE Transactions on Signal Process. 2006, 54(10):4015-4025
    77 M. Dehmollaian, K. Sarabandi. Refocusing Through Building Walls Using Synthetic Aperture Radar. IEEE Transactions on Geoscience and Remote Sensing. 2008, 46(6):1589-1599
    78 L. Li, W. Zhang, F. Li. A Novel Autofocusing Approach for Real-Time Through-Wall Imaging Under Unknown Wall Characteristics. IEEE Transactions on Geoscience and Remote Sensing. 2010, 48(1):423-431
    79张直中.雷达信号的选择与处理.国防工业出版社, 1979:34-36
    80 D.R.Wehner. High-Resolution Radar. Artech House, 1994:5 44-49
    81 A. W. Rihaczek, S. J. Hershkowitz. Radar Resolution and Complex-image Analysis. Artech House, 1998:1-524
    82盛卫星.微波成像技术及应用.南京理工大学博士论文. 2001:4-8
    83 X. Liu, X. Xiao, Z. Fan, et al. Study on the Imaging Resolution of Ultra-wideband Microwave Imaging for Breast Cancer Detection. 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, 2009:1-4
    84 M. G. M. Hussain. Principles of Space-time Array Processing for Ultrawide-band Impulse Radar and Radio Communications. IEEE Transactions on Vehicular Technology. 2002, 51(3): 393-403
    85 S. Ries, T. Kaiser. Ultra Wideband Impulse Beamforming: It is a DifferentWorld. Signal Processing. 2006, 86(9):2198-2207
    86 T. Kaiser, F. Zheng, E. Dimitrov. An Overview of Ultra-wide-band Systems with MIMO. Proceedings of the IEEE. 2009, 97(2):285-311
    87吕彤光,陆仲良,粟毅,等.冲激信号SAR成像的方位分辨率分析.电子学报. 2000, 28(6):40-43
    88粟毅.冲激脉冲SAR成像理论与方法研究.国防科技大学博士论文. 2001:26-36
    89杨延光,周智敏,宋千.分裂孔径发射阵列接收BP算法方位分辨率分析.信号处理. 2008, 24(5):752-756
    90黄渝璐.穿墙成像的参数影响分析及测量.电子科技大学硕士论文. 2008:25-31
    91 B. Sai, L. P. Ligthart. Characterization of Local 3D Rough Surfaces Using UWB Near-Range Phase-Based GPR Signatures from Wide-Beamwidth Antennas. IEEE International Symposium on Geoscience and Remote Sensing, Toronto, Ontartio, Canada, 2002, 6:3582~3584
    92 R. J. Boyle, W. Wasylkiwskyj. Comparison of Monostatic and Bistatic Bearing Estimation Performance for Low RCS Targets. IEEE Transactions on Aerospace and Electronic Systems. 1994, 30(3):962~968
    93 R. J. Burkholder, L. J. Gupta, J. T. Johnson. Comparison of Monostatic and Bistatic Radar Images. IEEE Antennas and Propagation Magazine. 2003, 45(3):41~50
    94 M. Sato, K. Yoshida. Bistatic UWB Radar System. 2007 IEEE International Conference on Ultra-Wideband, Singapore, 2007:62~65
    95 J. Detlefsen, A. Dallinger, S. Schelkshorn, et al. UWB Millimeter-Wave FMCW Radar using Hubert Transform Methods. IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications, Manaus, Brazil, 2006:46~48
    96 K. Kim, W. R. Scott. Impulse-Radiating Antenna with An Offset Geometry. IEEE Transactions on Antennas and Propagation. 2005, 53(5):1738~1744
    97 B. Yang, X. Zhuge, A. G. Yarovoy, et al. UWB MIMO Antenna Array Topology Design Using PSO for Through Dress Near-field Imaging. 5th European Radar Conference, Amsterdam, The Netherlands, 2008:463-466
    98 T. G. Savelye, S. Zhuge, A. G. Yarovoy, et al. Comparison of UWB SAR and MIMO-based Short-range Imaging Radars. 6th European Radar Conference, Rome, Italy, 2009:109-112
    99 B. Yang, A. Yarovoy, P. Aubry, et al. Experimental Verification of 2D UWB MIMO Antenna Array for Near-field Imaging Radar. 39th European Microwave Conference, Rome, Italy, 2009:97-100
    100 M. Bradley, T. Witten, M. Duncan, et al. Mine Detection with a Forward-looking Ground Penetrating Synthetic Aperture Radar. Proceedings of SPIE on Detection and Remediation Technologies for Mines and Minelike Targets VIII, Orlando, FL, United States, 2003, 5089:334-347
    101王杰贵,罗景青.一种恒定束宽的宽带数字波束形成方法.宇航学报. 2007, 28(6):1458-1461
    102王敏,吴顺君,杨淑媛. UWB脉冲信号的时域波束形成方法.电波科学学报. 2006, 21(2):238-243
    103 H. Hashemi, T.-S. Chu, J. Roderick. Integrated True-Time-Delay-Based Ultra-Wideband Array Processing. IEEE Communications Magazine. 2008, 46(9):162-172
    104 J. Roderick, H. Krishnaswamy, K. Newton, et al. Silicon-based Ultra-wide Band Beamforming. IEEE Journal of Solid-State Circuits. 2006, 41(8):1726-39
    105 J. S. McLean, H. Foltz, R. Sutton. Pattern Descriptors for UWB Antennas. IEEE Transactions on Antennas and Propagation. 2005, 53(1):553-559
    106 L. D. DiDomenico. A Comparison of Time Versus Frequency Domain Antenna Patterns. IEEE Transations on Antennas and Propagation. 2002, 50(11):1560-1565
    107 F. Anderson, W. Chiristensen, L. Fullerton. Ultra-wideband Beamforming in Sparse Arrays. IEE Proceedings H: Microwaves, Antennas and Propagation. 1991, 138(4): 342-346
    108 J. L. Schwartz, B. D. Steinberg. Ultrasparse, Ultrawideband Arrays. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 1998, 45(2):376-393
    109 E. K. L. Hung, W. Chamma, S. M. Gauthier. A Second Study of UWB Receiver Array Beamformer Output Images of Objects in a Room. Defence R&D Canada-Ottwa Technical Memorandum. 2003:1-65
    110肖东山,肖伯勋,朱国强.无载波单脉冲天线阵近场波束扫描的时域模拟.电波科学学报. 2004, 19(1): 62-66
    111郭祺丽,孙超,杨益新.宽带波束形成中近场补偿的实验研究.西北工业大学学报. 2007, 25(5):742-746
    112 R. Dilsavor, W. Ailes, P. Rush, et al. Experiments on Wideband Through the Wall Imaging. Proceedings of SPIE on Algorithms for Synthetic Aperture Radar Imagry XII, Orlando, FL, United States, 2005, 5808:196-209
    113王艳,马弘舸,曹学军.墙体对微波脉冲的衰减特性.强激光与粒子束. 2005, 17(8): 1277~1280
    114 H. Suzuki. Accurate and Efficient Prediction of Coverage Map in an Office Environment Using Frustum Ray Tracing and In-Situ Penetration LossMeasurement. The 57th IEEE Semiannual Vehicular Technology Conference, Jeju, Republic of Korea, 2003, 1:236~240
    115 L. Frazier. MDR for Law Enforcement. IEEE Potentials. 1998, 16(5):23~26
    116 M. Soumekh. Reconnaissance with Ultra Wideband UHF Synthetic Aperture Radar. IEEE Signal Processing Magazine. 1995, 12(4):21~40
    117 G. P. Otto, W. C. Chew. Microwave Inverse Scattering Local Shape Function Imaging for Improved Resolution of Strong Scatterers. IEEE Transactions on Microwave Theory and Techniques. 1994, 42(1): 137~142
    118丁鹭飞,耿富录,陈建春.雷达原理.第四版.电子工业出版社, 2009:237~238
    119 N. Boubaker, K. B. Letaief. Performance Analysis of DS-UWB Multiple Access under Imperfect Power Control. IEEE Transactions on Communications. 2004, 52(9):1459~1463
    120马琳.基于IR-UWB信号的穿墙目标定位方法研究.哈尔滨工业大学博士论文. 2009:16
    121王昭.穿墙雷达动目标检测与定位方法研究.电子科技大学硕士论文. 2005:20-30
    122 M.-G. D. Benedetto, G. Giancola.超宽带无线电基础.葛利嘉,朱林,袁晓芳,等译.电子工业出版社, 2005:132~133
    123 A. Muqaibel, A. Safaai-Jazi, A. Bayram, et al. Ultrawideband Through-the-wall Propagation. IEE Proceedings: Microwaves, Antennas and Propagation. 2005, 152(6):581-588
    124 K. C. Ho, Paul D. Gader. A Linear Predicition L and Mine Detection Algorithm for Hand Held Ground Penertrating Radar. IEEE Transactions on Geoscience and Remote Sensing. 2002, 40(6):1374-1384
    125肖艳军,李建勋.基于小波变换的信号滤波在探地雷达中的应用.电波科学学报. 2006, 21(1):140-145
    126 B. Karlsen, H.B.D.Sorensen, J. Larsen, et al. Independent Component Analysis for Clutter Reduction in Ground Penetrating Radar Data. Proceedings of SPIE on the International Society for Optical Engineering, Orlando, FL, United States, 2002, 4742(I):378-389
    127 Y. Zhao, P. Gader, P. Chen, et al. Training DHMMs of Mine and Clutter to Minimize Landmine Detection Errors. IEEE Transactions on Geoscience and Remote Sensing. 2003, 41(5):1016-1024
    128许德刚,朱子平,洪一.自适应滤波在无源探测中对杂波抑制的应用.系统工程与电子技术. 2006, 28(2):202-204
    129 M. Aftanas, J. Rovňáková, M. Drutarovsky, et al. Efficient Method of TOAEstimation for Through Wall Imaging by UWB Radar. 2008 IEEE International Conference on Ultra-wideband, Hannover, Germany, 2008, 2:101-104
    130 R. Zetik, J. Sachs and R.Thom?. Modified Cross-Correlation Back Projection for UWB Imaging: Numerical Examples. 2005 IEEE International Conference on Ultra-Wideband, Zurich, Switzerland, 2005:650-654
    131 R. A. Muller, A. Buffington. Real-time Correction of Atmospherically Degraded Telescope Images Through Image Sharpening. Journal of the Optical Society of America. 1974, 64(9):1200-1210
    132 F. Berizzi, G. Corsini. Autofocusing of Inverse Synthetic Aperture Radar Images Using Contrast Optimization. IEEE Transactions on Aerospace and Electronic Systems. 1996, 32(3): 1185-1191
    133 J. R. Fienup. Synthetic-aperture Radar Autofocus by Maximizing Sharpness. Optics Letters. 2000, 25(4):221-223
    134 S. A. Fortune, M. P. Hayes, P. T. Gough. Statistical Autofocus of Synthetic Aperture Sonar Images Using Image Contrast Optimisation. MTS/IEEE Conference and Exhibition OCEAN, Honolulu, HI, 2001, 1:163-169
    135 J. R. Fienup, J. J. Miller. Aberration Correction by Maximizing Generalized Sharpness Metrics. Journal of the Optical Society of America A: Optics and Image Science, and Vision. 2003, 20(4):609-619
    136 Y. Xu, Y. Lu. Evolutionary Programming CLEAN Algorithm for UWB Localization Images of Contiguous Targets. The Journal of China Universities of Posts and Telecommunications. 2007, 14(2): 79-83
    137马小玲,丁丁.宽频带微带天线技术及其应用.人民邮电出版社, 2006:106-107
    138 R. Zetik, R. S. Thom?. Monostatic imaging of small objects in UWB sensor networks. Proceedings of the 2008 IEEE International Conference on Ultra-wideband, Hannover, Germany, 2008, 2:191-194
    139 G. R. Lockwood, F. S. Foster. Optimizing Sparse Two-dimensional Transducer Arrays Using an Effective Aperture Approach. Proceedings of the 1994 IEEE Ultrasonics Symposium, Cannes, France, 1994:1497-1501

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700