FBAR微质量传感器若干关键问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新颖的射频MEMS器件,薄膜体声波谐振器(FBAR)近年来在无线通信领域取得了巨大的商业成功。与此同时,FBAR在微质量生物传感领域的应用,正成为下一个研究热点。与传统的质量传感器——石英晶体微天平(QCM)相比,FBAR具有谐振频率高、质量灵敏度高、体积小、可集成等优点。
     本论文主要从FBAR传感器的四个方面进行了研究:对双模式FBAR的理论分析与建模、压电薄膜A1N的制备、FBAR原型器件的制备与测试以及FBAR在质量传感器上的应用模型,主要取得了以下成果:
     1.研究了基于c轴倾斜取向压电薄膜的厚度场激励双模式FBAR的谐振机理和振动模式,并建立了双模式复合FBAR的电学阻抗解析表达式,提出了双模式复合FBAR的改进型Mason等效电路模型。研究结果表明:A1N压电薄膜的压电参数、机电耦合系数、体声波速以及振动模式等随晶体的c轴倾斜角度0增大呈周期性变化,理想FBAR中存在为纵波和剪切波双模式,当θ=0°或66.5°时,理想FBAR中仅存在纵波模式;当c轴倾斜角度0=47.6°或90°时,理想FBAR中仅存在剪切波模式;当θ为0°、34.4°时,可分别获得最大的纵波机电耦合系数和剪切波机电耦合系数。
     2.在反应溅射模型基础上,深入研究了择优取向A1N压电薄膜的制备技术,优化了工艺方法,实现了高速沉积择优取向A1N薄膜。通过理论分析和实验研究表明,增大系统抽速、采用磁控溅射技术减小靶面有效溅射面积等可以减弱以至消除反应溅射系统中的迟滞效应;N2浓度过高或过低时都不利于A1N择优取向生长,当N2浓度为25%时最有利于A1N薄膜的择优取向生长。论文提出并实现了消除反应溅射过程中的迟滞现象、将靶稳定控制在金属态与中毒态之间的过渡态、并实现快速沉积择优取向A1N薄膜的优化工艺方法。该方法在优化的工艺条件下,A1N(002)衍射峰半高宽为0.28°,薄膜沉积速率为2.1μm/h。同时实现了c轴倾斜取向生长A1N薄膜,倾斜角度为22°,成膜速率为1.85μm/h。这一成果已被SCI收录,具有重要应用价值。
     3.提出并制备了Al/W全金属膜系布拉格反射层结构,这种新颖的膜系申请了二项发明专利。使用探针台和矢量网络分析仪测得基于5层Al/W反射层的固态装备型FBAR谐振频率为2.25GHz, Q值为170,此结构具有金属薄膜之间结合力好、热应力小、器件结构简单可靠、热容量大、沉积速率快等优点。此外,还制备了基于SiO2/W布拉格反射层的固态装备型FBAR。
     4.制备出了硅反面刻蚀结构的FBAR原型器件,包括厚度场激励的纵波模式FBAR和侧向场激励的剪切模式FBAR。使用探针台和矢量网络分析仪测得纵波模式FBAR的谐振频率为1.03GHz, Q值达到1350;剪切模式FBAR的谐振频率为1.4GHz, Q值为370。
     5探讨了双模式FBAR微质量传感器,建立了这种微质量传感器模型,理论研究表明:对于均匀质量负载、在压电薄膜的不同c轴倾斜角度下、纵波和剪切模式FBAR的质量灵敏度SL(θ)、Ss(θ)分别为-1403cm2/g~-1366cm2/g、-1344cm2/g~-1309cm2/g;对于相同的质量负载,不同c轴倾斜角度的FBAR传感器的质量灵敏度与FBAR的机电耦合系数有关。建立了双模式FBAR质量传感器的有限元模型,利用ANSYS软件分别仿真分析了质量负载的沉积位置改变时纵波和剪切模式FBAR传感器的谐振特性,结果表明:当质量块位于FBAR的中心位置时,传感器的质量响应度最大,纵波和剪切FBAR传感器的质量响应度分别为-8150kHz/ng、-7500kHz/ng;当质量块距离FBAR中心位置越远时,FBAR的质量响应度越小,且剪切模式FBAR的质量响应度变化更快。
As a novel type RF MEMS device, thin film bulk acoustic resonator (FBAR) has in the last two decades made tremendous advances and has already been successfully commercialized, primarily driven by filter applications for telecom industry. At the same time, the development of FBAR sensors has paved the way for a second major application of FBAR technology, and therefore is becoming the next hotspot. Compared wih the traditional mass sensor, Quartz Crystal Microbalance (QCM), FBAR sensors have the advantages of high resonant frequency, high mass sensitivity, small size, CMOS-compatibility.
     We mainly studied the four aspects of FBAR sensor: the theory analysis and modeling of dual-mode FBAR, preparation of AlN piezoelectric thin film, FBAR prototype device fabrication and testing, and modeling of FBAR mass sensor. The main results of this dissertation are listed as follows:
     1. Resonant mechanism and vibration mode of thickness excited dual-mode FBAR based on AlN with tilted c-axis orientation was researched. The electrical impedance expression and the improved Mason equivalent circuit model of dual-mode complex FBAR were presented. It was found that piezoelectric parameters, electromechanical coupling coefficient, bulk acoustic wave velocity and vibration mode of AlN films depend on the tilt angle 0. It showed that pure longitudinal modes occur at 0°nd 66.5°, pure shear modes occur at 47.6°nd 90°, and both modes occur at the other angles. The maximum electromechanical coupling coefficient of longitudinal and shear modes appear atθ=0°nd 34.4°, respectively.
     2. Based on the reactive sputtering modeling, fabrication process of AlN films with preferred oriented and high deposition rate was studied. Theoretical analysis and experimental results showed that increasing the system pumping speed, using magnetron sputtering technique etc. may weaken or even eliminate the hysteresis effect of reactive sputtering process; neither too high nor too small N2 concentration benefits orientation of AlN and at the N2 concentration of 25%, AlN thin film has the most favorable orientation. Finally, in the optimized process, FWHM of AlN (002) diffraction peak is 0.28°, and the deposition rate is 2.1μm/h. A reactive sputtering process for growing AlN thin films with a c-axis inclination of 22°has also been developed and the deposition rate is 1.85μm/h.
     3. A new Al/W all-metal Bragg reflector structure was proposed and fabricated. AlN based solidly mounted resonator (SMR) utilizing 5-layer Al/W Bragg reflector was fabricated and measured, using the probe station and vector network analyzer. The device has a resonance frequency of around 2.25GHz and a Q value of around 170. This structure has a good adhesion between metal film, small thermal stress, large heat capacity, fast deposition rate, etc and has been applied for patents. Besides, AlN based SMR using SiO2/W Bragg reflector was also fabricated.
     4. Back-etched FBAR prototype devices were prepared, including thickness field excited longitudinal mode FBAR and lateral field excited shear mode FBAR. The longitudinal mode FBAR has a resonance frequency of 1.03GHz and a Q value of around 1350, while the shear mode FBAR has a resonance frequency of 1.4GHz and a O value of 370.
     5. A dual-mode FBAR mass sensor model was established and the results showed that the mass sensitivity of longitudinal mode FBAR SL(θ) and shear mode FBAR Ss(θ) with different inclination are -1403cm2/g~-1366cm2/g and -1344 cm2/g~-1309 cm2/g, respectively. The mass sensitivity of FBAR sensor with a certain tiled angle depends on the electromechanical coupling coefficient. The finite element model of FBAR mass sensor was established. Both longitudinal and shear mode FBAR sensors' resonance characteristics were analyzed using ANSYS software. The results showed that the sensors of both modes have the maximum mass responsibility when the mass load located at the center of FBAR; the mass response of longitudinal and shear mode FBAR are -8150kHz/ng,-7500kHz/ng respectively. The farther the mass load deposits from the center, the lower of the FBAR sensor's response and the response changes faster in the shear mode FBAR sensor than in the longitude mode.
引文
[1]. Vadgama, P. and P.W. Crump, BIOSENSORS-RECENT TRENDS-A REVIEW. Analyst,1992.117(11):p.1657-1670.
    [2]. Ivnitski, D., et al., Biosensors for detection of pathogenic bacteria. Biosensors & Bioelectronics,1999.14(7):p.599-624.
    [3]. Davis, F. and S.P.J. Higson, Structured thin films as functional components within biosensors. Biosensors & Bioelectronics,2005.21(1):p.1-20.
    [4]. Tadigadapa, S. and K. Mateti, Piezoelectric MEMS sensors:state-of-the-art and perspectives. Measurement Science & Technology,2009.20(9).
    [5]. Bunde, R.L., E.J. Jarvi, and J.J. Rosentreter, Piezoelectric quartz crystal biosensors. Talanta,1998.46(6):p.1223-1236.
    [6]. Horacek, J. and P. Skladal, Improved direct piezoelectric biosensors operating in liquid solution for the competitive label-free immunoassay of 2,4-dichlorophenoxyacetic acid. Analytica Chimica Acta,1997.347(1-2):p. 43-50.
    [7]. Cavic, B.A., GL. Hayward, and M. Thompson, Acoustic waves and the study of biochemical macromolecules and cells at the sensor-liquid interface. Analyst, 1999.124(10):p.1405-1420.
    [8]. Patolsky, F., A. Lichtenstein, and I. Willner, Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nature Biotechnology, 2001.19(3):p.253-257.
    [9]. Lucarelli, F., et al., Electrochemical and piezoelectric DNA biosensors for hybridisation detection. Analytica Chimica Acta,2008.609(2):p.139-159.
    [10]. O'Sullivan, C.K., R. Vaughan, and G.G. Guilbault, Piezoelectric immunosensors-Theory and applications. Analytical Letters,1999.32(12):p.2353-2377.
    [11]. Vellekoop, M.J., Acoustic wave sensors and their technology. Ultrasonics,1998. 36(1-5):p.7-14.
    [12]. Mannelli, I., et al., Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms (GMOs) detection. Biosensors & Bioelectronics, 2003.18(2-3):p.129-140.
    [13]. Rickert, J., A. Brecht, and W. Gopel, Quartz crystal microbalances for quantitative biosensing and characterizing protein multilayers. Biosensors & Bioelectronics,1997.12(7):p.567-575.
    [14]. Shons, A., F. Dorman, and J. Najarian, An immunospecific microbalance. Journal of Biomedical Materials Research,1972.6(6):p.565-570.
    [15]. Zhou, T., et al., The quartz crystal microbalance as a continuous monitoring tool for the study of endothelial cell surface attachment and growth. Biotechnology Progress,2000.16(2):p.268-277.
    [16]. Cooper, M.A. and V.T. Singleton, A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions. Journal of Molecular Recognition,2007. 20(3):p.154-184.
    [17]. Sauerbrey, G., Verwendung von Schwingquarzen zur Wagung dunner Schichten und zur Mikrowagung. Zeitschrift fur Physik A Hadrons and Nuclei,1959. 155(2):p.206-222.
    [18]. O'Toole, R.P., et al., Thin aluminum nitride film resonators:miniaturized high sensitivity mass sensors. Analytical Chemistry,1992.64(11):p.1289-1294.
    [19]. Keiji Kanazawa, K. and J.G. Gordon, The oscillation frequency of a quartz resonator in contact with liquid. Analytica Chimica Acta,1985.175:p.99-105.
    [20. Wingqvist, G., et al., Shear mode AlN thin film electro-acoustic resonant sensor operation in viscous media.2007, Elsevier. p.466-473.
    [21]. Lange, K., B. Rapp, and M. Rapp, Surface acoustic wave biosensors:a review. Analytical and Bioanalytical Chemistry,2008.391(5):p.1509-1519.
    [22]. Sadek, A., et al., A ZnO nanorod based layered ZnO/64 YX LiNbO3 SAW hydrogen gas sensor. Thin Solid Films,2007.515(24):p.8705-8708.
    [23]. Kondoh, J. and S. Shiokawa, A liquid sensor based on a shear horizontal saw device. Electronics and Communications in Japan (Part Ⅰ:Electronics),1993. 76(2):p.69-82.
    [24]. Branch, D.W. and S.M. Brozik, Low-level detection of a Bacillus anthracis simulant using Love-wave biosensors on 36°YX LiTaO3. Biosensors and Bioelectronics,2004.19(8):p.849-859.
    [25]. Kalantar-Zadeh, K., et al., Novel Love mode surface acoustic wave based immunosensors. Sensors and Actuators B:Chemical,2003.91(1-3):p. 143-147.
    [26]. Berkenpas, E., et al., Pure shear horizontal SAW biosensor on langasite. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control,2004. 51(11):p.1404-1411.
    [27]. Kovacs, G, et al., A love wave sensor for (bio)chemical sensing in liquids. Sensors and Actuators A:Physical,1994.43(1-3):p.38-43.
    [28]. di Scalea, F.L., H. Matt, and I. Bartoli, The response of rectangular piezoelectric sensors to Rayleigh and Lamb ultrasonic waves. Journal of the Acoustical Society of America,2007.121(1):p.175-187.
    [29]. Benes, E., et al., Comparison between BAW and SAW sensor principles. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,1998. 45(5):p.1314-1330.
    [30]. Enlund, J., et al., Solidly mounted thin film electro-acoustic resonator utilizing a conductive Bragg reflector. Sensors and Actuators A:Physical,2008.141(2): p.598-602.
    [31]. Hao, Z., et al. Implantable resonant mass sensor for liquid biochemical sensing. in Micro Electro Mechanical Systems,2004.17th IEEE International Conference on. (MEMS).2004.
    [32]. Lin, R.-C., et al., Highly sensitive mass sensor using film bulk acoustic resonator. Sensors and Actuators A:Physical,2008.147(2):p.425-429.
    [33]. Rey-Mermet, S., R. Lanz, and P. Muralt. AIN thin film resonators operating at 8 GHz used as sensors for organic films, in Ultrasonics Symposium,2005 IEEE. 2005.
    [34]. Zhang, H. and E.S. Kim, Micromachined acoustic resonant mass sensor. Journal of Microelectromechanical Systems,2005.14(4):p.699-706.
    [35]. Browne, J., Compact BAW filters help separate WiMAX and WLAN. Microwaves & Rf,2008.47(9):p.138-138.
    [36]. El Aabbaoui. H., et al., Ultra Low Phase Noise 2.1 GHz Colpitts Oscillators using BA W Resonator, in 2009 Ieee/Mtt-S International Microwave Symposium, Vols 1-3.2009. p.1285-1288.
    [37]. Giraud, S., et al., Bulk Acoustic Wave Filter Synthesis and Optimization for UMTS Applications.2009 European Microwave Conference, Vols 1-3.2009. 456-459.
    [38]. Fu, Y.Q., et al., Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review. Sensors and Actuators B-Chemical,2010.143(2):p.606-619.
    [39]. Mai, L., et al., Approach to improve ZnO-based FBAR devices. Electronics Letters,2007.43(13):p.735-737.
    [40]. Park, J.Y., K.H. Lee, and S.J. Cheon, Silicon bulk micromachined FBAR filter and duplexer for advanced handset applications. Microwave and Optical Technology Letters,2007.49(2):p.339-342.
    [41]. Bradley, P. and R.C. Ruby, Passband filter having an asymmetrical filter response.2001, Google Patents.
    [42]. Ruby, R., et al., PCS 1900 MHz duplexer using thin film bulk acoustic resonators (FBARs). Electronics Letters,1999.35(10):p.794-795.
    [43]. Zhang, H., et al., A film bulk acoustic resonator in liquid environments. Journal of Micromechanics and Microengineering,2005.15(10):p.1911-1916.
    [44]. Weber, J., et al., Shear mode FBARs as highly sensitive liquid biosensors. Sensors and Actuators a-Physical,2006.128(1):p.84-88.
    [45]. Wingqvist, G., et al., Immunosensor utilizing a shear mode thin film bulk acoustic sensor. Sensors and Actuators B-Chemical,2007.127(1):p.248-252.
    [46]. Wingqvist, G., et al., On the applicability of high frequency acoustic shear mode biosensing in view of thickness limitations set by the film resonance. Biosensors & Bioelectronics,2009.24(11):p.3387-3390.
    [47]. Yanagitani, T., et al., Characteristics of pure-shear mode BAW resonators consisting of (11(2)over-bar0) textured ZnO films. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control,2007.54(8):p.1680-1686.
    [48]. Chung, C.J., et al., Synthesis and bulk acoustic wave properties on the dual mode frequency shift of solidly mounted resonators. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control,2008.55(4):p.857-864.
    [49]. Dickherber, A., et al., Lateral field excitation (LFE) of thickness shear mode (TSM) acoustic waves in thin film bulk acoustic resonators (FBAR) as a potential biosensor.2006 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vols 1-15.2006.1829-1832.
    [50]. Milyutin, E., S. Gentil, and P. Muralt, Shear mode bulk acoustic wave resonator based on c-axis oriented AIN thin film. Journal of Applied Physics, 2008.104(8):p.084508-084508-6.
    [51. Chen, D., et al., Solidly mounted resonators operated in thickness shear mode based on c-axis oriented AIN films. Sensors and Actuators A:Physical,2010.
    [52]. Lakin, K.M., G.R. Kline, and K.T. McCarron, High-Q microwave acoustic resonators and filters. Microwave Theory and Techniques, IEEE Transactions on,1993.41(12):p.2139-2146.
    [53]. Ruby, R.C., Y. Desai, and D.R. Bradbury, SBAR structures and method of fabrication of SBAR. FBAR film processing techniques for the manufacturing of SBAR/BAR filters.2000, Google Patents.
    [54]. Figueredo, D.A., et al., Thin film bulk acoustic resonator (FBAR) and inductor on a monolithic substrate and method of fabricating the same.2001, Google Patents.
    [55]. Pan, W., et al., A surface micromachined electrostatically tunable film bulk acoustic resonator. Sensors and Actuators A:Physical,2006.126(2):p. 436-446.
    [56]. Kim, E.K., et al., Air gap type thin film bulk acoustic resonator fabrication using simplified process. Thin Solid Films,2006.496(2):p.653-657.
    [57]. Kerherve, E., et al., SMR-BAW duplexer for W-CDMA application. Analog Integrated Circuits and Signal Processing,2010.64(1):p.23-38.
    [58]. Chung, C.-J., et al., Fabrication and frequency response of solidly mounted resonators with l/4[lambda] mode configuration. Thin Solid Films,2008, 516(16):p.5277-5281.
    [59]. El Hassan, M., et al., A new method to reconfigure BAW-SMR filters using CMOS transistors, in 2007 Ieee/Mtt-S International Microwave Symposium Digest, Vols 1-6.2007. p.1598-1601.
    [60]. Ruby, R. and Ieee, Review and comparison of bulk acoustic wave FBAR, SMR technology, in 2007 Ieee Ultrasonics Symposium Proceedings, Vols 1-6.2007. p.1029-1040.
    [61]. Aigner, R., MEMS in RF Filter Applications:Thin-film Bulk Acoustic Wave Technology. Sensors Update,2003.12(1):p.175-210.
    [62]. Altamura, D., et al., Fabrication of BAW Resonators Based on Piezoelectric AIN and Reflector-on-Membrane Structure. Ferroelectrics,2009.389:p.32-40.
    [63]. Wingqvist, G, et al., Shear mode AIN thin film electro-acoustic resonant sensor operation in viscous media. Sensors and Actuators B:Chemical,2007.123(1): p.466-473.
    [64]. Olivares, J., et al., Piezoelectric actuation of microbridges using AIN. Sensors and Actuators A:Physical,2005.123:p.590-595.
    [65]. Lin, Y., C. Hong, and H. Chuang, Fabrication and analysis of ZnO thin film bulk acoustic resonators. Applied Surface Science,2008.254(13):p. 3780-3786.
    [66]. Choi, S.H. and J.S. Kim, Study on the c-axis preferred orientation of ZnO film on various metal electrodes. Ultramicroscopy,2008.108(10):p.1288-1291.
    [67]. Link, M., et al., Solidly mounted ZnO shear mode film bulk acoustic resonators for sensing applications in liquids. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,2006.53(2):p.492-496.
    [68]. Yokoyama, T., et al. New electrode material for low-loss and high-Q FBAR filters.2004:IEEE.
    [69]. Lakin, K., et al. Improved bulk wave resonator coupling coefficient for wide bandwidth filters.2001:IEEE.
    [70]. Newell, W.E., Face-mounted piezoelectric resonators.1965. p.575-581.
    [71]. Sliker. T.R. and D.A. Roberts, A thin-film CdS-quartz composite Resonator. 1967. p.2350.
    [72]. Lakin, K.M. and J.S. Wang, Acoustic bulk wave composite resonators.1981. p. 125.
    [73]. Driscoll, M., et al. UHF Film Resonator Evaluation and Resonator-Controlled Oscillator Design Using Computer-Aided Design Techniques.1984:IEEE.
    [74]. Krishnaswamy, S.V., et al., Film bulk acoustic wave resonator technology. 1990. p.529-536.
    [75]. Ruby, R.C., et al. Thin film bulk wave acoustic resonators (FBAR) for wireless applications.2001:IEEE.
    [76]. Aigner, R. and Ieee, SAW and BAW Technologies for RF Filter Applications: A Review of the Relative Strengths and Weaknesses, in 2008 Ieee Ultrasonics Symposium, Vols 1-4 and Appendix.2008. p.582-589.
    [77]. Zhang, H., et al., Mercuric ion sensing by a film bulk acoustic resonator. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control,2007.54(9): p.1723-1725.
    [78]. McCann, D.F., et al., A Lateral-Field-Excited LiTaO3 High-Frequency Bulk Acoustic Wave Sensor. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control,2009.56(4):p.779-787.
    [79]. Mai, L., V.-S. Pham, and G. Yoon, ZnO-based film bulk acoustic resonator devices on a specially designed Bragg reflector. Applied Physics A,2009.95(3): p.667-671.
    [80]. Wu, N., et al., A Multiple-Scan Focusing Method for Radio Frequency Bulk Acoustic Wave Device Observation by Laser Probe System. Japanese Journal of Applied Physics,2010.49(7).
    [81]. Wingqvist, G., V. Yantchev, and I. Katardjiev, Mass sensitivity of multilayer thin film resonant BAW sensors. Sensors and Actuators a-Physical,2008.148(1):p. 88-95.
    [82]. Hao, Z. and K. Eun Sok. Air-backed Al/ZnO/Al film bulk acoustic resonator without any support layer, in Frequency Control Symposium and PDA Exhibition,2002. IEEE International.2002.
    [83]. Hao, Z., P. Wei, and K. Eun Sok. High-frequency bulk acoustic resonant microbalances in liquid. in Frequency Control Symposium and Exposition, 2005. Proceedings of the 2005 IEEE International.2005.
    [84]. Zhang, H., et al. Mercury ion sensing by film-bulk-acoustic-resonator mass sensor, in Sensors,2005 IEEE.2005.
    [85]. Qiu, X.T., et al., Film Bulk Acoustic-Wave Resonator Based Relative Humidity Sensor Using ZnO Films. Electrochemical and Solid State Letters,2010.13(5): p. J65-J67.
    [86]. Weber, J., et al., Shear mode FBARs as highly sensitive liquid biosensors.2006, Elsevier. p.84-88.
    [87]. Gabl, R., et al., First results on label-free detection of DNA and protein molecules using a novel integrated sensor technology based on gravimetric detection principles. Biosensors and Bioelectronics,2004.19(6):p.615-620.
    [88]. Link, M., et al., Sensing characteristics of high-frequency shear mode resonators in glycerol solutions. Sensors and Actuators B:Chemical,2007. 121(2):p.372-378.
    [89]. Bjurstrom, J., G. Wingqvist, and I. Katardjiev, Synthesis of textured thin piezoelectric AlN films with a nonzero c-axis mean tilt for the fabrication of shear mode resonators.2005.
    [90]. Engelmark, F., et al., Synthesis of highly oriented piezoelectric AlN films by reactive sputter deposition.2000. p.1609.
    [91]. Sharma, G., et al., Fabrication and characterization of a shear mode AIN solidly mounted resonator-silicone microfluidic system for in-liquid sensor applications. Sensors and Actuators A:Physical,2010.159(1):p.111-116.
    [92]. Rey-Mermet, S., R. Lanz, and P. Muralt, Bulk acoustic wave resonator operating at 8GHz for gravimetric sensing of organic films. Sensors and Actuators B:Chemical,2006.114(2):p.681-686.
    [93]. Rey-Mermet, S., R. Lanz, and P. Muralt, Bulk acoustic wave resonator operating at 8 GHz for gravimetric sensing of organic films. Sensors and Actuators B:Chemical,2006.114(2):p.681-686.
    [94]. Chen, D., et al., The c-axis oriented AIN solidly mounted resonator operated in thickness shear mode using lateral electric field excitation. Applied Physics A:Materials Science& Processing,2010.100(1):p.239-244.
    [95]. Dickherber, A., C.D. Corso, and W. Hunt. Lateral Field Excitation (LFE) of Thickness Shear Mode (TSM) Acoustic Waves in Thin Film Bulk Acoustic Resonators (FBAR) as a Potential Biosensor, in Engineering in Medicine and Biology Society,2006. EMBS '06.28th Annual International Conference of the IEEE.2006.
    [96]. Johnston, M.L., I. Kymissis, and K.L. Shepard, FBAR-CMOS Oscillator Array for Mass-Sensing Applications. Ieee Sensors Journal,2010.10(6):p. 1042-1047.
    [97]. Yanagitani, T., et al., Characteristics of (101-0) and (112-0) textured ZnO piezofilms for a shear mode resonator in the VHF-UHF frequency ranges.2005. p.2140-2145.
    [98]. Zhang, C. and J.F. Vetelino, A bulk acoustic wave resonator for sensing liquid electricalproperty changes.2001. p.535-541.
    [99].邹英寅,体声波复合谐振器新结构的研究.电子学报,1994.22(011):p.9-12.
    [100].金浩,薄膜体声波谐振器(FBAR)技术的若干问题研究.2006,浙江大学.
    [101].刘燕翔,任天令,and刘天理,采用PZT薄膜的体声波RF滤波器设计.压电与声光,2001.23(1):p.1-4.
    [102].于毅,et al.,直流磁控反应溅射制备硅基AIN薄膜.压电与声光,2005.27(001):p.53-55.
    [103]. Yan, Z., et al., Material and device properties of ZnO-based film bulk acoustic resonator for mass sensing applications. Applied Surface Science,2007. 253(24):p.9372-9380.
    [104]. Hao, Z., P. Wei, and K. Eun Sok, Miniature high-frequency longitudinal wave mass sensors in liquid. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,2011.58(1):p.255-258.
    [105]. Liang, T., et al.. Design of ladder-type RF filters based on FBARs. Technical Acoustics,2008:p.02.
    [106]. Ault, B.A.,固体中的声场和波.1982:科学出版社.
    [107].王矜奉,姜祖桐,压电振动.1989:科学出版社.
    [108].刘梅冬,许毓春,压电铁电材料与器件.1990:华中理工大学出版社.
    [109]. Strite, S. and H. Morkoc, GaN, AIN, and InN: a review. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,1992. 10(4):p.1237-1266.
    [110]. Pierson, H.O., Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications.1996:William Andrew.
    [111]. Qin, L., et al., Analytical study of dual-mode thin film bulk acoustic resonators (FBARs) based on ZnO and AIN films with tilted c-axis orientation. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,2010.57(8):p. 1840-1853.
    [112]. Su, Q.X., et al., Thin-film bulk acoustic resonators and filters using ZnO and lead-zirconium-titanate thin films. Microwave Theory and Techniques, IEEE Transactions on,2001.49(4):p.769-778.
    [113]. Ristic, V.M., Principles of acoustic devices.1983:Wiley.
    [114]. Ohring, M., The materials science of thin films.1992:Academic Pr.
    [115]. Berg, S., et al., Modeling of reactive sputtering of compound materials. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1987.5(2): p.202-207.
    [116]. Sproul, W., D. Christie, and D. Carter. Control of reactive sputtering processes. Thin Solid Films,2005.491(1-2):p.1-17.
    [117]. Berg, S. and T. Nyberg, Fundamental understanding and modeling of reactive sputtering processes. Thin Solid Films,2005.476(2):p.215-230.
    [118]. Danisman, K., et al., Modelling of the hysteresis effect of target voltage in reactive magnetron sputtering process by using neural networks. Surface and Coatings Technology,2009.204(5):p.610-614.
    [119]. Cheng, H., et al., AIN films deposited under various nitrogen concentrations by RF reactive sputtering. Journal of crystal growth,2003.254(1-2):p.46-54.
    [120]. Huang, C.L., K.W. Tay, and L. Wu, Aluminum nitride films deposited under various sputtering parameters on molybdenum electrodes. Solid-state electronics,2005.49(2):p.219-225.
    [121]. Schiller, S., et al., On the investigation of dc plasmatron discharges by optical emission spectrometry. Thin Solid Films,1982.96(3):p.235-240.
    [122]. Affinito, J. and R. Parsons, Mechanisms of voltage controlled, reactive, planar magnetron sputtering of Al in Ar/N2 and Ar/02 atmospheres. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1984.2(3):p. 1275-1284.
    [123]. Sproul, W.D. and J.R. Tomashek, Rapid rate reactive sputtering of a group IVb metal.1984, Google Patents.
    [124]. Berg, S., et al., Process modeling of reactive sputtering. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1989.7(3):p. 1225-1229.
    [125]. Tay, K.W., The Analysis and Design of Film Bulk Acoustic-Wave Resonators.2005,国立成功大学:台湾.
    [126]. Kuan-Hsun Chiu, J.-H.C., Hong-Ren Chen, Ruey-Shing Huang, Deposition and characterization of reactive magnetron sputtered aluminum nitride thin films for film bulk acoustic-wave resonator, thin solid films,2007.
    [127].许小红,武海顺,压电薄膜的制备,结构与应用.2002:科学出版社.
    [128]. Li, K., et al.. Preparation of AIN thin films for film bulk acoustic resonator application by radio frequency sputtering. Journal of Zhejiang University-Science A,2009.10(3):p.464-470.
    [129]. Shinoki, F. and A. Itoh, Mechanism of rf reactive sputtering. Journal of Applied physics,1975.46(8):p.3381-3384.
    [130]. Wang, J. and K. Lakin, c-axis inclined ZnO piezoelectric shear wave films. Applied Physics Letters,1983.42(4):p.352-354.
    [131]. Link, M., et al., c-axis inclined ZnO films for shear-wave transducers deposited by reactive sputtering using an additional blind. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,2006.24:p.218.
    [132]. Martin, F., et al., Shear mode coupling and tilted grain growth of AIN thin films in BAW resonators. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,2006.53(7):p.1339-1343.
    [133]. Lee, Y.E., et al., Effect of oblique sputtering on micro structural modification of ZnO thin films. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1997.15(3):p.1194-1199.
    [134]. Lakin, K.M., G.R. Kline, and K.T. McCarron, Development of miniature filters for wireless applications. Microwave Theory and Techniques, IEEE Transactions on,1995.43(12):p.2933-2939.
    [135]. Kanbara, H., H. Kobayashi, and K. Nakamura, Analysis of piezoelectric thin film resonators with acoustic quarter-wave multilayers. Jpn. J. Appl. Phys, 2000.39(5B part 1):p.3049-3053.
    [136]. Kim, D.H., et al., Improvements of resonance characteristics due to thermal annealing of Bragg reflectors in ZnO-based FBAR devices. Electronics Letters, 2003.39(13):p.962-964.
    [137]. Lee, J.B., et al., Deposition of ZnO thin films by magnetron sputtering for a film bulk acoustic resonator. Thin Solid Films,2003.435(1-2):p.179-185.
    [138]. Yan, Z., et al., Material and device properties of ZnO-based film bulk acoustic resonator for mass sensing applications. Applied Surface Science,2007. 253(24):p.9372-9380.
    [139]. Weber, J., et al., Shear mode FBARs as highly sensitive liquid biosensors. Sensors and Actuators A:Physical,2006.128(1):p.84-88.
    [140].董树荣,et al.,适用于FBAR的金属布拉格声波反射层结构.2008.
    [141]. Ben Hassine, N., D. Mercier, and P. Renaux, Solidly Mounted Resonators Under High Power Study For Reliability Assessment. Prime:Proceedings of the Conference 2009 Phd Research in Microelectronics and Electronics, ed. D. Zito. 2009.248-251.
    [142]. Lin, R.C., et al., Highly sensitive mass sensor using film bulk acoustic resonator. Sensors and Actuators a-Physical,2008.147(2):p.425-429.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700