射频激励板条CO_2激光器信号检测与人机界面设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
射频激励板条CO_2激光器在激光加工领域得到了广泛的应用。要使射频激励板条CO_2激光器能够长时间稳定的运转,必须对激光器信号进行精确的检测与控制。本文旨在分析设计大功率激励板条CO_2激光器人机界面和信号检测系统。
     研究了大功率射频激励板条CO_2激光器信号检测系统的气压检测、整机各部分温度的检测、光功率的检测、水流量和水压的检测、激光器射频电源的检测以及人机界面的设计。具体包括以下内容:
     (1)设计了射频激励板条CO_2激光器整机检测系统。分析了射频激励板条CO_2激光器的水路系统,气路系统和光路系统结构。根据激光器的系统结构和原理设计了激光器检测系统总体框架、水冷却系统水流量和水压力信号的检测方案、光功率检测方案、真空系统信号的检测方案、激光器整机温度信号的检测方案和实验。根据激光器检测系统的要求进行了传感器的选型,安装和检测电路的设计。
     (2)设计了激光器射频电源信号的检测系统。研究了自激式电子管射频电源的主要参数。根据射频电源的原理设计了射频电源检测系统总体框架、射频入射功率,反射功率检测方案和屏极高电压的检测方案,进行了传感器的选型和检测电路的设计。
     (3)设计了射频激励板条CO_2激光器触摸屏人机操作界面。根据激光器信号检测控制系统的要求进行了人机界面触摸屏的选型,详细分析了MT506型人机界面的特性。设计并完成了激光器控制系统各功能在触摸屏上的实现。根据激光器控制系统的要求和工作原理用九个菜单界面的设计完成了系统的控制,报警,显示,保护和通信功能。
RF excited CO_2 laser is used in field of industrial laser processing extensively. Unless precise detecting and controlling of its parameters have been carried out, RF excited CO_2 laser can’t operate stably for a long time. The thesis aims to design the signal detection system of the measurement and Man-machine Interface for the laser.
     The thesis aims to develop signal detection and Man-machine Interface for the RF-excited CO_2 Laser. The selection of critical technology and components, detection and control of signals, measurement and control of pressure, detection and control of water flow, temperature, laser light power, and technology of human machine interface have been researched. The main achievements of the research are shown as follow:
     (1) The structure and operation principle of the laser have been analyzed. And the laser measurement system has been designed on this basis, which includes four parts: the measurement of water flow; the measurement of pressure; the measurement of temperature; the measurement of laser light power. Considering the characteristic of the Laser specific sensors have been chosen. According to different components and signals, the signal collecting circuit has been designed.
     (2) The detection and control system of laser power signal has been designed. The principles, structure and the main parameters of RF power supply have been analyzed. According to the principles of RF power supply, detection programs of the main parameters which includes the RF input power, RF reflection power and the high-voltage of the plate of electronic tube have been designed.
     (3) The human machine interface has been designed. According to the request of the control system of RF-excited CO_2 Laser, the Weinview MT506 touch-screen has been chosen. The alarm, display, protection and communication capabilities of the control system are completed Within 10 menus.
引文
[1] Mefferd. RF excited CO2 slab waveguide laser. U. S. A, Pat. 5, 283, 797, February 1, 1994. 1~10
    [2] Johnson K I,Current and future developments of the plasmaare,laser and electron beam processing. Proc Int Power Beam Cenf,San Diego, USA,1998,5(2-4):1~10
    [3]闫毓禾,钟敏霖.高功率激光加工及其应用.(第一版).天津:天津科学技术出版社, 1994. 17~20
    [4]丘军林.气体放电和气体激光.(第一版).武汉:华中理工大学出版社, 1995.89~144
    [5]藤学顺.军用超小型中小功率射频CO2激光电源的设计研究,红外与激光技术,1994,(6):33~37
    [6] Michael. W, Sasnett. Kilowatt-class CO2 laser meet present and future industrial needs. Laser Focus, 1988, 5: 247 ~ 251
    [7] R. Wester, S. Seiwert. Investigation of microwave excited CO2 laser discharge. Appl. Phys, 1991, 24: 1102 ~ 1107
    [8] Greg Dunham. Sealed carbon dioxide lasers enter the high power arena. Laser Focus World, 1999, 3: 105
    [9] Hall D. R., Baker H. J. Area scaling boosts CO2 laser performance. Laser Focus World, 1989(10): 77~82
    [10] Kobayashi S, Terai K, et al. 1kW Slab CO2 Laser Excited by a Self-excited RF Generator. GCL /HPL’96, Edinburgh, U.K, 1996. 25~30
    [11]王又良,吴恒莱,萧明强等.射频激励CO2激光器综述.激光与红外, 2001, 31(1): 10~12
    [12] J. G. Xin, G H Wei. Technological development and prospect of RF transversely excited diffusively cooled CO2 lasers. SPIE, 1990, 1230: 69~70
    [13]张育川.我国激光产业十年,激光与红外,2000,30(3):136~140
    [14]辛建国,魏光辉.射频横向激励扩散型冷却CO2激光器技术的进展与前景.中国激光, 1994, 21(5): 371~376
    [15]王吉.全金属环波导CO2激光器射频电源的研究与实践: [硕士论文].厦门:厦门大学图书馆, 2006
    [16]高允贵,李向阳,秦立永.射频板条CO2激光器获得远场对称光束.中国激光,2002,29(1):95~96
    [17]武汉法利莱切割系统工程有限公司.现代激光切割机选型知道参考.中国:武汉法利莱切割系统工程有限公司2009,1~2
    [18]邓树森.我国激光加工的发展近况,激光与光电子学进展,1995,04:13~15
    [19] Babb. PLC users get some new packaging options. Control Engineering, 1994, 41(3):68~71
    [20]唐霞辉.高功率横流CO2激光器及其应用.(第一版).武汉:华中科技大学出版社, 2008. 86~129
    [21]彭浩,王汉生.PLC在大功率CO2激光器控制系统中的应用.激光杂志,2003,24(6):72~73
    [22]彭坤丽.基于PLC的大功率半导体激光器控制系统的研制:[硕士论文].北京:北京工业大学图书馆,2009
    [23]黄继昌.传感器工作原理及应用实例.北京:人民邮电出版社,1998,18-20
    [24] M. Akbar, M. A. Shanblatt. Temperature Compensation of Piezoresistive Pressure Sensors. Sensor And Actuators, 1992, 33(3): 3~6
    [25] M. Akbar, M. A. Shanblatt. A Fully Integrated Temperature Compensation Technique for Piezoresistive Pressure Sensors. IEEE Transactions In Instrument And Measurement, 1993, 42(3): 34~35
    [26] Hugel H.HighPower Gas Lasers. Laser and Optoelectronic, 1985, 17( 4):21~27
    [27]王宗旺.射频激励CO2激光器信号检测电路的分析与设计: [硕士论文].武汉:华中科技大学图书馆,2008
    [28]张福学.传感器应用及其电路精选(上册).北京:电子工业出版社,1993,480-482
    [29]栾成强.基于热敏电阻的温度监测系统.ELECTRONIC PRODUCTS CHINA,2002,12:27-28
    [30]周长彧.基于单片机的多功能温度检测系统的设计与研究:[硕士论文].吉林:吉林大学图书馆,2008
    [31]张扬.横流CO2激光器集成控制系统研究:[硕士论文].武汉:华中科技大学图书馆,2007
    [32] Zhao Futao, Du Wei, Xu Yiheng, Hu Zhiren. Programmable Logic Controller Applied in Steam Generators Water Levels. IEEE Proceedings, 1996. 1551~1556
    [33]柳娟,彭浩,李家镕.激光器真空检测及工作气压控制智能化的研究.激光杂志, 2004, 25(2): 10~11
    [34]李得天,陈旭等,中国真空计量发展概述.真空与低温,2004,10(1):6~7
    [35]李早平.新型规管复合式宽量程真空计的研制:[硕士论文].武汉:华中科技大学图书馆,2007
    [36]张兴奎.激光功率检测技术研究: [硕士论文].长春:长春理工大学图书馆,2008
    [37]柳娟,贺昌玉,李佳俊.大功率CO2激光器尾镜取样功率测控的研究.激光技术,2003,27(6):588~590
    [38]彭登峰.高功率CO2激光器功率实时检测与控制:[硕士论文].武汉:华中科技大学图书馆,2006
    [39]康序.高功率轴快流CO2激光器功率监控系统的设计:[硕士论文].武汉:华中科技大学图书馆,2008
    [40] Choi I H , Wise K D . A silicon-thermopile based infrared sensingarray for useinautomated manufacturing.IEEE Transaction on Electron Devices,1986,Ed-33(1):72~79.
    [41] A.W.Van Herwaarden , D.C.Van Duyn , B.W.Van Oudheusden et al.IntegratedThermopile Sensors.Sensors and Actuators,A:Physical,1990,22(1-3):621~630
    [42]刘晓芳.射频功率测量方法研究与电路设计:[硕士论文].郑州:郑州大学图书馆,2007
    [43] S. Messaoud, Guo Zhenhua, Xu Desheng. RF激励CO2激光器功率控制器.激光技术, 1999, 23 (3): 156 ~ 158
    [44]刘继舒.射频CO2激光器电源和控制技术研究及实践:[硕士论文].武汉:华中科技大学图书馆,2009
    [45]沙占友,薛树琦,安国臣.射频功率测量技术及其应用.电测与仪表,2005,42(8):9~11
    [46]曹乃胜.用于高功率微波测量的孔耦合定向耦合器研究与设计:[硕士论文].西安:电子科技大学图书馆,2007
    [47]张承云.一种大功率定向耦合器的设计.通信与广播电视,2008,4,5~9
    [48]陈邦媛.射频通信电路.(第二版).科学出版社.2006.199~229
    [49]顾晓明.功率计与微波功率的测量[J].电子技术.2004.01:14-16
    [50] Introduction to Power, History, Definitions, International Standards & Traceability [R].Fundamentals of RF and Microwave Power Measurements. Agilent Technology Inc.2004
    [51]赵昕,刘洪涛.高线性模拟光耦HCNR201原理及其在检测电路中的应用.国外电子元器件, 2003, (2): 24~25
    [52]崔坚.西门了S7可编程序控制器-STEP7编程指南.机械工业出版社,2007:48~80
    [53] Siemens AG. Configuring Hardware and Communication Connections STEP-7 V5.2 Manual,2002:25~75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700