高功率板条波导CO_2激光器电极结构分析与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文旨在设计高功率板条波导CO_2激光器放电电极结构及其水冷装置。以面积放大理论为基础,确定板条电极的尺寸,设计符合要求的稳定的板条电极结构。根据传热学相关原理分析放电区气体的温度分布,计算热交换系统的相关参数,设计合理有效的电极水冷系统。在以下方面做了深入的研究。
     (1)以国内外射频激励CO_2激光器的研究成果为例,比较了平板波导结构、波导阵列结构的优缺点。平板结构以结构简单、易于实现等特点,在高功率板条波导激光器中得到了广泛的应用,但随着激光功率的提高,其器件结构紧凑性受到了限制。
     (2)推导了平板波导结构的面积放大理论,在确定的温度分布、气体配比条件下,计算了激光器的单位面积输出功率。
     (3)根据相关的放电理论和面积放大理论确定了放电极间距和放电极板的面积,并设计了一个由四块铝金属电极组成的放电增益结构,此结构简单、稳定、易于实现。为了在上下极板之间得到均匀放电电压,在上下极板之间并联一组谐振电感,可将电压波动范围控制在确定的范围内,并联电感的数目和大小与电压波动的范围、电极长度、激励频率和激光头阻抗相关。
     (4)分析了放电气体温度对激光器的影响及放电区的温度分布,建立了冷却系统的热平衡方程,对冷却系统的换热进行了计算,得出了水流道的流量,管径,管流压差等参数值。在此基础上设计了上下电极的水冷结构。
     通过对高功率板条波导CO_2激光器放电电极结构及其水冷结构的研究,为开发实用的高功率板条CO_2激光器提供了有益的技术探索。
The thesis aims to design the electrode structure and its water cooling system of high power slab waveguide CO_2 laser. The size of the discharging electrodes is chosen based on“Power scaling of Large-area”theory. According to the related theory of heat transfer, electrodes structure is designed to meet the requirement, temperature distribution of gas in discharge area is analyzed, the correlated parameters of the heat exchange system are calculated, reasonable and effective water electrode cooling system is designed. Further researches are as following:
     (1) Advantages and disadvantages of the plate structure and waveguide array structure are compared On the basis of research results of RF excited slab CO_2 laser at home and abroad. Plate structure is simple and can be realized easily, so it is used widely in slab waveguide CO_2 laser. But the compaction of the laser devices is limited when increases output power.
     (2) The“Power scaling large-area”theory was deducted. At determined gas temperature profile and mixing proportion, the calculating result of ratio out power is present.
     (3) According to the relevant discharging theory and Power scaling large-area theory, the size of the discharging electrodes space and area is chosen, and a rectangular discharging gain structure that is composed of four Al electrodes is designed. In order to obtain uniform discharging voltage distribution, a group of resonant inductors between top and low electrodes are connected. It can restrict the voltage in the certain range. The number and value of the shunt inductor are related with voltage fluctuation range, electrode length, excited frequency and impedance of laser head.
     (4) Influence of Gas temperature on the laser and gas temperature distribution are analyzed. The equations of heat balance within the cooling system are established, calculation of heat exchanging are done. Parameter values of water flow rate, pipe diameter, pipe pressure difference are obtained. On the basis of that, the water cooling system of electrodes is designed.
     According to the research of electrode structure and its water cooling system for high power slab waveguide CO_2 laser, provides useful technical exploration for developing practical high power slab waveguide CO_2 laser.
引文
[1] J. L. Lachamer. J Mackariane, G. Otis et al. A Transverse RF Discharge Waveguide Laser, Appl. Phys. Lett., 1978, 32(10): 652~653
    [2]辛建国.我国研制成功新型射频激励扩散冷却千瓦级CO2激光.中国科学基金, 1998, 21(5): 371~376
    [3]辛建国,方高瞻,彭雪云等.射频激励扩散冷却层叠式板条波导千瓦CO2激光器.光学学报, 1996, 16(6): 877~880
    [4] K. M. Abramski, A. D. Colley, H. J. Baker. Power Scaling of Large–Area Transverse Radio Frequency Discharge CO2 Laser. Appl. Phys. Lett., 1989, 54(19): 1833~1835
    [5]辛建国,魏光辉.射频横向激励扩散冷却CO2激光器技术的进展和前景.中国激光, 1994, 21(5): 371~376
    [6]王润文,王福敦,林英仪等.百瓦级板状扩散冷却型CO2激光器研制成功.光学学报, 1999, 19(2): 232~233
    [7] Guo Zhenhuaa, S. Messaoud, GE Xinc et al. RF-Excited CO2 Laser with IR-Optical Fiber. SPIE, 1999, 3862: 183~186
    [8]徐啟阳,宋一新,王新兵等.面积放大型扩散冷却CO2激光器的发展概况.激光与光电子学进展, 1995, 1(2): 1~5
    [9] D. G. Youmans. Phase Locking of Adjacent Channel Leaky Waveguide CO2 Lasers. Appl. Phys. Lett., 1984, 44(4): 365~367
    [10]王新兵.波导阵列CO2激光器的研究进展.激光杂志, 2002, 23(1): 5~7
    [11]辛建国,魏光辉.射频激励扩散冷却阵列波导CO2激光器技术.激光与红外,1994,24(1): 18~22
    [12] L. A. Newman. High Power Coupled CO2 Waveguide Array. Appl. Phys. Lett., 1986, 48(25): 1701~1703
    [13] R. A. Hart, L. A. Newman, A. J. Cantor et al. Staggered Hallow Bore CO2 Waveguide Laser Array. Appl. Phys. Lett., 1987, 51(14): 1057~1059
    [14] K. M. Abramski, A. D. Colley, H. J. Baker. Phase-Locked CO2 Laser Array Using Diagonal Coupling of Waveguide Channels. Appl. Phys. Lett., 1992, 60(5): 530~532
    [15] Y. F. Zhang, W. B. Bridges. Transverse Mode Controland Switching in Gas Laser Arrays. IEEE J. Quantum Electronics, 1994, 30(2): 284~294
    [16] G. L. Bourdent, G. M. Mullot, J. Y. Vinet. Linear Array of Self-Focusing CO2 Waveguide Lasers. IEEE J. Quantum Electronics, 1990, 26(4): 701~709
    [17] G. L. Bourdent, Y. B. Andre, R. A. Muller et al. 100W RF Excited Phased Array of Self-Focusing Waveguide CO2 Lasers. Proceedings of Laser 87, 1987, 26 (4): 443~ 446
    [18] K. M. Abramski, A. D. Colley, H. J. Baker et al. High Power Two-Dimensional Waveguide CO2 Laser Arrays. IEEE J. Quantum Electronics, 1996, 32(2): 340~349
    [19] E. F. Yelden, H. J. Seguin, C. E. Capjack et al. Multichannel Slab Discharge for CO2 Laser Excitation. Appl. Phys. Lett., 1991, 58(7) : 693 ~ 695
    [20] A. Lapuccl, G. Cangioli. Triple Slab Radio–Frequency Discharged CO2 Laser. Appl. Phys. Lett., 1993, 62(1): 7~9
    [21]周双全,王智勇,辛建国.射频激励层叠式波导CO2激光器.光学学报, 1996, 16(2): 240~243
    [22]贾力,方肇洪,钱兴华.高等传热学.北京:高等教育出版社, 2003. 60~70
    [23]徐啟阳,王新兵著.高功率连续CO2激光器.北京:国防工业出版社, 2000. 147 ~157
    [24] M. P. Vaisfeld, Y. E. Polskil. Thermal Region in a Coaxial Low Pressure CO2 Laser. Sov. J. Quantum Electron, 1981, 11(10): 1360~1363
    [25] Y. P. Raizer, M. N. Schneider, N. A. Yatsenko. Radio-Frequency Capacitive Discharge. CRC Press, 1997. 105~120
    [26] V. I. Myshenkov, N. A. Yatsenko. Prospects for Using High-Frequency Capacitive Discharge in Laser. Sov. J. Quantum Electron, 1981, 11(10): 1297~1301
    [27]李贵安,宋建平,张相臣等.射频激励平板CO2激光器放电机理的理论研究.激光杂志, 2002, 23(6): 16~17
    [28]刘玉华,唐令西,阮双琛.影响RF激励CO2波导激光器高效运转的因素.激光与红外, 1999, 29(3): 157~160
    [29] A. I. Dutov, A. A. Kuleshov, S. A. Motovilov. High-Power High Optical Quality RF-Excited Slab CO2-lasers. SPIE, 2000, 4351: 105~109
    [30]王新兵,徐啟阳.平板波导谐振腔的耦合损失与模式特征.光学学报, 1995, 15(11): 1515~1519
    [31]辛建国,邬江兴,张志远等.射频激励扩散冷却千瓦级CO2激光器.中国,实用新型专利, 01226571.3, 2001. 1~17
    [32]胡志强.气体电子学.北京:电子工业出版社, 1985. 62~66
    [33]丘军林,程祖海.工业激光技术.武汉:华中科技大学出版社, 2002. 184~190
    [34]朱钧,杨风雷,范希智等.射频激励CO2波导激光器的放电技术.真空科学与技术, 2000, 20(7): 290~292
    [35]郭振华,黄松压,王又青.减小RF激光器纵向电压波动的方法.激光技术, 1994, 18(6): 322~324
    [36]苏红新,高允贵.射频板条CO2激光器并联谐振技术的研究.量子电子学报, 1998, 15(5): 465~469
    [37] G.贝克菲著.激光等离子体.庄国良,诸成译.上海:上海科技出版社, 1981. 150~170
    [38]李适民,黄维玲.激光器件原理与设计. (第二版).北京:国防工业出版社, 2005. 71~85
    [39]戴锅生.传热学. (第二版).北京:高等教育出版社, 1999. 5~20
    [40]王新兵.高频放电激励平板波导CO2激光器: [博士论文].武汉:华中科技大学图书馆, 1997
    [41]龚威,李再光.多通道CO2激光器工作条件与电极尺寸确定.华中理工大学学报, 1997, 27(6): 35~37
    [42]陆培华,王润文.高功率CO2激光器热平衡分析及热交换器换热计算.中国激光,2001, 28(9): 775~778
    [43]杨卫红.新型5kW横流CO2激光器气体流动特性研究: [硕士论文].武汉:华中科技大学图书馆, 2007
    [44]辛建国,臧二军,魏光辉等.射频放电双电极直连式水冷装置.中国,发明专利, 91102076.4, 1991. 1~8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700