高场不对称波形离子迁移谱技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高场不对称波形离子迁移谱(FAIMS)作为一种广谱分析技术,具有检测速度快、灵敏度高、易于微型化等特点,在环境监测、毒品、爆炸物、化学战剂、蛋白质检测等领域具有广阔的应用前景。其工作原理为利用离子在高电场中的迁移率的非线性变化实现离子的分离。每种离子由于质量、截面积等固有参数的区别使得它们在高电场中具有不同的迁移率变化趋势,当控制离子所处的电场条件发生变化时,可使得不同的离子通过电场区域,实现离子的选择性分离。
     离子在电场中的运动行为受到多种因素的影响,这也使得电场中离子运动的分析更加复杂。目前国内外对高电场中离子扩散、载气流速分布对离子运动行为的影响进行了大量的研究,取得了一定的研究成果。但缺少补偿电场波形及周期、致偏电压对离子运动的影响的分析和研究,而这两个因素对FAIMS灵敏度和分辨率均产生一定的影响。FAIMS迁移管中迁移区与检测区的距离小,且迁移区施加有高频高压电场,对检测区的干扰较大,给检测区的微弱电流信号检测带来了较大的困难。另外,在特定的射频电压条件下,两种物质的补偿电压可能会非常接近,为两者的分离和识别造成了困难。
     针对上述问题,本文从FAIMS关键性能指标及影响因素,迁移管芯片的设计制作与样机的研制,测控参数的影响,爆炸物、毒品及挥发酚的FAIMS检测实验等四个方面开展了FAIMS的研究。首先,在FAIMS关键性能指标及影响因素方面,分别考虑离子扩散、载气流速分布、补偿电场周期及波形对离子在迁移区中的通过率,致偏电压对检测区左端离子到达检测电极比例的影响,得到了FAIMS的灵敏度与载气流速、射频电压幅值等影响参数的关系模型;分析了离子扩散作用、载气流速分布、补偿电场周期对迁移谱谱峰半峰宽的影响,得到了半峰宽的数学模型,并依据分辨率的定义建立了FAIMS的分辨率与载气流速等影响参数的关系模型。随后,在迁移管芯片的设计方而,为了降低迁移区电极对检测区电极的电场干扰,提出了带有主屏蔽电极和辅助屏蔽电极的迁移管结构,并依据仿真结果对相应的尺寸进行了优化,设计了迁移管的MEMS制作工艺,并针对硼硅玻璃材料高温条件下存在漏电流的问题,设计了基于厚膜技术的迁移管制作方法。设计了FAIMS的测控系统以使得仪器的主要参数能够被精确控制。在测控参数的影响方面,分析研究了载气流速、射频电压幅值、致偏电压三个重要参数对FAIMS性能的影响,实验结果验证了所建立的理论模型,并结合实验结果对上述几个关键测控参数进行了优化,使得仪器工作在一个最佳的综合性能。最后,在爆炸物、毒品及挥发酚的FAIMS检测实验方而,对TNT、海洛因及五种最为常见的挥发酚进行了FAIMS检测实验,获得了样品的迁移谱图,针对特定射频电压幅值条件下两种物质的补偿电压有可能相近的问题,提出以射频电压和补偿电压为参量的二维谱图数据库方法,提高了仪器检测的准确性。
     本文以FAIMS的检测关键性能指标与影响因素的关系模型和关键测控参数的优化为研究重点,主要的创新点体现在以下几个方面:
     1.首次研究了致偏电压对FAIMS灵敏度、补偿电场波形对灵敏度和分辨率的影响,建立了灵敏度、分辨率与致偏电压、补偿电压波形等参数之间关系的理论模型,为致偏电压等测控参数的优化提供了理论基础。
     2.针对迁移管中迁移区与检测区存在较强电场干扰以致FAIMS检测限无法进一步降低的问题,提出了带有辅助屏蔽电极和主屏蔽电极的迁移管结构,仿真结果显示,施加屏蔽电极后迁移区对检测区的电场干扰强度降低为末施加时的0.32‰,满足了FAIMS的低检测限应用需求。
     3.针对高温工作时作为迁移管基片的硼硅玻璃材料存在漏电流不利于仪器的快速检测的问题,首次提出了基于厚膜技术的迁移管芯片制作方法。实验结果显示,厚膜工艺制作的迁移管在高温下的漏电流儿乎可以忽略不计,使得FAIMS高温条件的实时快速检测成为可能。
     4.针对特定射频电场条件下两种物质补偿电压接近时不利于两者分离的问题,基于补偿电压为射频电压幅值的非线性函数的性质,提出了以补偿电压和射频电压幅值作为二维参量的二维高场不对称波形离子迁移谱数据库的方法,提高了样品检测的准确性。
High-field asymmetric waveform ion mobility spectrometry(FAIMS) is a broad spectrum analysis technology which has the advantages of high speed, high sensitivity, easy miniaturization, etc. FAIMS technology has broad application prospect in many fields such as environmental monitoring, drugs and explosives detection etc. Ion mobility has different variation in high strength electric fields for the difference between their natural parameters, and the non-linear dependence of mobility values on high strength electric fields can be used for ions identification. Ions can be separated and only one specific type of ions pass through the filter region in the suitable electric fields.
     Ion movement in the electric field is affected by many factors which results in the high complexities of the movement. Recently, the research of the dependence of ion movement on ion diffusion and carrier gas velocity distribution in high strength electric field has achieved preliminary results. However, there is little work on the effect of compensating voltage waveform and deflecting voltage intensity which affect the sensitivity and resolving power of FAIMS. In FAIMS tube, the distance between filter region and detection region is small and RF electric field with high frequency and high strength is applied to the filter electrodes, which leads to the strong electric field interference in detection region and brings difficulty to the detection of weak current signal. Moreover, in specific RF electric field, the compensating voltages of two kinds of ions may be close to each other and it is difficult to separate and identify them.
     Considering the problems aforementioned, the paper is focused on four parts to study the FAIMS:key performance index and influence factor, drift tube and FAIMS prototype design, effect of control parameters, experiment of explosives, drugs and volatile phenolic compounds. At first, about the FAIMS key performance index and influence factor, two effects:one is the effect of ion diffusion, carrier gas velocity distribution, compensating voltage waveform on ion transmission rate in filter region, the other is the effect of deflecting voltage on the ion transmission in the detection region, are considered to present the relational model between FAIMS sensitivity and influence factors which contains of carrier gas flow rate, RF voltage magnitude, etc. The model of full-width-at-half-maximum(FWHM) and resolving power is presented after analyzing the effect of ion diffusion, carrier gas velocity distribution, compensating voltage waveform. Then, about the design of drift tube and FAIMS prototype, the drift tube containing of main and assistant shielding electrodes is designed to reduce the electric field interference between filter region and detection region, and the dimensions of the electrodes are optimized according to the simulation results. The drift tube manufacture processes based on the MEMS technology are proposed, and the processes based on thick-film technology are also proposed to avoid leakage current in borosilicate glass at high temperature. The control system of FAIMS is designed for the accuracy control of parameters. Then, about the effect of control parameters, the effect of carrier gas flow rate, RF voltage magnitude, deflecting voltage on FAIMS performance is tested and the proposed performance models are verified experimentally, then the three parameters are optimized according to the experiment results. Finally, the experiments of TNT, herion and five volatile phenolic compounds are carried out and the spectrometry of them is obtained. Considering the compensating voltage(CV) values of two kinds of ions may be close to each other in specific RF voltage, the method of 2-D spectrometry which is obtained by sweeping CV under different RF voltage values is proposed, which increases the detection accuracy.
     Here, we focused on the control parameters optimization and the relational model between FAIMS performance and influence factors. The key original contributions in this paper can be summarized as follows:
     1. The effect of deflecting voltage waveform on FAIMS performance is analyzed for the first time, and the relational model between FAIMS sensitivity, resolving power and influence factors is proposed. Thus the theoretical foundation is laid to the optimization of the control parameters.
     2. The FAIMS drift tube is designed, in which there are two pairs of main and assistant shielding electrodes. The simulation results show that the electric field interference between filter region and detection region with shielding electrodes decreases to 0.32‰of that without shielding electrodes.
     3. The drift tube manufacture processes based on thick-film technology are proposed for the first time to avoid leakage current in borosilicate glass at high temperature. The experiment results show that the leakage current in drift tube manufactured by thick-film technology is very little, which is suitable for the fast real time detection at high temperature.
     4. Considering the CV values of two kinds of ions may be close to each other in specific RF electric field, the method of 2-D spectrometry which is obtained by sweeping CV under different RF voltage values is proposed, which increases the detection accuracy.
引文
Allen SK and Allen CW (1997). "Phenol Concentrations in Air and Rain Water Samples Collected near a Wood Preserving Facility." Bulletin of Environmental Contamination and Toxicology 59(5): 702-707.
    Barnett DA, Purves RW, et al. (2000). "Isotope separation using high-field asymmetric waveform ion mobility spectrometry." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 450(1):179-185.
    Borsdorf H, Schelhorn H, et al. (2000). "Corona discharge ion mobility spectrometry of aliphatic and aromatic hydrocarbons." Analytica Chimica Acta 403(1-2):235-242.
    Buryakov IA, Krylov EV, et al. (1991). "Separation of ions according to mobility in a strong AC electric field." Soviet Technical Physics LetterslSoviet Technical Physics Letters|Pis'ma v Zhurnal Tekhnicheskoi Fizika 17(6|vol.17, no.11-12):ISSN 0360-120X|0320-0108.
    Buryakov IA, Krylov EV, et al. (1993). "A new method of separation of multi-atomic ions by mobility at atmospheric pressure using a high-frequency amplitude-asymmetric strong electric field." International Journal of Mass Spectrometry and Ion Processes 128(3):143-148.
    Champarnaud E, Laures AMF, et al. (2009). "Trace level impurity method development with high-field asymmetric waveform ion mobility spectrometry:systematic study of factors affecting the performance." Rapid Communications in Mass Spectrometry 23(1):181-193.
    Cohen MJ and Karasek FW (1970). "Plasma chromatography-a new dimension for gas chromatography and mass spectrometry " Journal of Chromatographic Science 8(6):330-337.
    Cole KD, Pease Iii LF, et al. (2009). "Particle concentration measurement of virus samples using electrospray differential mobility analysis and quantitative amino acid analysis." Journal of Chromatography A 1216(30):5715-5722.
    Eiceman GA (2002). "Ion-mobility spectrometry as a fast monitor of chemical composition." Trends in Analytical Chemistry:TRAC 21(4):259.
    Eiceman GA (2005). Ion mobility spectrometry, second edition, Taylor& Francis.
    Eiceman GA, Krylov EV, et al. (2004). "Separation of Ions from Explosives in Differential Mobility Spectrometry by Vapor-Modified Drift Gas." Analytical Chemistry 76(17):4937-4944.
    Eiceman GA, Nazarov EG, et al. (1998). "Positive Reactant Ion Chemistry for Analytical, High Temperature Ion Mobility Spectrometry (IMS):Effects of Electric Field of the Drift Tube and Moisture, Temperature, and Flow of the Drift Gas." The International Journal for Ion Mobility Spectrometry 1(1):28-37.
    Eiceman GA, Tarassov A, et al. (2002). "GC-PFAIMS as Smart Smoke Alarm. Identification of Combustion Sources by Patterns of Retention Time and Compensation Voltage." The International Journal for Ion Mobility Spectrometry 5(3):71-75.
    Ells B, Barnett DA, et al. (2000). "Detection of nine chlorinated and brominated haloacetic acids at part-per-trillion levels using ESI-FAIMS-MS." Analytical Chemistry 72(19):4555-4559.
    Ells B, Barnett DA, et al. (2000). "Trace level determination of perchlorate in water matrices and human urine using ESI-FAIMS-MS." Journal of Environmental Monitoring 2(5):393-397.
    Fernandez J, Mora dl, et al. (2006). "The potential of differential mobility analysis coupled to MS for the study of very large singly and multiply charged proteins and protein complexes in the gas phase." Biotechnology Journal 1(9):988-997.
    Giles K, Pringle SD, et al. (2004). "Applications of a travelling wave-based radio-frequency-only stacked ring ion guide." Rapid Communications in Mass Spectrometry 18(20):2401-2414.
    Guevremont R (2004). "High-field asymmetric waveform ion mobility spectrometry (FAIMS)." Canadian Journal of Analytical Sciences and Spectroscopy 49(3):105-113.
    Guevremont R, Barnett DA, et al. (2000). "Analysis of a tryptic digest of pig hemoglobin using ESI-FAIMS-MS." Analytical Chemistry 72(19):4577-4584.
    Guevremont R, Barnett DA, et al. (2001). "Calculation of ion mobilities from electrospray ionization high-field asymmetric waveform ion mobility spectrometry mass spectrometry." The Journal of Chemical Physics 114(23):10270-10277.
    Guevremont R and Makowski B (2005). "Using FAIMS to increase selectivity for LC-MS analyses." American Laboratory 37(13):11-+.
    Guevremont R and Purves RW (1999). "Atmospheric pressure ion focusing in a high-field asymmetric waveform ion mobility spectrometer." Review of Scientific Instruments 70(2):1370-1383.
    http://www.ornl.gov/info/ornlreview/meas_tech/threat.htm.
    http://www.owlstonenanotech.com/.
    http://www.sionex.com/products/index.htm.
    http://www.thermo.com/com/cda/product/detail/11011965600.html.
    http://www.varianinc.com/.
    Jaber F, Schummer C, et al. (2007). "Solid-phase microextraction and gas chromatography-mass spectrometry for analysis of phenols and nitrophenols in rainwater, as their t-butyldimethylsilyl derivatives." Analytical and Bioanalytical Chemistry 387(7):2527-2535.
    KODO K, YUKI W, et al. (2003). "Component Spatial Pattern Analysis of Chemicals by Use of Terahertz Spectroscopic Imaging." Transactions of the Institute of Electrical Engineers of Japan 124(7):1339-1344.
    Krylov EV (2003). "Comparison of the planar and coaxial field asymmetrical waveform ion mobility spectrometer (FAIMS)." International Journal of Mass Spectrometry 225(1):39-51.
    Krylov EV, Coy SL, et al. (2009). "Temperature effects in differential mobility spectrometry." International Journal of Mass Spectrometry 279(2-3):119-125.
    Krylov EV, Nazarov EG, et al. (2007). "Differential mobility spectrometer:Model of operation." International Journal of Mass Spectrometry 266(1-3):76-85.
    la Grone M, Cumming C, et al. (2000). Detection of landmines by amplified fluorescence quenching of polymer films:a man-portable chemical sniffer for detection of ultra-trace concentrations of explosives emanating from landmines. Detection and Remediation Technologies for Mines and Mineliken Targets V, April 24,2000-April 28,2000, Orlando, FL, USA, Society of Photo-Optical Instrumentation Engineers.
    Lee D-S, Wu C, et al. (1998). "Detection of carbohydrates by electrospray ionization-ion mobility spectrometry following microbore high-performance liquid chromatography." Journal of Chromatography A 822(1):1-9.
    Liu K, Tang F, et al. (2009)."Negative Corona Discharge Ion Source Under Ambient Conditions with Mini Line-cylinder Electrodes." Chinese Journal of Chemical Physics.
    Mabrouki R, Kelly RT, et al. (2009). "Improving FAIMS Sensitivity Using a Planar Geometry with Slit Interfaces." Journal of the American Society for Mass Spectrometry 20(9):1768-1774.
    McCooeye M and Mester Z (2006). "Comparison of flow injection analysis electrospray mass spectrometry and tandem mass spectrometry and electrospray high-field asymmetric waveform ion mobility mass spectrometry and tandem mass spectrometry for the determination of underivatized amino acids." Rapid Communications in Mass Spectrometry 20(11):1801-1808.
    Merkulov A, Merkulova O, et al. (2004). "Accurate on-line depth calibration with a laser interferometer during SIMS profiling on the Cameca IMS WF instrument." Applied Surface Science 231-232:954-958.
    Michels A, Tombrink S, et al. (2007). "Spectroscopic characterization of a microplasma used as ionization source for ion mobility spectrometry." Spectrochimica Acta Part B:Atomic Spectroscop 62(11):1208-1215.
    Miller RA, Nazarov EG, et al. (2001). "A MEMS radio-frequency ion mobility spectrometer for chemical vapor detection." Sensors and Actuators A:Physical 91(3):301-312.
    Mora dl, Fernandez J, et al. (1998). "Differential mobility analysis of molecular ions and nanometer particles." TRAC Trends in Analytical Chemistry 17(6):328-339.
    Nazarov EG, Coy SL, et al. (2006). "Pressure Effects in Differential Mobility Spectrometry.' Analytical Chemistry 78(22):7697-7706.
    Nazarov EG, Miller RA, et al. (2001). "Effect of the electric field strength, drift gas flow rate, and temperature on RF IMS response." The International Journal for Ion Mobility Spectrometry 4(2): 43-46.
    O'Donnell RM, Sun X, et al. (2008). "Pharmaceutical applications of ion mobility spectrometry." TrAC Trends in Analytical Chemistry 27(1):44-53.
    Papanastasiou D, Wollnik H, et al. (2008). "Differential mobility separation of ions using a rectangular asymmetric waveform." Journal of Physical Chemistry A 112(16):3638-3645.
    Pershenkov VS, Tremasov AD, et al. (2006). "X-ray ion mobility spectrometer." Microelectronics and Reliability 46(2-4):641-644.
    Pervukhin V and Sheven D (2008). "Increasing the resolution of ion mobility increment spectrometers using the ripple voltage." Technical Physics Letters 34(11):977-980.
    Pervukhin VV and Sheven DG (2008). "Suppression of the effect of charge cloud in an ion mobility increment spectrometer to improve its sensitivity." Technical Physics 53(1):110-116.
    Pervukhin VV and Sheven DG (2010). "Ion Peak Narrowing by Applying Additional AC Voltage (Ripple Voltage) to FAIMS Extractor Electrode." Journal of the American Society for Mass Spectrometry 21(1):47-52.
    Prasad S, Tang K, et al. (2009). "Simulation of Ion Motion in FAIMS through Combined Use of SIMION and Modified SDS." Analytical Chemistry 81(21):8749-8757.
    Pringle SD, Giles K, et al. (2007). "An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument." International Journal of Mass Spectrometry 261(1):1-12.
    Purves RW, Guevremont R, et al. (1998). "Mass spectrometric characterization of a high-field asymmetric waveform ion mobility spectrometer." Review of Scientific Instruments 69(12): 4094-4105.
    Robinson EW, Shvartsburg AA, et al. (2008). "Control of ion distortion in field asymmetric waveform ion mobility spectrometry via variation of dispersion field and gas temperature." Analytical Chemistry 80(19):7508-7515.
    Sarrion MN, Santos FJ, et al. (2002). "Determination of chlorophenols by solid-phase microextraction and liquid chromatography with electrochemical detection." Journal of Chromatography A 947(2): 155-165.
    Shvartsburg AA and Smith RD (2007). "Scaling of the resolving power and sensitivity for planar FAIMS and mobility-based discrimination in flow-and field-driven analyzers." Journal of the American Society for Mass Spectrometry 18(9):1672-1681.
    Shvartsburg AA and Smith RD (2008). "Fundamentals of Traveling Wave Ion Mobility Spectrometry." Analytical Chemistry 80(24):9689-9699.
    Shvartsburg AA and Smith RD (2008). "Optimum Waveforms for Differential Ion Mobility Spectrometry (FAIMS)." Journal of the American Society for Mass Spectrometry 19(9):1286-1295.
    Shvartsburg AA, Tang K, et al. (2005). "Optimization of the design and operation of FAIMS analyzers." Journal of the American Society for Mass Spectrometry 16(1):2-12.
    Shvartsburg AA, Tang KQ, et al. (2004). "Modeling the resolution and sensitivity of FAIMS analyses." Journal of the American Society for Mass Spectrometry 15(10):1487-1498.
    Sielemann S, Baumbach JI, et al. (2000). "Quantitative analysis of benzene, toluene, and m-xylene with the use of a UV-ion mobility spectrometer." Field Analytical Chemistry& Technology 4(4): 157-169.
    Tabrizchi M (2004). "Temperature effects on resolution in ion mobility spectrometry." Talanta 62(1): 65-70.
    Vautz W, Sielemann S, et al. (2004). "Determination of terpenes in humid ambient air using ultraviolet ion mobility spectrometry." Analytica Chimica Acta 513(2):393-399.
    Veasey CA and Thomas CLP (2004). "Fast quantitative characterisation of differential mobility responses." The Analyst 129(3):198-204.
    Viitanen AK, Mattila T, et al. "Experimental study of the effect of temperature on ion cluster formation using ion mobility spectrometry." Atmospheric Research 90(2-4):115-124.
    Wu ST, Xia YQ, et al. (2007). "High-field asymmetric waveform ion mobility spectrometry coupled with liquid chromatography/electrospray ionization tandem mass spectrometry (LOESI-FAIMS-MSMS) multi-component bioanalytical method development, performance evaluation and demonstration of the constancy of the compensation voltage with change of mobile phase composition or flow rate." Rapid Communications in Mass Spectrometry 21(22):3667-3676.
    王志刚,熊继军,et al(2008).“高场非对称波形离子迁移谱仪的初步研究.”微纳电子技术 45(3):158-161.
    王越and田薇(1999).”高效液相色谱法对吗啡,杜冷丁,安定的同步测定.”色谱 17(4):399-400.
    王晓浩,唐飞,et al.(2009).一种阵列式微法拉第筒.
    李芳,邵士勇,et al.(2008).“紫外离子迁移谱在线监测芳香族化合物.”分析化堂36(3):361-364.
    杜黎明and许庆琴(1999).”鸦片的气相色谱快速分析.”分析科学堂报15(4):312-314.
    杜庆华(1994).工程力学手册,高等教育出版社.
    和江明and龚光林(1998).”海洛因及其常见可疑物的光谱鉴别."云南大学学报:自然科学版20(1):80-80.
    盂品佳and孙毓庆(1999).”常见毒品的毛细管电泳分析."分析测试学报18(1):17-20.
    邵士勇,李芳,et al.(2007)."光电离/离子迁移谱技术研究."大气与环境光学学报 2(1):68-72.
    胡绪洲,杨爱明,et al.(1998)."海洛因的傅里叶红外吸收谱."光学学报 18(8):1064-1067.
    胡绪洲and阚家德(1999)."海洛因的x射线衍射谱."光谱学与光谱分析19(3):434-436.
    高磊(2007)).高场不对称波形离子迁移谱仪(FAIMS)关键技术初步研究.
    高磊,熊继军,et al.(2008))."高场不对称波形离子迁移谱技术实验研究."传感器世界 14(4):11-13.
    郭岩and陆妙琴(1997)."几种挥发性有机酚的离子淌度谱研究."分析化学25(8):951-954.
    陶晓红,胡艳峰,et al.(2009)."分光光度法测定水中挥发酚的一些问题及处理方法研究."内蒙古石油化工(18).
    彭亦如and林昌铨(2003))."免疫分析法在毒品检测中的应用."引进与咨询 (3):39-41.
    彭亦如,张绍雨,et al.(2003))."毒品分析研究进展."福建公安高等专科学校学报:社公共安全研究17(2):65-66.
    张新花,戴群妹,et al.(2009)."流动注射比色分析法在线蒸馏并测定挥发酚."上海水务(4).
    张东风,孔德义,et al.(2006)."离了迁移谱仪微型化的现状与进展."仪器仪表学丝27(2):199-204.
    时迎国(2006).VUV电离离子迁移谱技术在VOCs测量中的应用.
    时迎国,杜明娟,et al.(2008)."同轴型非对称场离子迁移谱仪分离与聚焦原理的数学模型."分析仪器 (1):49-53.
    时迎国,劭士勇,et al.(2006)."迁移管的电场强度对真空紫外电离-离子迁移谱仪性能的影响."分析化学 34(9):1353-1356.
    杨津基(1983).气体放电.北京,科学出版社.
    环境保护部(2009).中华人民共和国国家环境保护标准.’
    纪军,张彦,et a1.(2005)."新型不对称场离子迁移谱检测技术及其应用."现代科学仪器 (3):9-12.
    许峰,工海龙,et al.(2005)."离子迁移谱研究进展."化堂进展17(3):514-522.
    贾建(2006)."漂移管工作温度对离子迁移率谱的影响."分析化学34(12).
    贾燕(2007).用神经网络识别毒品和抗生素的太赫兹光谱.
    赵金涛and路帆(1999)."显微拉曼技术对毒品检测分析的研究."光谱学与光谱分析19(6):837-840.
    赵霞,王俭,et al.(2004)."毛细管电泳在毒品检验中的应用."刑事技术 (2):28-32.
    车宗伶(1997)."质谱法测定冰毒."分析测试学报16(4):45-46.
    陈天志,唐飞,et al.(2008)."Faims离子检测用高场非对称波电源设计."科学技术与工程 8(13):3470-3473.
    齐占虎(2009)."土壤中挥发酚的测定."河北化工32(9).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700