大功率射频CO_2激光器激励特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
射频激励大功率CO_2激光器是目前国际上大功率激光切割或焊接应用的主力光源及重要发展方向。本文系统地理论分析及试验研究了大功率射频激励CO_2激光器的激励电源、射频传输、射频气体放电等离子体、气体放电均匀性以及射频功率调制特性。论文主要研究工作如下。
     (1)分析设计了30kW自激式射频激光电源。选择RS3041CJ电子管组成电容三点式谐振电路,分析了电子管的静态和动态工作参数;计算了屏极谐振槽路和栅极反馈回路的元件参数;建立了电子管振荡放大电路的仿真模型。仿真结果表明,该电源电路可以获得功率为30kW、频率为83MHz的射频功率输出。
     (2)提出了大面积射频板条放电的二维电压分布理论模型。计算分析了40mm×500mm电极在2kW注入功率下,和200mm×1000mm电极在30kW注入功率下的二维电压分布函数曲线,其二维电压波动最大值分别为25%和65%;提出了一种在纵向采用并联谐振电感、横向采用终端并联电抗元件的理论模型,以解决放电电压二维分布不均匀性。
     (3)建立了维持气体均匀放电的二维均压理论模型并验证了射频激励气体放电均匀性。当纵向射频馈入为中间馈入、横向分别采用中间馈入和电极侧面馈入时,分别采用电极侧面对称和不对称并联电感,以获得电压分布均匀。对于40mm×500mm电极和200mm×1000mm电极,当采用中间馈入和电极侧面馈入时,前者可分别获得波动小于1.5%的和2%的二维电压分布;后者可分别获得波动小于2.5%和3%二维电压分布。实验研究了气体放电辉光强度随注入功率和气压的变化规律,发现均压电感分布对气体放电均匀性的影响规律与理论模型基本一致。
     (4)研究了射频电源传输及负载匹配特性。分析计算了40mm×500mm电极和200mm×1000mm电极的放电气体等效阻抗及射频传输匹配网络;采用Π型和L型匹配,利用Smith圆图法,推导出负载变化时匹配网络参数的变化规律,得出了最佳匹配网络类型和元件选择;并通过自适应匹配调节装置,保持驻波比小于1.2。
     (5)试验研究了射频板条激光器的功率调制与控制特性。分析了激光器的点火、维持、连续、脉冲等调制脉冲参数;开发了DSP脉宽调制器硬件电路及相关软件,获得了符合大功率射频激光器功率控制及脉冲调制特性要求的波形输出。
     (6)研究了大功率射频注入功率对光腔镜片热变形、激光光束输出畸变的影响关系。利用有限元分析法对光腔反射镜的热变形和温度分布进行仿真,建立了射频注入功率变化与镜片同步加热补偿的关系曲线,获得了反射镜曲率形变小于0.02%的热补偿效果。
     论文研究工作对于攻克大功率射频激励CO_2气体激光器关键技术,促进我国装备制造业急需的大功率激光器的不断发展,具有较为重要的理论意义和实用价值。
Radio-frequency (RF) excited high power CO_2 laser is the main light source and shows an important trend for the high power laser welding and cutting equipment in the world nowadays. In the thesis, systematically theoreticl analysis and experimental researches were done on the aspect of the exciting power supply, RF transmission, RF excited gas discharge plasma, uniformity of RF excited gas discharge and characteristics of RF power modulation of high power RF excited CO2 laser. The main research contents of the thesis are as flows:
     (1) The 30kW self resonant oscillated RF power supply was analysed and designed. The oscillating circuit with three-point capacitance was designed based on the RS3041 RF vacuum tube. The static and dynamic parameters were analysed. The component parameters of the anode resonant circuit and the grid feedback circuit were calculated. And the simulation model of the RF vacuum tube oscillating and amplifying circuit was established. The simulation result showed that 30kW output power with 83MHz RF output can be obtained by the power supply circuit.
     (2) A 2-dimensional theory model of voltage distribution for large area RF-excited slab discharge was presented. The 2-D function curves of voltage distribution based on 40mmx500mm electrodes at 2kW input RF power and 200mm×1000mm electrode at 30kW input RF power were calculated. The result showed that the maximum voltage fluctuations were 25% and 65% respectively. Further more, in order to resolve the nonuniformity of the 2-D voltage distribution, a theory model of installing parallel resonant inductors in the longitudinal direction and reactance components in the transverse direction was presented.
     (3) Theory model of making the 2-D votage distribution of the large area gas discharge uniform was established and experiments were done to verify the uniformity of RF excited gas discharge. When RF energy was injected at the middle in the longitudinal direction, and at the middle or the side in the transverse direction, uniform voltage distribution was obtained by using symmetricl or asymmetricl parallel inductors on the two sides of the transverse direction. For the electrodes of 40mm×500mm and 200mm×1000mm, when the middle feed point and side feed point were adopted respectively on the transvers direction, the voltage fluctuations of the former were 1.5% and 2% respectively, and the voltage fluctuation of the latter were 2.5% and 3% respectively. Experiments were done to study on how the intensity of the glow discharges varying with the input RF power or the gas pressure. And the influence of the parallel inductors on the uniformity of the gas discharge was found to accord with the theory model.
     (4) Transmission of the RF power and impedance matching characteristics of the load were studied. Equivalent impedance of gas discharge on electrodes of 40mm×500mm and 200mm×1000mm, and RF transmission impedance matching network were ananysed and calculated. WhenΠ-shaped or L-shaped matching network was adopted, the variation rules of the parameters of the impedance matching network with the load were deduced by using the Smith circle-diagram method. The best matching network type and parameters of the components were determined. And the voltage standing wave ratio is controlled within 1.2 by using a self-adaptive adjusting installation.
     (5) The power modulation characteristics of the RF slab laser were studied. Parameters of the modulation pulse on ignition, maintenance, continuous mode and pulse mode were analysed. The output waveform according to the requirement of high power RF laser was obtained by developing the hardware circuit and software program of the DSP pulse width modulator.
     (6) Influence relation between the distortion of the resonator mirror and the output laser beam with the change of the input RF power was studied. Relation curve of the synchronously heating compensation for the mirror with the variation of the input RF power was established by simulating and analyzing the temperature distribution and distortion of the reflecting mirror using the method of finite element analysis. And compensation result of the curvature rate distortion less than 0.02% of the reflecting mirror was obtained.
     The research contents of the thesis has important theoretical significance and practical value to conquer the key technology of the RF excited high power CO_2 laser and to meet the urgent need for the development of the high power laser on equipment manufacturing industry in our country.
引文
[1]唐霞辉.高功率横流CO_2激光器及其应用.华中科技大学出版社,2008.23-26
    [2]王吉,林辉.CO_2气体激光器的激励技术及其发展趋势.中国仪器仪表,2005(8):42-45
    [3]W.Schock,T.h.Hall,E.Wildermuth.Compact transverse flow CO_2 laser with RF excitation.SPIE,1998,1031:76-81
    [4]Dunham Greg.Sealed carbon dioxide lasers enter the high-power arena.Laser Focus World,1999(3):104-106
    [5]A.I.Dutov,I.Yu.Evstratov,A.A.Kuleshov,S.A.Motovilov,N.A.Novoselov,V.E.Semenov,P.E.Smirnov,A.A.Sokolov,M.S.Yur'ev.Slab waveguide high-power pulsed CO_2-laser.Proc.SPIE,1998,3574(17):1-178
    [6]A.D.Colley,F.Villareal,A.A.Cameron,P.P.VitrUk,H.J.Baker,D.R.Hall.High Power CW Molecular Lasers Using Narrow Gap Slab Waveguides.in:Gas Lasers-Resent Developments and Future Prospects,W.J.Witteman and V.N.Ochkin,Eds.Kiuwer Academic Publishers,1996
    [7]A.D.Colley,H.J.Baker,D.R.Hall.Planar waveguide,1 kW cw carbon dioxide laser excited by a single transverse RF discharge.Appl.Phys.Lett.,1992,61(2):136-139
    [8]A.I.Dutov,A.A.Kuleshov,V.N.Sokolov.Slab waveguide RF-excited CO_2 laser for material processing.Proc.SPJE,1995,2713:51-57
    [9]王吉.全金属环波导CO_2激光器射频电源的研究与实践.华中科技大学硕士学位论文,2005
    [10]B.I.llukhin,Y.B.Udalov,I.V.Koehetov,V.N.Oehkin,M.B.Heeman-Ilieva,P.J.M.Peters,W.J.Witteman.Theoretical and experimental investigation of a waveguide CO_2 laser with radio-frequency excitation.Appl.Phys.B,1996,62,113-127
    [11]P.P.Vitruk,H.J.Baker,D.R.Hall.The characteristics and stability of high power transverse radio frequency discharges for waveguide CO_2 slab laser excitation.J.Phys.D:Appl.Phys.,1992,25:1767-1776
    [12]朱钧,杨风雷,范希智等.环射频激励CO_2波导激光器的放电技术.真空科学与技术,2000,20(4):290-292
    [13]R.Nowack,H.Opower,U.Schaefer,K.Wessel,T.h.Hall.High Power CO_2Waveguide Laser of the 1 kW Category.SPIE,1990,1276:18-28
    [14]A.D.Colley,H.J.Baker,D.R.Hall.Planar waveguide,1 kW cw,carbon dioxide laser excited by a single transverse rf discharge.Appl.Phys.Lett.,1992,61(2):136-138
    [15]D.Efrlichmann,U.Habich U,H.D.Plum,et al.High power CO_2 laser with coaxial waveguide and diffufision cooling.IEEE J.Quant.Electron.,1993,29(7):2211-2219
    [16]S.Selleri,L.Vincetti,A.Cucinotta,M.Zoboli.Complex FEM modal solver of optical waveguides with PML boundary conditions.Opt Quantum Electron,2001,33:359-371
    [17]D.Efrlichmann,U.Habich,H.D.Plum,et al.Azimuthal mode discrim ination of annular resonators,1993,32(33):6582-6586
    [18]P.E.Jackson,H.J.Baker,D.R.Hall.CO_2 large-area discharge laser using an unstable-waveguide hybrid resonator.Appl.Phys.Lett.,1989,54(20):1950-1952
    [19]Kobayashi.S,Terai.K.1kW slab CO_2 Laser excited by a Self-excited RF Generator.GCL/HPL'96,Edinburgh U.K,August,1996.25-30
    [20]D.R.Hall,H.J.Baker,F.Villarreal.High power RF excited planar waveguide carbon dioxide lasers for microprocessing applications.Proceedings of SPIE,2003,5120:23-29
    [21]W.D.Bilida,H.J.J.Seguin,C.E.Capjack.Resonant cavity excitation system for radial array slab CO_2 lasers.J.Appl.Phys.,1995,78(7):4319-4322
    [22]A.I.Dutov,A.A.Kuleshov,S.A.Motovilov,N.A.Novoselov,N.L.Orlov,V.E.Semenov,A.A.Sokolov.High-power high optical quality RF-excited slab CO_2 lasers.Proc.SPIE,2000,4351:104-109
    [23]R.Abram,D.R.Hall.2-Didimensional Waveguide CO_2 laser Arrays and Beam Reforming.GCL/HPL'96,Edinburgh U.K,August,1996.25-30
    [24]A.I.Dutov,I.Yu.Evstratov,V.N.Ivanova,A.A.Kuleshov,S.A.Motovilov,N.A.Novoselov,V.E.Semenov,V.N.Sokolov,M.S.Yur'ev.Experimental investigation and numerical simulation of slab waveguide CO_2 laser with if pumping.Quantum Electronics,1996,26(6):484-488
    [25]E.F.Yelden,H.J.Seguin,C.E.Capjack et al.Phase-locking phenomena in a radial multislot CO_2 laser array.J.Opt.Soc.Am(B),1993,10(8):1475-1482
    [26]A.lapucci,G.Cangioli.Phase-locked operation of a compact three-slab-sections radiofrequency discharge CO_2 laser.IEEE.J.Quant Electron,1993,QE-29(12):2962-2971
    [27]D.Ehrlichmann,U.Habich,H.D.Plum et al.Annular resonators for diffusion cooled CO_2 lasers.CLEO'94 Amsterdam,Netherlands,August,1994.400-401
    [28]R.Nowack,H.Bochum.High Power Coaxial CO_2 waveguide laser.GCL/HPL'96,Edinburgh U.K,August,1996.25-30
    [29]曹锋光.中小功率射频激励CO_2激光器关键技术研究及实践.华中科技大学硕士学位论文,2005
    [30]苏红新,高允贵.射频板条CO_2激光器波导耦合损耗的理论研究.量子电子学报,2000,17(3):226-230
    [31]李贵安,宋建平,张相臣等.射频激励平板CO_2激光器放电机理的理论研究.激光杂志,2002,23(6):16-17
    [32]V.N.Ochkin,W.J.Witteman,B.I.Ilukhin,I.V.Koehetov,P.J.M.Peters,Y.B.Udalov,S.N.Tskhai.Influence of the electric field frequency on the performance of a RF excited CO_2 waveguide laser.Applied Physics B,1996,63:575-583
    [33]R.L.Sinclair,J.Tulip.Parameters Affecting the Performance of a RF excited CO_2Waveguide Laser.Appl.Phys.1984,56(9):2498-2501
    [34]刘玉华,唐令西,阮双琛.影响RF激励CO_2波导激光器高效运转的因素.激光与红外,1999,29(3):157-160
    [35]Peter P.Vitruk,H.J.Baker,D.R.Hall.Similarity and Scaling in Diffusion-Cooled RF-Excited Carbon Dioxide Lasers.IEEE Journal of Quantum Electronics,1994,7(30):1623-1634
    [36]E.F.Plinski,J.S.Witkowski,K.M.Abramski.Algorithm of RF-excited slabwaveguide laser design.J.Phys.D:Appl.Phys.,2000,33:1823-1826
    [37]Cheng Yuanying,Wang Youqing.Eigenvector method for optical field simulation.Optics Comm.,2004,234(1):1-6
    [38]E.F.Plinski,D.A.Wojaczek,J.S.Witkowski,K.M.Abramski.Spectral and thermodynamic effects in pulsed RF excited CO_2 slab-waveguide laser.Proc.SPIE,2005,5777:479-484
    [39]S.F.Helefert,R.Pregla.A finite difference beam progation algorithm based on generalized transmission line equations.Opt.Quantum Electron.,2000,32(6):681-690
    [40]J.S.Witkowski,E.F.Plinski,B.W.Majewski,K.M.Abramski.Spectral aspects of a CO_2 slab waveguide laser design.Proc.SPIE,2003,5120:202-205
    [41]S.J.Polychronopoulos,G.B.Athanasoulias,N.K.Uzunoglu.Advanced mode solver using an integral equation technique and entire domain plane wave basis functions.Opt Quantum Electron,1997,29:127-137
    [42]A.B.Manenkov,A.G.Rozhnev.Ptical dielectric waveguide analysis based on the modified finite element and integral equation methods.Opt Quantum Electron,1998,30:31-70
    [43]H.Bochum.Near-and far-field properties of annular CO_2 waveguide lasers.Appl.Opt.,1997,36(15):3349-3356
    [44]H.Zhao,H.J.Baker,D.R.Hall.Area scaling in slab if-excited carbon monoxide lasers.Appl.Phys.Lett.,1991,59(11):1281-1283
    [45]逮贵祯.射频电路的分析与设计(第一版).北京:北京广播学院出版社会,2003.112-121
    [46]谭明磊.高功率CO_2激光器射频电源分析和设计.华中科技大学硕士学位论文,2008
    [47]W.Marshall Leach,Jr.Spice Models for Vacuum-Tube Amplifiers J.Audio Eng.Soc.,1995,43(3):488-489
    [48]陈艳华,李朝晖,夏玮等.ADS-射频电路设计与仿真.北京:人民邮电出版社,2008.25-26
    [49]P.Vitruk,J.Schemmer,S.Byron.700 W diffusion cooled,large area,40.68 MHz excited CO_2-laser employing splitwave hybrid confocal resonator.Proc.SPIE,1998,3343:677-686
    [50]A.Lapucci,S.Mascalchi,R.Ringressi.Parameters Affecting the Power Distribution in the Radio Frequency Discharge of Large-Area Diffusion-Cooled CO_2 Lasers.IEEE Journal of Quantum Electronics,1998,34(4):616-621
    [51]Y.P.Raizer,M.N.Shneider.Radio-Frequency Capacitive Discharge in a Long Strip Line.IEEE Transactions on Plasma Science,1998,26(3):1017-1021
    [52]H.J.Baker.Direct measurement of the electrical impedance of narrow gap radio frequency gas discharges in the 100 MHz region.Meas.Sci.Technol.,1996,7:1631-1635
    [53]V.V.Azharonok,I.I.Filatova,V.D.Shimanovich.Some features of radio-frequency discharges in CO_2+N_2+He.Proceedings of SPIE,2000,4165:53-55
    [54]P.Vitruk,D.R.Hall,H.J.Baker.The characteristics and stability of high power transverse radio frequency discharges for waveguide CO_2 slab laser excitation.J.Phys.D:Appl.Phys.,1992,25:1767-1776
    [55]R.Wester.Frequency dependence of thermal volume instabilities in high-frequency CO_2 laser discharges.J.Appl.Phys.,1991,70(7):3449-3454
    [56]高允贵,吴春雷,姜云云等.射频板条CO_2激光器放电特性的数值研究.量子电子学,1999,16(4):329-337
    [57]J.D.Strohschein,W.D.Bilida,H.J.J.Seguin,C.E.Capjack.Enhancing discharge uniformity in a multi-kilowatt radio frequency excited CO_2 slab array.Appl.Phys.Lett.,1996,68(8):1043-1045
    [58]A.Lapucci,F.Rossetti,M.Ciofini,G.Orlando.On the Longitudinal Voltage Distribution in Radio-Frequency-Discharged CO_2 Lasers with Large-Area Electrodes.IEEE Journal of Quantum Electronics,1995,31(8):1537-1542
    [59]J.D.Strohschein,W.D.Bailida,H.J.J.Seguin,C.E.Capjack.Computational Model of Longitudinal Discharge Uniformitv in RF-Excited CO_2 Slab Lasers.IEEE Journal of Quantum Electronics,1996,32(8):1289-1298
    [60]A.I.Dutov,V.N.Ivanova,S.A.Motovilov et al.Computer simulation of RF-excited diffusion-cooled slab CO_2 laser.Proc.SPIE,1995,2713:58-66
    [61]苏红新,高允贵.射频板条CO_2激光器并联谐振技术的研究.量子电子学报,1998,15(5):465-469
    [62]黄建军,余建华,D.Teuner.射频放电激励激光器阻抗特性实验研究.激光杂志,2000,21(6):15-16
    [63]王又青,安承武,李再光.RF激励CO_2激光器中的阻抗匹配分析.中国激光,1997,24(3):202-208
    [64]王又青,吴龟灵,安承武等.高频气体激光器功率传输的匹配.激光杂志,1998,19(3):11-16
    [65]曹锋光,张德玲,王新兵等.射频电源中的阻抗匹配研究.应用激光,2005,25(2):101-102
    [66]陈声鸿,毛玉周,张刚等.射频激励CO_2激光器的阻抗匹配及调制的实验研究.中国激光,1997,24(9):787-792
    [67]王又青,安承武,陈清明.激励CO_2激光器功率传输中的阻抗匹配研究.兵工学 报,1998,19(1):51-55
    [68]曹锋光,王新兵,汪盛烈等.射频CO_2激光器实用功率控制器的设计.激光杂志,2004,25(4):20-21
    [69]K.M.Abramski,A.D.Colley,H.J.Baker.D.R.Hall.Power scaling of large-area transverse radio frequency discharge CO_2 lasers.Appl.Phys.Lett.,1989,54(19):1833-1835
    [70]R.T.Brown,L.A.Newman,M.W.Murray,and R.A.Hart.Large-Volume Pulsed RF-Excited Waveguide CO_2 Lasers.IEEE Journ.of Quant.Electronics,1992,28(2):404-407
    [71]A.I.Dutov,A.A.Kuleshov,N.A.Novoselov et al.Pulsed-repetitively slab waveguide RF-excited CO_2 laser.Proc.SPIE,1997,3092:260-264
    [72]D.A.Wojaczek,E.F.Plinski,L.Rosinski,R.Trawinski,A.B.Dobrucki.Pulsed injection of the feedback signal to a cw and pulsed RF excited CO_2 slab-waveguide laser.Proc.of SPIE,2007,6346:63463C
    [73]贾凯,郑春晖,陈为廉.基于TMS320F2812的双电源供电电路设计实现.电子工程师,2008,32(9):27-29
    [74]TMS320F28x System Control and Interrupts Reference Guide(Rev.B).Texas Instructments,2004.1-145
    [75]Wu AM,Xiao JW,et al.Digital PWM Control:Application in Voltage Regulation Modules.IEEE PESC' 99,1999(1):77-83
    [76]Axeison Jan.Serial Port Complete:Programming and Circuits for RS-232 and RS-485 Links and Networks.Independent Publishers Group,2001(1):115-123
    [77]程愿应,江超,王又青等.光腔模式及光束传输的特征向量算法.计算物理,2005,22(5):449-455
    [78]S.F.Helefert,R.Pregla.A finite difference beam propagation algorithm based on generalized transmission line equations.Opt Quantum Electron,2000,32:681-690
    [79]姜丽丽,张翔.用Fox-Li数值迭代法求解F-P型激光谐振腔的本征模式.成都信 息工程学院学报,2007,22(S):124-128
    [80]Skettrup Torben.Rectangular laser resonators with astigmatic compensation.Journal of Optics A:Pure and Applied Optics,2007,7(11):645-654
    [81]Jin,Tao,Liu,Yan,Cai,Dingguo,Chen,Pinghua.Research on 3D temperature field and thermal-stress field numerical simulation of dry-type transformer curing process.IET Conference Publications,2006.209-213
    [82]程刚,陈方斌,袁孝民等.基于ANSYS的光学器件热变形仿真与分析.应用光学,2008,9(5):697-700
    [83]张朝晖.ANSYS 11.0结构分析工程应用实例解析(第2版).北京:机械工业出版社,2008.95-103
    [84]Prieto,R.,Escribano,L.M.,Oliver,J.A.,Cobos,J.A.,Uceda,J.A new 2D/3D FEA based thermal model for magnetic components.PESC Record-IEEE Annual Power Electronics Specialists Conference,2004.4867-4872
    [85]Liao,Y.Gene.FEA-based prediction and experimental validation of clutch transient temperature in automatic transmission.International Journal of Vehicle Design,2007.1-10
    [86]Chiu,Chia-Pin.Examination of thermal test chip designs using an FEA tool.Thermomechanical Phenomena in Electronic Systems-Proceedings of the Intersociety Conference,2002.538-544
    [87]Wong,Foo Lam,Radimin,Teo,Mary,Lee,Charles.FEA thermal investigation on plasma etching induced heating during wafer thinning process.Proceedings of the Electronic Packaging Technology Conference,EPTC,2006.815-819
    [88]B.Abdul Ghani,M.Hammadi.Mathematical modeling of hybrid CO_2 laser.Optics and Laser Technology,2001(32):243-247
    [89]李春胜,黄德彬.金属材料手册.北京:化学工业出版社,2005.56-57
    [90]Kamath,Rajesh.R.,Mead,Patricia.F.Procedure for CAD assessment of thermal management performance in a diode laser structure.American Society of Mechanical Engineers, 1996. 213-216
    
    [91] Altmann, Konrad, PFlaum, Christoph, Seider, David. Three-dimensional computation of laser cavity Eigenmodes by the use of finite element analysis (FEA). Proc. SPIE, 2004, 5333: 18-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700