PVD和CVD过程中等离子体物理特性混合模拟及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于等离子体技术的物理气相沉积(Physical Vapour Deposition, PVD)和化学气相沉积(Chemical Vapour Deposition, CVD)是目前低温制备薄膜材料最常用的方法,等离子体的物理特性对薄膜沉积速率和薄膜质量有直接影响。本文针对FJL560CI1型超高真空磁控与离子束联合溅射镀膜机和RF-500型化学气相沉积镀膜机,建立了容性放电等离子体的混合模型,包括波尔兹曼方程,一维流体动力学模型和MC模型,并对Ar等离子体和CH4等离子体进行了求解。另外,设计制作了朗缪尔探针、法拉第探针和法拉第离子能量分析器,对Ar等离子体进行了实验测试,并对混合模型模拟结果进行对比验证。
     通过求解利用Lorentz近似方法简化的波尔兹曼方程分别对直流稳态电场和射偏电场下Ar等离子体中电子的能量及其分布特性进行了模拟计算,结果表明,在高电场时电子能量呈直线形式的Maxwellian分布,而在低电场时呈类似抛物线的Druyvesteyn分布,放电压力对电子能量分布形式的影响不明显。汤生放电时,电子平均能量最大值约为11eV,电子电离率系数随电子平均能量的升高逐渐增大,最大电离率系数在10-14m3s-1量级。放电压力为27Pa时,电子的迁移率系数和扩散率系数分别为μe≈107m2V-1s-1,De≈690m2s-1.射频放电时,电子平均能量和电离率系数的变化规律与汤生放电相同,但电子输运系数呈明显的时空不均匀分布。朗缪尔探针的测试结果表明,强电场时电子能量呈Maxwellian分布,随着放电功率的增大或放电压力的升高,电子平均能量均逐渐减小。
     通过求解一维流体动力学模型对射频容性Ar等离子体的特性进行了模拟计算,结果表明,在ωt≈π/2时刻接地极板附近和ωt≈3π/2时刻电源极板附近的鞘层区域,电场强度较高,鞘层厚度最小,电子平均能量和电子反应的电离率系数也较高,电子密度周期变化剧烈,而离子密度相对稳定。随着放电压力升高,等离子体密度增大,鞘层厚度逐渐减小;随着放电电压增大,等离子体密度增大,鞘层厚度逐渐增大;随着自偏压增大,等离子体密度减小,鞘层厚度逐渐增大。用法拉第探针以电流密度的形式测试了等离子体密度,结果表明随着放电压力升高或放电电压增大,离子电流密度增大,亦即等离子体密度增大,与流体动力学模型的计算结果相同,也证明了该模型的正确性。
     通过MC模型对射频容性Ar等离子体中离子入射的能量及其分布特性进行了模拟计算,结果表明,放电压力低时,高能量离子分布较多,且在高能区域分布曲线呈双峰形式,离子入射的角度较小;放电压力高时,低能量离子分布较多,能量分布曲线偏向于低能量区域,且高能峰消失,离子入射角度增大;放电电压升高,离子能量分布曲线向高能区域移动,能峰之间的距离变长,角度分布曲线向小角度区域移动;随着自偏压升高,入射离子的能量增大,能量分布曲线向高能量区域移动,能峰间距变化不大,离子入射角度减小。法拉第离子能量分析器的测试结果表明,低放电压力时,离子能量较高且在高能区域呈双峰形式,高放电压力时,离子能量较低且能量分布高能峰消失。
     根据CH4等离子体中电子的化学反应将波尔兹曼方程扩展,并对射频容性CH4等离子体进行了模拟计算,结果表明,CH4等离子体中电子能量分布规律与Ar等离子体相同,即在高电场时呈Maxwellian分布,而在低电场时呈Druyvesteyn分布。电子反应的电离率系数和分裂率系数之和均在10-14m3s-1量级,放电压力为18Pa时电子的输运系数μe≈600m2V-1s-1,De≈1300m2s-1。
     根据CH4等离子体中电子、离子、激发态粒子的化学反应将第三章的流体动力学模型扩展,并对射频容性CH4等离子体进行了模拟计算,结果表明,CH4等离子体中电势/电场、等离子体密度的时空分布规律与Ar等离子体相同,激发态粒子空间变化不明显;CH3、C2H5、C2H5+、CH5+是CH4等离子体中的主导粒子,对基片上薄膜的生长有主要贡献。
The plasma-induced physical-vapour deposition (PVD) and physical-vapour deposition (CVD) are the most common methods used for the deposition of thin film materials. Deposition rate of the film and the quality are determined directly by discharge parameters, such as density, ion energy, electric field, etc. Based on the FJL560CI1ultrahigh vacuum magnetron and ion-beam sputtering coating machine and the RF-500CVD coating machine, a hybrid model, including Boltzman Equation, hydrokinetics model and Monte Carlo model, is developed. The model is used to investigate the characteristic of Ar plasma and CH4plasma. Otherwise, Langmuir probe, Faraday probe and Faraday ion energy analyzer plasma diagnostic system are developed to measure the plasma parameters in the two coating machines, and the comparison with simulation result is carried out.
     The electron energy distribution function (EEDF) in Ar plasma is computed by numerically solving the Boltzmann equation simplified by Lorentz approximation. In a high electric field, the EEDF is observed to be Maxwellian shape, while in a low electric field, a Druyvesteyn-like EEDF is observed, the gas pressure has little effect on the shape of EEDF. In a Townsend discharge, the electron average energy is no more than10eV, and the ionization rate coefficient increases with the increase of electron average energy and the maximum coefficient is in the order of10-14m3s-1. At the pressure of27Pa, the electron transport coefficients (mobility and diffusion) are found to be μe≈107m2V-1s-1and De≈690m2s-1. In an rf discharge, the electron average energy and the ion rate coefficient are similar to the Townsend discharge, and the electron transport coefficients depend strongly on both time and space. The plasma parameters are investigated using a Langmuir probe plasma diagnostic system, and a Maxwellian EEPF is observed, which agrees well with the calculated result of Boltzmann equation. The electron average energy decreases with the increase of rf power or discharge pressure.
     Parameters of an rf Ar plasma are computed by numerically solving the hydrokinetics model. It is found that, at the cycle of about ωt≈π/2near to the grounded electrode and ωt≈3π/2near to the powered electrode the electric filed is strong, together with high electron average energy and ionization rate coefficient. The electron density varies tempestuously, but a time-stable ion density is found in this region. The plasma density increases and the sheath thickness decreases with the increase of discharge pressure, while both the plasma density and the sheath thickness increase with the increase of rf voltage, and the plasma density decrease and the sheath thickness increases with the increase of self-bias voltage. A Faraday probe plasma diagnostic system is developed to measure the plasma density in the way of ion current density, and the experimental result shows that as the increase of discharge pressure or rf voltage, the plasma density increases, which agrees well with the calculated result of the hydrokinetics model.
     A hybrid model is developed to investigate the characteristics of energy and angular distributions of the ions impinging on the electrode in an rf capacitively coupled Ar plasma. It shows that the ion energy distribution (IED) is bimodal at high energy field, and the ion angle distribution (IAD) has a significant peak at the small angle region. As the increasing of gas pressure, the IEDs move to the low energy field, the high energy peak disappears and scattering angle of ions increases. The IEDs move to the high energy and the width between the peaks expands with the increase of rf voltage. High ion energy is obtained with the increase of self-bias voltage, and the IEDs move to the high energy field, but the distance between the two peaks changes little. A Faraday ion energy analyzer is developed to measure the IED in Ar plasma, and the experimental result shows a dual-peak IED at low discharge pressure and a single peak IED at high discharge pressure, which agrees well with the simulation result of the MC model.
     The EEDF in an rf CH4plasma by numerically solving the Boltzmann equation, which is expanded according to the electron reactions in the CH4plasma. EEDF of CH4plasma similar to Ar plasma is found. The transport coefficients are calculated to be μe≈600m2V-1s-1and De≈1300m2s-1at the pressure of18Pa.
     The hydrokinetics model, which is used in chapter3in Ar plasma, is expanded for CH4plasma according to the electron reactions, ion reactions and also the radical reactions. Characteristics of CH4plasma are calculated with the expanded model and the result shows that the spatiotemporal variations of potential/electric-field and plasma density are similar to an rf Ar plasma. Species of CH3, C2H5, C2H5+and CHs+are the dominant species in CH4plasma, which contribute to the growth of DLC film.
引文
1. B.E.戈兰特,马腾才<译>.等离子体物理基础[M],北京:原子能出版社,1983,41-42.
    2. 邵福球.等离子体粒子模拟[M],北京:科学出版社,2002,23-24.
    3. 杨津基.气体放电[M],北京:科学出版社,1983,31-35.
    4. B N Chapman. Glow Discharge Processes, John Wiley & Sons Inc., Now York:1980.
    5. O Popov. In Physics of Films, Edited by M H Francombe and J L Vossen[M], Now York: Academic,1994.
    6. P D Foo, A S Manocha, J F Miner, C S Pai. Method of forming oxide layers by bias ECR plasma deposition, U.S. Patent,1992, No.5,124,014.
    7. J S Ogle. Method and apparatus for producing magnetically-coupled planar plasma, U.S. Patent,1990, No.4,948,458.
    8. J K Lee, N Y Babaeva, H C Kim, O V Manuilenko, J W Shon. Simulation of capacitively coupled single- and dual-frequency RF discharges [J], IEEE Trans. Plasma Sci.2004, 32(1):47-53.
    9. 崔虎,射频磁控溅射镀膜过程中离子输运和溅射行为的模拟计算[D],西安:西北工业大学,2005.
    10. K U Riemann. The validity of Bohm's sheath criterion in rf discharges [J], Phys. Fluids B, 1992,4(9):2693-2695.
    11. M M Turner, P Chabert. Collisionless Heating in Capacitive Discharges Enhanced by Dual-Frequency Excitation [J], Phys. Rev. Lett.,2006,96(20),205001.
    12. F R Myers, M Ramaswami, T S Cale. Prediction of Ion Energy and Angular Distributions in Single and Dual Frequency Plasmas [J], J. Electrochem. Soc.,1994,141(5):1313-1320.
    13. J Robiche, P C Boyle, M M Turner, A REllingboe. Analytical model of a dual frequency capacitive sheath [J], J. Phys. D.,2003,36(15):1810-1816.
    14. H C Kim, J K Lee. Dual radio-frequency discharges: Effective frequency concept and effective frequency transition [J], J. Vac. Sci Techn. A.,2005,23(4):651-657.
    15. W J Goedheer, P M Meijer, J Bezemer, J Diederick, P Passchier, WGJHM van Sark. Frequency effects in capacitively coupled radio-frequency glow discharges:a comparison between a 2-D fluid model and experiments [J], IEEE Transactions on Plasma Science,1995, 23:644-649.
    16. D Passchier, Ph. D. Thesis [D], Utrecht,1994.
    17. G J Nienhuis, W J Goedheer, E A G Hamers, WGJHM van Sark, J Bezemer. A self-consistent fluid model for radio-frequency discharges in SiH4-H2 compared to experiments [J], J. Appl. Phys.,1997,82:2060-2071.
    18. G J Nienhuis, W J Goedheer. Modelling of a large scale reactor for plasma deposition of silicon[J], Plasma Sources Sci. Techn.,1999,8(2):295-298.
    19. G J Nienhuis. Plasma models for silicon deposition [D], Utrecht,1998.
    20. E Gogolides, C Buteau, A Rhallabi, G Turban. Radio-frequency glow discharges in methane gas: modelling of the gas-phase physics and chemistry [J], J. Phys. D: Appl. Phys.,1994, 27(4):818-825.
    21. E Gogolides, D Mary, A Rhallabi, G Turban. RF Plasmas in Methane: Prediction of Plasma Properties and Neutral Radical Densities with Combined Gas-Phase Physics and Chemistry Model [J], Jap. J. of Appl. Phys.,1995,34:261-270.
    22. K Bera, B Farouk, Y H Lee. Simulation of Thin Carbon Film Deposition in a Radio-Frequency Methane Plasma Reactor [J], J. Electrochem. Soc.,1999,146(9): 3264-3269.
    23. K Bera, J W Yi, B Farouk, Y H Lee. Two-dimensional radio-frequency methane plasma simulation:comparison with experiments [J], IEEE Transactions on Plasma science,1997, 27(5):1476-1486.
    24. K Bera, B Farouk, Y H Lee. Effects of design and operating variables on process characteristics in a methane discharge: a numerical study [J], Plasma Sources Sci. Techn., 2001,10(2):211-225.
    25. K Bera, B Farouk, Y H Lee, Effects of Reactor Pressure on Two-Dimensional Radio-Frequency Methane Discharge in Cylindrical Coordinates, Reports of the Institute of Fluid Science [J], Tohoku University,10:137-146.
    26. D Vender, W Boswell. Electron-sheath interaction in capacitive radio-frequency plasmas [J], Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1992, 10(4):1331-1338.
    27. M Yan, W J Goedheer. Particle-in-cellMonte Carlo simulation of radio frequency SiHU/H2 discharges [J], IEEE Transactions on Plasma Science,1999,27(5):1399-1405.
    28. M Yan, W J Goedheer. A PIC-MC simulation of the effect of frequency on the characteristics of VHF SiH4/H2 discharges [J], Plasma Sources Sci. Techn.,1999,8(3):349-354.
    29. K Nagayama, B Farouk, Y H Lee. Particle Simulation of Radio-Frequency Plasma Discharges of Methane for Carbon Film Deposition [J], IEEE Transactions on Plasma Science,1998,26,125-134.
    30. A Bogaerts, R Gijbels, W J Goedheer. The role of fast argon ions and atoms in the ionization of argon in a direct-current glow discharge: A mathematical simulation [J], J. Appl. Phys., 1995,78(11):6427-6431.
    31. A Bogaerts, R Gijbels, W J Goedheer. Two-Dimensional Model of a Direct Current Glow Discharge:Description of the Electrons, Argon Ions, and Fast Argon Atoms [J], Anal. Chem., 1996,68(14):2296-2303.
    32. N Sato, H Tagashira. A hybrid Monte Carlo/fluid model of RF plasmas in aSiH4/H2 mixture [J], IEEE Transactions on Plasma Science,1991,19(2):102-112.
    33. G M Petrov, D Zhechev. Electron energy distribution function and electron characteristics of conventional and micro hollow cathode discharges [J],2002,9(5):1815-1819.
    34. C M Ferreira, A Ricard. Modelling of the low-pressure argon positive column [J], J. Appl. Phys.,1983,54:2261-2271.
    35. C M Ferreira, J Loureiro. Electron energy distributions and excitation rates in high-frequency argon discharges [J], Phys. D:Appl. Phys.,1983,16:2471-2483.
    36. C M Ferreira, J Loureiro, Characteristics of high-frequency and direct-current argon discharges at low pressures:a comparative analysis [J], Phys. D:Appl. Phys.,1983, 16:1175-1188.
    37. P M Meijer, W J Goedheer, J D P Passchier. Calculation of the ionization rate and electron transport coefficients in an argon rf discharge [J], Physical Review A.,1992, 45(2):1098-1102.
    38. D Herrebout, A Bogaerts, M Yan, R Gijbels. One-dimensional fluid model for an rf methane plasma of interest in deposition of diamond-like carbon layers [J], J. Appl. Phys.,2001, 90(2):570-579.
    39.1 Moller, A Serdyuchenko, H Soltwisch. Analysis of the chemistry in CH4&O2 plasmas by means of absorption spectroscopy and a simple numerical model [J], J. Appl. Phys.,2006, 100(3):033302.
    40. H Amemiya. Sheath Formation Criterion and Ion Flux for Non-Maxwellian Plasma [J], J. Phys. Soc. Jpn.,1997,66:1335-1338.
    41. A D Richards, B E Thompson, H H Sawin. Continuum modeling of argon radio frequency glow discharges [J], Appl. Phys. Lett.,1987,50(9):492-494.
    42. E Gogolides, H H Sawin, R A Brown. Direct calculation of time-periodic states of continuum models of radio-frequency plasmas [J], Chemical Engineering Science,1992, 47(15/16):3839-3855.
    43. E Gogolides, H H Sawin. Continuum modeling of radio-frequency glow discharges. I. Theory and results for electropositive and electronegative gases [J], J. Appl. Phys.,1992, 72:3971-3988.
    44. E Gogolides, H H Sawin. Continuum modeling of radio-frequency glow discharges. Ⅱ. Parametric studies and sensitivity analysis [J], J. Appl. Phys.,1992,72:3988-4003.
    45. J D P Passchier, W J Goedheer. Relaxation phenomena after laser-induced photodetachment in Electro-negative rf discharges [J], J. Appl. Phys.,1993,73(3):1073-1079.
    46. F F Young, C-H John Wu. Comparisons of one-and two-dimensional three-moment fluid models for rf glow discharges [J], J. Appl. Phys.,1993,74(2):839-847.
    47. W J Goedheer, P M Meijer, J Bezemer, J D P Passchier. Frequency Effects in Capacitively Coupled Radio-Frequency Glow Discharges:A Comparison Vetween a 2-D Fluid Model and Experiments [J], IEEE Transactions on Plasma Science,1995,23(4):644-649.
    48. K Tachibana, M Nishida, H Harima, Y Urano. Diagnostics and modelling of a methane plasma useidn the chemical vapour deposition of amorphous carbon films [J], J. Phys. D: Appl. Phys.,1984,17:1727-1742.
    49. A Rhallabi, Y Catherine. Computer Simulation of a Carbon-Deposition Plasma in CH4 [J], IEEE Transactions on Plasma Science,1991,19(2):270-277.
    50. N Mutsukura, S-I Inoue, Y Machi. Depisition mechanism of hydrogenated hard-carbon films in a CH4 rf discharge plasma [J], J. Appl. Phys.,1992,72(1):43-53.
    51. M Masi, Cavallotti, S Carra. Different approaches for methane plasmas modeling [J], Chemical Engineering Science,1998,53(22):3875-3886.
    52. B E Thompson, H H Sawin. Monte Carlo simulation of ion transport through rf glow-discharge sheaths [J], J. Appl. Phys.,1988,63(7):2241-2251.
    53. C K Birdsall. Particle-in-Cell Charged-Particle Simulations, Plus Monte Carlo Collisions With Neutral Atoms, PIC-MCC [J], IEEE Transactions on Plasma Science,1991, 19(2):65-85.
    54. P Burger. Elastic collisions in simulating one-dimensional plasma diodes on the computer [J], Phys. Fluids,1967,10:658-666.
    55. R Shanny, J M Dawson, J M Greene. One-dimensional model of a Lorentz plasma [J], Phys. Fluids,1967,10:1281-1287.
    56. A B Langdon. Nonphysical modifications to oscillations, fluctuations, and collisions due to space-time differencing [J], in Proc.4th Conf. Num. Sim. Plasmas (Washington, DC), Nov. 1970,467-495.
    57. A B Langdon. Effect of the spatial grid in simulation plasmas [J], J. Comput. Phys.,1970, 6:247-267.
    58. A B Langdon. Kinetic theory of fluctuations and noise in computer simulation of plasma, Phys. Fluids,1979,22:163-171.
    59. C K Birdsall, A B Langdon. Plasma physics via computer [M]. New York:McGrawHill, 1985.
    60. V Vahedi, C K Birdsall, M A Lieberman, Verification of frequency scaling laws for capacitive radio-frequency discharges using two-dimensional simulations [J], Phys. Fluids B.,1993, 5(7):2719-2729.
    61. E A Edelberg, A Perry, N Benjamin, E S Aydil. Energy distribution of ions bombarding biased electrodes in high density plasma reactors [J], J. Vac. Sci. Technol.,1999,17(2):506-516.
    62. E A Edelberg, E S Aydil. Modeling of the sheath and the energy distribution of ions bombarding rf-biased substrates in high density plasma reactors and comparison to experimental measurements [J], J. Appl. Phys.,1999,86(9):4799-4812.
    63. M Kratzer, R P Brinkmann, H Schmidt. Hybrid model for the calculation of ion distribution functions behind a direct current or radio frequency driven plasma boundary sheath [J], J. Appl. Phys.,2001,90(5):2169-2179.
    64. H C Kim, F Iza, S S Yang, M Radmilovi'c-Radjenovi'c, J K Lee. Particle and fluid simulations of low-temperature plasma discharges:benchmarks and kinetic effects [J], J. Phys. D:Appl. Phys.,2005,38:R283-R301.
    65. L E Kline, W D Partlow, W E Bies. Electron and chemical kinetics in methane rf glow-discharge deposition plasmas [J], J. Appl. Phys.,1989,65(1):70-78.
    66. B Farouk, K Nagayama. Particle simulation of CH4/H2 RF glow discharges for DLC film deposition [J], AIP Conf. Proc.,2001,585:230-237.
    67.王德真,刘悦,马腾才.低压直流氩放电中电子的能量分布[J],计算物理,1990,7(4):448-452.
    68. D Z Wang, T C Ma, Y Gong. A Monte Carlo simulation model for plasma source ion implantation [J], J. Appl. Phys.,1993,73(9):4171-4175.
    69.朱武彪,王友年,邓新禄,马腾才.负偏压射频放电过程的流体力学模拟[J],物理学报,1996,45(7):1138-1145.
    70.邱华檀,王友年,马腾才.碰撞效应对入射到射频偏压电极上离子能量分布和角度分布的影响[J],物理学报,2002,51(6):1332-1336.
    71.黄俊卿,直流辉光放电正柱区及阴极鞘层区的模拟研究[D],大连理工大学,2001.
    72.肖允庚,射频容性耦合等离子体物理特性的PIC/MC模拟研究[D],大连理工大学,2008.
    73.王帅,双频容性耦合等离子体物理特性的混合模拟[D],大连理工大学,2008.
    74.周俐娜,王新兵,微空心阴极放电的流体模型模拟[J],物理学报,2004,53:3440-3444.
    75.赖建军,余建华,空心阴极直流放电的二维自洽模型描述和阴极溅射分析[J],物理学报,2001,50:1528-1533.
    76.蒙林,低温等离子体放电过程的数值模拟[D],电子科技大学,2007.
    77.杨幼桐,杜凯,张菲,宋国利,万鹏程,刘艳春.等离子体的诊断方法[J],哈尔滨学院学报,2005,26(10):132-135.
    78.陶孟仙.等离子体特性的静电探针测量技术[J],佛山科学技术学院学报(自然科学版),2000,18(3):11-15.
    79.孙秋普,邓新绿,马腾才,宋远红.用发射探针降落法测量等离子体空间电位fJ],核聚变与等离子体物理,2004,24(1):67-72.
    80. M L R Walker. Effects of Facility Backpressure on the Performance and Plume of a Hall Thruster [D]. Huntsville:The University of Michigan,2005,47-69.
    81. Y Azziz, Instrument Development and Plasma Measurements on a 200-Watt Hall Thruster Plume [D]. Massachusetts:Massachusetts Institute of Technology,2003.
    82.邹积岩,杨磊,程仲元,张汉明.真空电弧镀膜等离子体参数的测量[J].微细加工技术,1997,1:70-75.
    83. K Okada, S Komatsu, S Matsumoto. Langmuir probe measurements in a low pressure inductively coupled plasma used for diamond deposition [J], J. Vac. Sci. Technol.,1999, A17(3):721-725.
    84. J Hong, A Granier, C Leteinturier, M C Peignon. Measurements of rf bias effect in a dual electron cyclotron resonance-rf methane plasma using the Langmuir probe method [J], J. Vac. Sci. Technol.,2000, A 18(2)497-502.
    85.朱文浩,朱南强,陈跃山.射频低压等离子体电子能量分布函数的探针诊断[J],物理学报,1989,38(2):236-246.
    86.池凌飞,林揆训,姚若河,林璇英,余楚迎,余云鹏.Langmuir单探针诊断射频辉光放电等离子体及其数据处理[J],物理学报,2001,50(7):1313-1317.
    87.白耀忠,王平阳,康小录,于水淋,乔彩霞.Langmuir双探针测量Hall推力器羽流特性[J],推进技术,2006,27(4):368-371.
    88.温培刚,颜悦,望咏林,伍建华,张官理,张定国,陆文琪,董闯,徐军.直流磁控溅射辉光等离子体的Langmuir静电探针诊断[J],2008,28:79-82.
    89.牛田野,曹金祥,刘磊,刘金英,王艳,王亮,吕铀,王舸,朱颖.低温氩等离子体中的单探针和发射光谱诊断技术[J],物理学报,2007,56(4):2330-2336.
    90.朱永红,吴卫东,陆晓曼,唐永建,孙卫国.采用发射光谱和朗缪尔探针诊断低温低压氢等离子体[J],强激光与粒子束,2008,20(4):601-606.
    91. R R Hofer, M L R Walker, A D Gallimore. A Comparison of Nude and Collimated Faraday Probes for Use with Hall Thrusters [J]. International Electric Propulsion Confernce,2001, IEPC-01-20,1-17.
    92. M L R Walker, R R Hofer, A D Gallimore. The Eeffects of Nude Faraday Probe Design and Vacuum Facility Backpressure on the measured ion Current Densityprofile of Hall Thruster Plumes [J],38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Indianapolis, IN, UNITED STATES,7-10,2002.
    93. Y Azziz. Instrument Development and Plasma Measurements on a 200-Watt Hall Thruster Plume [D], Massachusetts:Massachusetts Institute of Technology,2003.
    94. J L Rovey, M L R Walker, A D Gallimore. Magnetically filtered Faraday probe for measuring the ion current density profile of a Hall thruster [J]. Review of Scientific Instruments,2006, 77:013503.
    95. B M Schuettpelz. Examination of Faraday probe measurements and plasma conditions supporting detachment [D]. The University of Alabama in Huntsville,2006,62-107.
    96. S G lngramt, N S J Braithwaite. Ion and elextron energy analysis at a surface in an RF discharge [J],Appl. Phy.,1988,21(10):1496-1503.
    97. U Fiender, K Wiesemann. Characterization of plasma-surface contacts in low-pressure rf discharges using ion energy analysis and langmuir probes'[J], Plasma Chemistry and Plasma Processing,1995,15(2):123-157.
    98.刘洪祥,魏合林,刘祖黎,刘艳红,王均震.磁镜场对射频等离子体中离子能量分布的影响[J],物理学报,2000,49(9):4671-8691.
    99.吴先球,陈俊芳,蒋珍美,熊予莹,吴开华,任兆杏.等离子体离子能量自动分析器的研 制和应用[J],电子学报,2003,31(2):186-188.
    100.蔡长龙,王季梅,弥谦,严一心.脉冲真空电弧离子能量的测量研究[J],真空电子技术,2004,2:52-54.
    101. J Rosen, S Mraz, U Kreissig, D Music, J M Schneider. Effect of Ion Energy on Structure and Composition of Cathodic Arc Deposited Alumina Thin Films [J], Plasma Chemistry and Plasma Processing,2005,25(4):303-317.
    102. S D Ekpe, S K Dew. Energy Deposition at the Substrate in a Magnetron Sputtering System [J], Springer Berlin Heidelberg,2008,109:229-251.
    103.王德真,刘悦,马腾才.低压直流氩放电中电子的能量分布[J],计算物理,1990,7(4):448-452.
    104.郭政灵,许瑞荣,苏汉宗,李罗权.高空大气放电现象的多样性与复杂性[J],物理双月刊,2006,28(2):409-418.
    105. R Winkler, J Wilhelm. Main Features of the Electron Kinetics in Collision Dominated Steady-State rf plasmas [J], A Hess-Annalen der Physik, WILEY-VCH Verlag Leipzig,1985, 42:537.
    106.I P Shkarofsky, T W Johnston, M P Bachynski. The Particle Kinetics of Plasmas [J], Addison-Wesley, Reading,1966,89
    107.李承跃,邓柏权,彭利林.高能带电粒子库仑对数量子力学效应研究[J],强激光与粒子束,2007,19(7):1226-1228.
    108. Y H Oh, N H Choi, D I Choi. A numerical simulation of rf glow discharge containing an electronegative gas composition [J], J. Appl. Phys.,1990,67:3264-3268.
    109. V E Golant. Coefficient of ionization and mobility of electrons in argon [J]. Sov. Phys. Tech. Phys.,1959,4:680.
    110. M S Barnes, T J Cotler, M E Elta. A staggered-mesh finite-difference numerical method for solving the transport equations in low pressure rf glow discharges [J], Journal of Computational Physics,1988,77(1):53-72.
    111. T E Nitschke, D B Graves. A comparison of particle in cell and fluid model simulations of low-pressure radio frequency discharges [J], J. Appl. Phys.,1994,76(10):5646-5660.
    112.项志遴,愈昌旋,高温等离子体诊断技术[M],上海:上海科学技术出版社,1982,27-29
    113. Q Wang, D C Ba, J Feng. Diagnosis of the Argon Plasma in a PECVD Coating Machine [J], Plasma Science and Technology,2008,10(6):727-730.
    114. M J Druyvesteyn. Der Niedervoltbogen,1930, Z. Phys.,64:781-798.
    115. F F Chen. Lecture Notes on Langmuir Probe Diagnostics:Mini-Course on Plasma Diagnostics [J]. IEEE-ICOPS meeting, Jeju, Korea. Pis-cataway, N. J. IEEE Operations Center,2003.
    116. F F Chen, J P Chang. Lecture Notes on Principles of Plasma Processing. Los Angeles: Kluwer/Plenum Publishing,2002.
    117. B M Annaratone, G F Counsell, H Kawano, J E Allen. On the use of double probes in RF discharges, Plasma Sources Science and Technology [J],1992,1:232-241.
    118. A Ohsawa, M Ohuchi, T Kubota. Improved RF-driven probe method for RF discharge plasma diagnostics [J], Meas. Sci. Technol.,1991,2:801-806.
    119.J P Boeuf. Numerical model of rf glow discharges [J], Phys. Rev.,1987, A36(6):2782-2792.
    120.朱武彪,王友年,邓新禄,马腾才.负偏压射频放电过程的流体力学模拟[J],物理学报,1996,45(7):1138-1145.
    121. J D P Passchier, W J Goedheer. A two-dimensional fluid model for an argen rf discharge [J], J. Appl. Phys.,1993,74:3744-3751.
    122. Y Catherine, P Couderc. Electrical characteristics and growth kinetics in discharges used for plasma deposition of amorphous carbon [J], Thin Solid Films,1986,144:265-280.
    123.程宇航,吴一平,许德胜,陈建国,乔学亮,谢长生.射频辉光放电过程中工艺参数对极板自负偏压的影响[J],电工技术学报,1999,14(5):59-62.
    124. P C Boyle, A R Ellingboe, M M Turner, Independent control of ion current and ion impact energy onto electrodes in dual frequency [J], J. Phys. D:Appl. Phys.,2004,37:697-701.
    125. M Surendra, D B Graves, G M Jellum. Self-consistent model of a direct-current glow discharge: Treatment of fast electrons [J], Phys. Rev. A,1990,41:1112-1125.
    126. V Vahedi, M Surendra. A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges [J], Computer Physics Communications,1995, 87:179-198.
    127. C S Liu, D Z Wang. Monte Carlo simulation of ions inside a cylindrical bore for plasma source ion implantation [J], J. Appl. Phys.,2002,91(1):32-35.
    128. P M Meijer. The Electron Dynamics of RF discharges [D], Utrecht,1991.
    129. A V Phelps. The application of scattering cross sections to ion flux models in discharge sheaths [J], J. Appl. Phys.,1994,76 (2):747-753.
    130. J Liu, G L Huppert, H H Sawin. Ion bombardment in rf plasma [J], J. Appl. Phys.,1990, 68(8):3946-3934.
    131. S B Wang, A E Wendt. Control of ion energy distribution at substrates during plasma processing [J], J. Appl. Phys.,2000,88(2):643-646.
    132. Z Lin, S B Lv, Z J Yu, M Li, T Y Lin, D C Ba, C K Choi, I S Lee. Effect of bias voltage on Diamond-like carbon film deposited on PMMA substrate [J], Surface and coatings technology,2008,202:5386-5389.
    133.蔺增,李明,吕少波,林铁源,巴德纯,In-Seop Lee.巴德纯.PMMA基底含氢非晶碳膜的结构和摩擦学性能[J],材料研究学报,2008,22(4):429-432.
    134.蔺增,巴德纯.过渡层对含氢非晶碳膜生长的影响[J],真空科学与技术学报,2006,26(6):491-493.
    135. D J Dagel, C M Mallouris, J R Doyle. Radical and film growth kinetics in methane radio-frequency glow discharges [J], J. Appl. Phys.,1996,79(11):8735-8747.
    136. D Herrebout. Modelling of methane, acetylene and silane Plasmas: study of the plasma chemistry [D], Universiteit Antwerpen,2003.
    137. H Tawara, Y Itikawa, H Nishimura, H Tanaka, Y Nakamura. Analytic Cross Sections for Electron Collisions With Hydrocarbons:CH4, C2H6, C2H4, C2H2, C3H8 and C3H6 [J], Atomic Data and Nuclear Data Tables,2002,80:147-204.
    138. N Takanu, H Toyoda, H Sugai. Electron-Impact dissociation of Methane into CH3 and CH2 Radicals Ⅱ:Absolute Cross Sections [J], Japn. J. Appl. Phys.,1991,30(11A):2912-2915.
    139. L Ehrhardt, L Langhans, F Linder, H S Taylor. Resonance Scattering of Slow Electrons from H2 and CO Angular distributions [J], Phys. Rev.,1968,173:222-230.
    140. A G Engelhardt, A V Phelps. Elastic and Inelastic Collision Cross Eections in Hydrogen and Deuterium from Transport Coefficients [J], Phys. Rev.,1963,131 (5):2115-2128.
    141. H Tawara, T Kato. Total and Partial Ionization Cross Sections of Atoms and Ions by Electron Impact [J], Atomic Data and Nuclear Data Tables,1987,36:167-353.
    142. H Tawara. Electron Collision Processes Involving Hydrocarbons(Chapter 16) [J], Atomic And Molecular Processes in Fusion Edge Plasmas, R.K. Janev, New York, Plenum Press, 1995.
    143. A V Keudell, W Moller. A combined plasma-surface model for the deposition of C:H films from a methane plasma [J], Appl. Phys.,1994,75(12):7718-7727.
    144. E W McDaniel, E A Mason. The Mobility and Diffusion of Ions in Gases [M], Wiley, New York 1973.
    145. H Sugai, H Kojima, A Ishida, H Toyoda. Spatial distribution of CH and CH radicals in a methane rf discharge [J], Appl. Phys. Lett.,1990,56:2616-2618.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700