微网谐波振及电压暂降的评估与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微网是一个集中了发电装置、储能装置、控制设备和用户负荷的发配电网络,也是具备智能化基础和一定独立运行能力的低压有源供电网络。从技术发展的角度,微网是分布式发电技术向配电网络渗透的最新阶段,也是建立智能电网的重要基础,更是解决现代电力系统在保证供电与保护环境之间所面临尖锐矛盾的关键环节。所以如何更好地发挥微网接纳新能源发电和可再生能源发电能力,确保微网在引入电力系统后不出现严重的电能质量危害,不仅是迫切需要解决的技术问题,也是微网技术能够实际得到推广应用的基本前提。本文围绕谐波谐振和电压暂降这两个微网电能质量的关键问题,从传统电力系统中这两个问题的研究成果出发结合微网接入带来的新变化和新特点对微网谐波谐振和电压暂降的危害形式和产生机理作了细致的分析,并提出了评估控制微网谐波谐振和电压暂降的新方法,研究的主要内容和取得的主要成果有:
     提出了用于评估微网及其所在配电网串联和并联谐波谐振的模式评估法。所提方法可以准确把握包括逆变器参与谐振在内的微网谐波谐振的发生频率、谐振激发程度,以及激发谐振的位置。相比传统谐波谐振评估方法,新方法不仅可以同时评估串联和并联两种谐振,而且还能评估逆变器在谐波谐振中的特殊作用。因此新方法用于微网谐波谐振评估有着非常明显的优势。
     指出微网中串、并联两种电压补偿方法间存在功率线性耦合关系,并据此提出微网电压暂降联合补偿法。新方法能够充分利用微网分布式电源多、并联电压补偿能力强的特点,协调串联和并联两种方式对微网中出现的电压暂降进行补偿,避免了传统方法中串联补偿器有功输出容量对微网电压暂降补偿能力的约束。相比同类方法,新方法的另一大优点是不需要在补偿设备的直流母线间建立电气联系,避免了可能给设备安装位置带来的约束,显著扩展了参与电压暂降补偿的设备种类和数量。
     揭示了微网并联电压补偿方式输出功率过高的机理,指出过小的联络线阻抗是根本原因。提出了基于限流器的并联电压暂降补偿方法。相比传统方法,新方法的主要优点是并联电压补偿器能够以合理的输出功率独立承担电压暂降补偿任务。新方法的另一个优点是,限流器只负责约束电流维持电压无需对外输出功率。新方法能够最大限度地利用微网中分布式电源的电压暂降补偿能力。
Microgrid is an electric power generation and distribution network, which is consisted by generators, energy storage units, control facilities and consumers'loads. Microgrid is also a low voltage active power providing network with excellent capability of accommodating smart operation modernization and certain ability of isolated operation. In the aspect of technology evolution, microgrid is a new stage of the way of distributed generation penetrating into the distribution network, and critical step to establishing the Smart Grid, and solving the critical problem of how to provide increasing load with enough electric power and low environment harming effects. Therefore, it is very important technical problem needed to be solved that microgrid connection would bring no unacceptable power quality compromising into distribution network. And the problem is the precondition of take fully advantage of microgrid in accommodation of renewable energy power generation and new energy power generation. The two important power quality problems, harmonic resonance and voltage sag, are investigated in this dissertation, from the angles of both formation mechanism and harm mode. The investigation is based on the conclusions of investigations in this two power quality problems in conventional power systems, and conducted with fully awareness of the changes and new features brought by microgrid connection. According to the investigation results, the new methods of harmonic resonance assessment and voltage sag compensation in microgrid are proposed, and the main contents and related conclusions are outlined as follows:
     The harmonic resonance modal assessment methods for both series and parallel harmonic resonance happening in microgrid and distribution network are proposed. The proposed assessment methods are based on the modal analysis results of node admittance matrix and fundamental circuit impedance matrix. According to the results, assessment indices can be produced and than harmonic resonance frequency, fierce degrees of inspired harmonic resonance, and the places of most fierce resonance can be inspired would be all discovered. Contrast to conventional methods, the ability of assessing series and parallel harmonic resonance simultaneously and of the special resonance effects inverters makes in microgrid is the big advantage of implementing proposed method in microgrid harmonic resonance assessment.
     The existence of connection between the output power of series and shunt voltage sag compensation is discovered, as well as linearity between the power reduction of series compensator and power generation of shunt compensator. Therefore, the combined compensation method for voltage sag in microgrid is proposed. In contrast to the conventional methods, the advantages of new method includes making fully use of distributed generation units and other components with shunt voltage compensating capability, compensating voltage sag simultaneously in series and shunt ways, lesser constrain on microgrid voltage sag compensating capability improvement and more independence on active power output capacity of series compensator, lesser constrain on location of series and shunt compensator and far more available compensating components to be chosen by eliminating the connection line between the DC bus of the compensators.
     The mechanism of excessively high output power phenomena of shunt voltage sag compensation in microgrid is discovered, and the reason that relatively too small quantity of connection line between microgrid and distribution network contrasting too large quantity of line voltage makes large compensation current and power is confirmed. According to the discovered reason, the current limiter based shunt voltage compensation method is proposed. In contrast to conventional voltage sag compensation method, the proposed method has the advantages on acceptable output power of shunt compensator that compensating voltage sag independently, only with the assistance from current limiter by maintaining voltage and producing no output power. The new method can exploit the maximum voltage sag compensating capability in microgrid by all distributed generation units and energy storage device be able to mitigate voltage sag directly.
引文
[1]王成山,马力,郭力.微网中量种典型微型燃气轮机运行特性比较[J].天津大学学报,42(4),2009:316-321
    [2]中华人民共和国可再生能源法[EB/OL].中华人民共和国环境保护部网站,http://www.zhb.gov.cn/law/law/200802/t20080202_117982.htm
    [3]王仲颖,王凤春,时憬丽,李俊峰.我国可再生能源发展思考[J].高科技与产业化,2008,26(7):16-19
    [4]黄彦瑜,何祚庥.可再生能源发展与电网管理理念的初步探讨[J].科学对社会的影响,2007,27(2):28-32
    [5]安艺,张慧,何银仁,等.原油混输模型及应用[J].炼油设计,2002,32(2):52-55
    [6]张维芬,张淑桃,李亚军.石油储运工程投资确定与实例分析[J].化学工业,2010,28(8):27-30
    [7]贾庆仲.太阳能在石油输送中的应用研究[J].太阳能学报,2004.25(4):483-487
    [8]赵彪,刘海波,韩丰,等.我国煤炭输送方式经济性方面的研究工作[J].电力技术经济,2006,18(3):23-26
    [9]杨红卫.对我国煤炭输送现状及存在问题的思考[J].产业与科技论坛,2006,6(5):58-59
    [10]张生宝.电压暂降及感应电动机负荷启动引起的电压暂降分析[J].中国新技术新产品,2009,16(1):139
    [11]周皓.电力系统电压暂降的简述[J].电气应用,2007,3(4):28-31
    [12]刘悦,李勇,刘金陵.电能质量电压暂降问题及应对方案[J].山东冶金,2008,30(5):51-53
    [13]程凌飞,张步涵,曾杰,等.电压暂降及其抑制技术[J].湖北电力,2005,30(5):11-12
    [14]盛鵾,孔力,齐智平,等.新型电网-微电网(Mierogrid)研究综述[J].继电器,2007,35(12):75-81
    [15]丁明,杨向真,苏建徽.基于虚拟同步发电机思想的微电网逆变电源控制策略[J].电力系统自动化,2009,33(8):89-93
    [16]Piagi P., Lasseter R.. Autonomous control of microgrids[A]. IEEE Power Engineering Soeiety General Meeting[C].2006:1-8
    [17]黄胜利,张国伟,孔力.电力电子技术在微电网中的应用[J].电气应用,2008,27(9):55-59
    [18]许洪阳.通过冰灾和震灾看发展分布式电源和微电网的重要性-访电网规划专家田华[J].中国科技财富,2008,30(8):123-124
    [19]毛筱,肖雁鸿,龚理专.FFT应用于谐波测量中频谱泄漏的分析与处理[J].电工技术杂志,2001,29(2):3-7
    [20]潘文,钱俞寿,周鹗.基于加窗插值FFT的电力谐波测量理论的双插值FFT理论[J].电工技术学报,1994,19(2):53-56
    [21]潘文,钱俞寿,周鹗.基于加窗插值FFT的电力谐波测量理论的窗函数研究[J].电工技术学报,1994,19(1):50-54
    [22]张伏生,耿中行,葛耀中.电力系统谐波分析的高精度FFT算法[J].中国电机工程学报,1999,25(3):63-66
    [23]吴竞昌.供电系统谐波[M].北京:中国电力出版社,1998
    [24]陈明华,杨扬,张盎然,等.准同步技术在谐波测量中的应用[J].电力系统通信,2002,24(5):28-30
    [25]贺慧玲.提高电力网谐波分析精度新方法的研究[J].水电能源科学,1999,20(1):24-27
    [26]Olav J., Tande G. impact of wind turbines on voltage quality[A]. Paper accepted for presentation at the international conference on Harmonics and quality of power[C], Athens, Greece,1998:14-16
    [27]Dokopoulos P., Patralexis A., Manousaridis I.. improvement of power quality distribution in a grid caused by wind turbines[A]. The international conference on harmonics and quality of power[C], Athens, Greece,1998:24-26
    [28]Gandhare W., Bhagwatikar G. power pollution due to connected wind electric converter[A], Proceedings of IEEE international conference on control applications[C], Anchorage, Alaska, USA,2000:25-27
    [29]赵海翔.风电引起的电压波动和闪变研究[D].北京,中国电力科学研究院,2004
    [30]Gerdes G., Santjer, F风电机的发电质量及其对电网的影响[J].风力发电.1999,9(2):35-41
    [31]高师湃,李群湛,贺建闽.闪变测试系统研究[J].电力自动化设备.2002,22(5):22-25
    [32]Montanari G., Loggini M., Cavallini A., Pitti L., et al. arc furnace model for the study of flicker compensation in electrical networks[J]. IEEE Transaction on Power Delivery,1994,9(4):2026-2036
    [33]郭上华,黄纯,王磊,等.电压波动和闪变的检测与控制方法[J].继电器,2004,32(3):45-48,70
    [34]肖湘宁.电能质量分析与控制[M].北京:中国电力出版社,2004
    [35]李庚银,杨晓东,周明.复杂配电网的电压暂降随机预估方法[J].电工技术学报,2009,24(11):134-141
    [36]杨晓东.电压暂降的随机预估及其经济管理方法研究[D].北京:华北电力大学,2009
    [37]周林,吴红春,孟婧,等.电压暂降分析方法研究[J].高电压技术,2008,34(5):1010-1016
    [38]李妍,余欣梅,熊信艮,等.电力系统电压暂降分析计算方法综述[J].电网技术,2004,28(14):74-78
    [39]吕广强,赵剑锋,程明,等.配电网动态电能质量问题及其解决方案[J].高电压技术,2007,33(1):53-56
    [40]沈广,陈允平,刘栋,等.应用动态电压恢复器解决电压跌落问题[J].高电压技术,2007,37(3):156-158
    [41]EPRI Solutions Incorporated Company. distributed generation relaying impacts on power quality[R]. Palo Alto:Electric Power Research Institution,2001
    [42]Cobben J., Kling W., Myrzik J.. power quality aspects of a future micro grid[A]. International Conference on Future Power Systems[C]. Amsterdam,2005:23-31
    [43]Enslin J., Hulshorst W., Atmadji A., et al. harmonic interaction between large numbers of photovoltaic inverters and the distribution network[A]. IEEE Power Technology Conference[C]. Bologna,2003:1-13
    [44]IEEE Std.399—1997, IEEE recommended practice for industrial and commercial system analysis[S]. New York:IEEE,1998
    [45]周泽存.高电压技术[M].北京:中国电力出版社,2003
    [46]Lemieux G.. power system harmonic resonance:a documented case[J]. IEEE Transactions on Industry Applications,1990,26(3):483-488
    [47]董国震.电磁式电压互感器引起的谐波谐振研究[J].变压器,2008,45(9):36-40
    [48]Enslin J., Hulshorst W., Atmadji A., et al. harmonic interaction between large numbers of photovoltaic inverters and the distribution network[A]. IEEE Power Technology Conferenc[C]. Bologna,2003, June,1-6
    [49]Benihabib C., Myrzik A., Duarte L.. harmonic effects caused by large scale PV installation in LV network[A]. International conference on electrical power quality and utilization[C]. Barcelona,2007:1-6
    [50]Cobben J., Kling W., Myrzik J.. power quality aspects of a future micro grid[A]. International Conference on Future Power Systems[C]. Amsterdam, Netherlands, 2005:21-30
    [51]Lasseter H., Paigi P.. microgrid:a conceptual solution[A]. IEEE Power Electronic Specialists Conference[C], Aachen,2004:1-8
    [52]郑漳华,艾芊.微电网的研究现状及在我国的应用前景[J].电网技术,2008,32(16):27-58
    [53]鲁宗相,工彩霞,闵勇,等.微电网研究综述[J].电力系统自动化,2007,31(19):100-107
    [54]黄伟,孙昶辉,吴子平,等.含分布式发电系统的微网技术研究综述[J].电网技术,2009,33(9):14-34
    [55]韦钢,吴伟力,胡丹云.等.分布式电源及其并网时对电网的影响[J].高电压技术,2007,33(1):36-40
    [56]梁有伟.胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述[J].电网技术,2003,27(12):71-75
    [57]丁明,王敏.分布式发电技术[J].电力自动化设备,2004,24(7):31-36
    [58]韩奕,张东霞,胡学浩.中国微网标准体系研究[J].电力系统自动化,2010,34(1):69-72
    [59]EPRI solutions incorporated company. investigation of the technical and economic feasibility of micro-grid based power systems[R]. PaloAlto, USA:Electric Power Research Institution,2001
    [60]Marnay C., Rubio J., Siddiqui S.. shape of the microgird [EB/OL]. (2007-01-01). [2010-10-01]. http://repositories.cdlib.org/cgi/viewcontent. cgi? article=3379&context=lbnl
    [61]Lasseter H. micro grids[A]. Power Engineering Society Winter Meeting[C]. New York,2002:37-48
    [62]Lasseter R., Akhil A., Marmay C., et al. integration of distributed energy resources: the certs microgrid concept[EB/OL]. (2007-04-01). [2010-10-01]. http://certs. lbl.gov/pdf/50829.pdf
    [63]Niknam T., Ranjabar A. M., Shirani A. R.. impact of distributed generation on Volt/Var control in distribution networks[A]. IEEE Power Tech Conference Proceedings[C]. Bologna,2003:25-50
    [64]沈国谬.微型电网和小型燃气轮机发电机[J].电器工业,2004,23(6):39-41
    [65]王成山,王守相.分布式发电供能系统若干问题研究[J].电力系统自动化,2008, 32(20):1-4,31
    [66]池海涛,吴俊宏,艾芊.含储能装置的直流微电网控制系统研究[J].低压电器,2009,22(1):46-50
    [67]施婕,郑漳华,艾芊.直流微电网建模与稳定性分析[J].电力自动化设备,2010,30(2):86-90
    [68]杨占刚,王成山,车延博.可实现运行模式灵活切换的小型微网实验系统[J].电力系统自动化,2009,33(14):89-98
    [69]王成山,杨占刚,王守相,等.微网实验系统结构特征及控制模式分析[J].电力系统自动化,2010,34(1):99-105
    [70]郭力,王成山,王守相,等.微型燃气轮机微网技术方案[J].电力系统自动化,2009,33(9):81-85
    [71]郭力,王成山.含多种分布式电源的微网动态仿真[J].电力系统自动化,2009,33(2):82-86
    [72]王凌,李培强,李欣然,等.微电源建模及其在微电网仿真中的应用[J].电力系统及其自动化学报,2010,22(3):32-38
    [73]肖朝霞,王成山,王守相.含多微型电源的微网小信号稳定性分析[J].电力系统自动化,2009,33(6):81-85
    [74]王成山,肖朝霞,王守相.微网中分布式电源逆变器的多环反馈控制策略[J].电工技术学报,2009,24(2):100-107
    [75]邓卫,唐西胜,齐智平.异步风力发电机对微网稳定性的影响与对策[J].中国电机工程学报,2011,31(1):32-38
    [76]林在豪.上海浦东机场能源中心冷、热、电二联供系统[J].上海节能,2005,6(1):158-164
    [77]周小谦.中国电力改革和推进热电联产、分布式供电的发展[J].热电技术,2006,2(1):1-3,14
    [78]Thong V., Driesen J., Belmans R.. the influence of the connection technology of dispersed energy sources on grid stability[A]. Conference on power electronics, Machines and Drives[C]. New York,2004:742-745.
    [79]Oliva A., Balda J.. a PV dispersed generator:a power quality analysis within the IEEE 519[J]. IEEE transactions on power delivery,2003,18(2):525-530
    [80]Paulillo G., Impinnisi P., Cantio M., et al. power quality in distributed generation system based on fuel cell technology-a case study[A]. Conference on harmonics and quality of power[C], Lake Placid Resort,2004:608-612.
    [81]Driesen J., Belmans R.. distributed generation:challenges and possible solutions[A]. IEEE/PES general meeting[C]. Montreal, Canada,2006:11-23
    [82]Ackermann T., Knyazkin V.. interaction between distributed generation and distribution network:operation aspects[A]. IEEE Power Engineering Society Transmission and Distribution Conference and Exhibition[C]. Tokyo,2002:25-36
    [83]Dondi P., Bayoumi D., Haederli C., et al. network integration of distributed power generation[J]. Journal of Power Sources,106(1),2002:1-9
    [84]Ackermann T., Andersson G., Soder L.. distributed generation:a definition[J]. Electric Power Systems Research,57(1),2001:195-204
    [85]McDermott T. E., Dugan R. C.. distributed generation impact on reliability and power quality indices[A]. In:Proceeding of IEEE Rural Electric Power Conference[C]. Colorado, USA,2002:49-62
    [86]Ackermann T., Knyazkin V.. Interaction between distributed generation and distribution network:operation aspects[A]. IEEE/PES Transmission and Distribution Conference and Exhibition[C]. Japan,2002:1357-1362
    [87]莫颖涛,吴为麟.分布式发电中电能质量问题的研究[J].农村电气化,2005,1(217):48-49
    [88]McDermott T. E., Dugan R. C.. distributed generation impact on reliability and power quality indices[A]. IEEE Rural Electric Power Conference[C]. Colorado,2002:46-57
    [89]Vasanasong E., Spooner E. D.. the effect of net harmonic currents produced by numbers of the sydney olympic village's PV systems on the power quality of local electrical network[A]. International conference on power system technology[C]. Perth,2000:1001-1006
    [90]姚勇,朱桂萍,刘秀成.谐波对低压微电网运行的影响[J].中国电力,2010,43(10):11-14
    [91]Marei M., El-Saadany E., Salama M.. a novel control algorithm for the DG Interface to mitigate power quality problems[J]. IEEE transactions on power delivery, 2004,19(3):1384-1392
    [92]Marei M., El-Saadany E., Salama M.. flexible distributed generation:(FDG)[A] Power engineering society summer meeting[C],2002:49-53
    [93]EI-Khattam W., Elnady M., Salama M. M. A., distributed generation impact on the dynamic voltage restorer rating[A]. in Proceedings of IEEE Transmission and Distribution Confefrence[C]. Dallas,2003:595-599
    [94]Jurado F.. power supply quality improvement with a SOFC plant by neural-network-based control[J]. Journal of Power Sources,2003,117:75-83
    [95]Tao H., Duarte J., Hendrix M.. a distributed fuel cell based generation and compensation system to improve power quality[A] International Power Electronics and Motion Control Conference[C],2006:1-5
    [96]Zhu P., Li X., Kang Y., et al. a novel control scheme in 2-phase SFR for unified power quality conditioner[A] Conference of the IEEE Industrial Electronics Society, 2003:1617-1622
    [97]Li Y., Vilathgamuwa D., Loh P.. micro-grid power quality enhancement using a three-phase four-wire grid-interfacing compensator[A] Conference record of the 2004 IEEE industry applications conference[C].2004:1439-1446
    [98]Gajanayake C., Vilathgamuwa D., Loh P., et al. a Z-source inverter based flexible DG system with PV resonance and repetitive controllers for power quality improvement of a weak grid[A] Power electronics specialists conference,2007:2457-2463
    [99]Gulez K.. neural network based switching control of AC-AC converter with DC-AC inverter for voltage sags, harmonics and EMI reduction using hybrid filter topology[J]. Simulation Modelling Practice and Theory,2008,16:597-612
    [100]Gajanayake C., Teodorescu R., Blaabjerg F., et al. four-leg parallel Z-source inverter based DG systems to enhance the grid performance under unbalanced conditions[A] European conference on power electronics and applications,2007: 1-10
    [101]潘艳霞.新型磁控开关型故障限流器研究[D].上海:上海交通大学,2008
    [102]吕志鹏,罗安,荣飞,等.电网电压不平衡条件下微网PQ控制策略研究[J].电力电子技术,2010,44(6):71-74
    [103]张国驹,唐西胜,齐智平.超级电容器与蓄电池混合储能系统在微网中的应用[J].电力系统自动化,2010,34(12):85-89
    [104]董国震,和敬涵.电力系统局部电路谐波谐振产生原因分析及对策[J].继电器,2007,35(1):77-84
    [105]罗安,汤赐,唐杰,等.一种基波串联谐振式混合型有源滤波器[J].中国电机工程学报,2008,28(3):12-22
    [106]李云阁,施围.应用解析法分析中性点接地系统中的工频铁磁谐振:谐振判据和消谐措施[J].中国电机工程学报,2003,23(9):141-145
    [107]顾伟峰,马伟明,王东,等.12/3相双绕组异步发电机自激励时谐波谐振问题研究[J].中国电机工程学报,2004,24(6):167-171
    [108]许文远,张大海.基于模态分析的谐波谐振评估方法[J].中国电机工程学报,2005,25(22):89-93
    [109]周辉,吴耀武,娄素华,等.基于模态分析和虚拟支路法的串联谐波谐振分析[J].中国电机工程学报,2007,27(28):84-89
    [110]Xu W., Huang Z., Cui Y., et al. harmonic resonance mode analysis[J]. IEEE Transactions on Power Delievery,20(2),2005:1182-1190
    [111]Bollen M.. understanding power quality problem[M]. New York:Wiley,2000:87-89
    [112]詹佩,陈增禄,姚伟鹏,等.一种无变压器无储能电容的串联型电压跌落补偿装置实验研究[J],电网技术,2008,32(4):46-51
    [113]石游,杨洪耕.带谐波补偿功能的动态电压补偿器[J],电网技术,2006,30(14):36-40
    [114]Brumsickle W., Schneider R., Luckjiff G., et al. dynamic sag correctors: cost-effective industrial power line conditioning[J]. IEEE Transaction on industry application,2001,37(1):212-217
    [115]郭文勇,张志丰,肖立业.基于共直流电压母线级联型超导储能系统的动态电压恢复器最小能量控制[J].电网技术,2009,33(5):69-74
    [116]Macken K., Bollen M., Belmans R.. mitigation of voltage dips through distributed generation system[J]. IEEE Transaction on industry applications,2004,40(6): 1686-1693
    [117]Fujita H., Akagi H.. voltage-regulation performance of a shunt active filter intended for installation on a power distribution system[J]. IEEE transaction on power electronic,2007,22(3):1046-1053
    [118]Tenma T., Genji T., Mizuki K., et al. suppression performance analysis of active filter by neural network control with voltage detection on distribution network[J]. Transaction on institute of electric engineering Japan,1999,119-D(5):713-719
    [119]Carastro F., Summer M., Zanchetta P.. shunt active filter for voltage and power improvement within a Microgrid[A]. IEEE International Power Electronics and Motion Control Conference[C]. Shanghai,2006:107-116
    [120]Reed G., Takeda M., Iyoda I.. improved power quality solutions using advanced solid-state switching and static compensation technologies[A]. IEEE Power Society Winter Meeting[C]. New York,1999:1-12
    [121]Milanovich J., Ali H., Aung M.. influence of distributed wind generation and load composition on voltage sags[J]. IET, Generation, Transmission, and Distribution, 2007,1(1):13-22
    [122]Morren J., Haen S., Ferreira J.. contribution of DG units to voltage control:active and reactive power limitations[A]. Proceedings of IEEE Russia Power Tech Conference[C]. St. Petersburg,2005:138-147
    [123]Kashem M., Ledwich G.. multiple distributed generators for distribution feeder voltage support[J]. IEEE Trans on energy conversion,2005,20(3):676-684
    [124]李勇汇,吕艳萍,彭辉,等.一种基于分布式电源的串联补偿方式的设计[J].电工技术学报,2010,4(25):158-164
    [125]杨晓东,李庚银,周明,等.不确定条件下的电压暂降概率评估[J].电网技术,2010,34(2):41-45
    [126]杨晓东,李庚银,周明,等.电压暂降随机预估的自适应信赖域方法[J].中国电机工程学报,2011,31(4):39-44
    [127]王学华,阮新波,刘尚伟.抑制电网背景谐波影响的并网逆变器控制策略[J].中国电机工程学报,2011,31(6):7-14
    [128]陈磊.电压补偿型有源超导限流器的研究[D].武汉:华中科技大学,2010
    [129]陈丹菲,赵彩宏.电流补偿型超导限流器的研究[J].电气传动,2005,35(4):41-44
    [130]Chen D., Zhao C., L. Xiao L.. a current compensation type superconducting fault current limiter[A]. Cryogenic engineering conference[C],2005,669-672
    [131]赵彩宏,郭风,郭文勇,等.基于电压补偿原理的超导储能-限流集成系统[J].电力系统自动化,2006,30(2):68-71,105
    [132]Paul W., Chen M.. superconducting control for surge currents[J]. IEEE Spectrum. 1998,35(5):49-54
    [133]王辉.统一潮流控制器的智能控制方法研究[D].长沙:湖南大学,2005
    [134]Dash P., Pradhan A., Panda G., et al. digital protection of power transmission lines in the presence of series connected FACTS devices. IEEE power engineering society winter meeting, Singapore,2000:1967-1972
    [135]Dash P., Mishra S., Panda G.. damping multi-modal power system oscillation using a hybrid fuzzy controller for series connected FACTS devices[J]. IEEE transactions on power systems,2000,15(4):1360-1366
    [136]李珂.电动汽车高效快速响应电驱动系统控制策略研究[D].济南:山东大学,2007
    [137]Chan C., Wong Y.. the state of the art of electric vehicles technology[A]. The 4th International Power Eleetronics and Motion Control Conference[C],2004,1:46-57
    [138]曹秉刚,张传伟,白志峰,等.电动汽车技术进展和发展趋势[J].西安交通大学学报,2004,38(1):1-5
    [139]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].北京:北京理工大学出版社,2002
    [140]张晨阳,王涛.电动汽车和车用电池性能相关参数分析[J].汽车科技,2002,26(6):16-18
    [141]程夕明,孙逢春.电动汽车能量存储技术概况[J].电源技术,2001,25(1):47-52
    [142]林成涛,陈全世,田光宇,等PHEV对电池性能的要求[J].电池,2007,37(5):354-356
    [143]赵新兵,谢健.新型锉离子电池正极材料LiFePO4的研究进展[J].机械工程学报,2007,43(1):69-76
    [144]康继光,卫振林,程丹明,等.电动汽车充电模式与充电站建设研究[J].电力需求侧管理,2009,11(5):64-66
    [145]Enslin J. H. R., Heskes P. J. M.. harmonic interaction between a large number of distributed power inverters and the distribution network[J]. IEEE Transactions on Power Electronics,2004,19(6):1586-1593
    [146]Ryckaert W., Gusseme K., Sype V., et al. adding damping in power distribution systems by means of power electronic converters[A]. European conference on power electronics and applications[C]. Dresden,2006:26-30
    [147]Heskes P., Enslin J.. power quality behavior of different photovoltaic inverter topologies [A]. International Conference on Power Conversion, Intelligent Motion[C]. Nurnberg,2003:17-27
    [148]Li W., Man Y., Li G.. optimal parameter design of input filters for general purpose inverter based on genetic algorithm [J]. Applied Mathematics and Computation,2008, 205(2):697-705
    [149]Bosman A., Cobben J., Myrzik J. harmonic modeling of solar inverters and their interaction with the distribution grid [A]. International Universities Power Engineering Conference[C]. Newcastle,2006:1-14
    [150]Carvalho P., Correia P., Ferreira L.. distributed reactive power generation control for voltage rise mitigation in distribution networks[J]. IEEE Transaction on power systems,2008,23(2):766-772
    [151]Task force on harmonics modeling and simulation. modeling and simulation of the propagation of harmonics in electric power networks part I:concepts, models and simulation techniques [J]. IEEE transactions on power delivery,1996,11(1):452-465
    [152]Dommel H. W., Yan A., Shi W.. harmonics from transformer saturation [J]. IEEE Transactions on Power Delivery,1986,1(2):209-215
    [153]Jalali S. G., Lasseter R. H.. harmonic interaction of power system with static switching circuits [A]. IEEE Power Electronics Specialist Conference[C]. Cambridge, 1991:95-109
    [154]孙媛媛.非线性电力电子装置的谐波模型及其在谐波分析中的应用[D].济南:山东大学,2009:8-10
    [155]李裕能.开关函数法用于变流装置的谐波分析[J].电网技术,2000,24(6):18-20
    [156]Rittiger J., Kulicke B.. calculation of HVDC-converter harmonics in frequency domain with regard to asymmetries and comparison with time domain simulations[J]. IEEE Transactions on power delivery,1995,10(4):1944-1949
    [157]仰彩霞,刘开培,王东旭.基于回路模态分析法的串联谐波谐振评估[J].高电压技术,2008,34(11):2459-2462.
    [158]张永伟,邢玉领,吕威.局房有源滤波器故障原因分析[J]邮电设计技术,2010,23(3):67-69
    [159]Laaksonen H., Saari P., Komulainen R.. voltage and frequency control of inverter based weak LV network microgrid[A]. Proceedings of 2005 International Conference on Future Power Systems[C]. Amsterdam,2005:148-154
    [160]Weedy B., Cory B.. electric power systems [M]. New York:John Wiley & Sons, 1998
    [161]Pogaku N., Prodanovich M, Green T.. Modeling, analysis and testing of autonomous operation of an inverter-based microgrid[J]. IEEE transactions on power electronics,2007,22(2):613-625
    [162]Kawabata T., Miyashita T., Yamamoto Y. dead beat control of three phase PMW inverter. IEEE transactions on power electronics,1990,5(1):21-28
    [163]王刚,周荣,乔维高.电动汽车充电技术研究[J].农业装备与车辆工程,203(6): 7-9
    [164]Choi S., Li H., Vilathgamuwa M.. dynamic voltage restoration with minimum energy injection[J]. IEEE Transactions on Power Systems,2000,15(1):51-57
    [165]Obara S.. dnalysis of a fuel cell micro-grid with a small-scale wind turbine generator[J]. International Journal of Hydrogen Energy,2007,32(1):323-336
    [166]Ghosh A., Ledwich G. dompensation of distribution system voltage using DVR[J]. IEEE Transaction on Power Delivery,2002,17(1):1030-1036

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700