中功率单相AC/DC标准化及相关稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是在电力电子系统集成课题的背景下进行的研究,全文可以分为两部分。第一部分主要对用于中功率范围的单相功率因数校正器(PFC)的拓扑进行优选,并且对后级宽输入电压范围的DC/DC拓扑进行了研究。第二部分主要对DC/DC变流器的小信号模型进行进一步研究,并且在小信号分析的基础上,研究了DC/DC变流器模块和级联系统的稳定性,同时对PFC变流器的小信号特性也进行了探讨。
     对于中功率范围的PFC变流器,Boost型的拓扑以其高效率,宽输入范围,低谐波而广泛应用。本文对提高Boost型PFC的效率的方法进行了探讨,并且以高效率为主要的优选准则,综合考虑拓扑的复杂程度,辅助网络的体积,以及是否便于集成,适用功率范围等方面,对现有的boost型PFC拓扑进行了比较,并且归纳出了通用性较好的拓扑。通过比较和优化,按照不同功率等级的PFC应用场合,总结出了若干个适合标准化的Boost型PFC拓扑,
     传统的DC/DC变流器的效率对输入电压的范围比较敏感,用于宽输入电压范围场合时,效率很低。为了能够使得DC/DC能够适应很宽的输入电压范围(100V—400V),本文提出一种新的混合调制的控制的方式,通过将窄范围设计的DC/DC变流器单元原边并联,结合副边的桥式整流结构,能够获得很宽的输入电压范围,并且可以降低副边整流器件的电压应力,从而采用低耐压的器件,降低导通损耗,提高效率。
     本文还对峰值电流模式控制的DC/DC变流器的模型进行了进一步研究,提出了一种改进的小信号模型,能够更为准确的预测变流器的环路特性。本文对平均电流模式控制的DC/DC变流器进行了建模,采用与峰值电流控制变流器建模相似的方法,得出了改进的平均电流模式控制的变流器的模型。通过比较和分析,将两种电流模式控制的模型进行归一化处理,得出了通用的电流模式控制的小信号模型。在这个小信号模型的基础上,对峰值电流模式控制的DC/DC变流器在不同性质负载下的稳定性进行分析和判断,并提出了阻性负载条件下设计用于负阻性负载的DC/DC变流器的设计方法。同样,通过分析输入滤波器对DC/DC变流器环路的影响,得出了更为简单的滤波器设计标准。
     本文最后对Boost型PFC变流器进行了建模。在通用的电流模式控制变流器模型的基础上,增加了输入电压的前馈环路。虽然PFC不存在DC/DC变流器的稳态工作点,但是通过分析发现,直流输入情况下的平均电流控制的变流器模型可以代替用于交流输入的PFC的模型。通过分析在直流输入时的小信号模型的稳定性,就可近似得出PFC变流器的小信号稳定性
This dissertation includes two parts. Part I, topology optimizations for boost type PFC converter and front end DC/DC converter with wide input voltage range. Part II, modeling for peak current mode (PCM) control and average current mode (ACM) control, with the generalized small signal model for current mode controlled converter the stability of the PCM converter is analyzed. The small signal model for PFC converter is built based on the DC/DC model with a little modification, and the stability of pfc converter is analyzed.
     In the power level higher than 500 watt, the Boost type PFC topology is more preferred due to its high power factor, low thd, wide power range. However the conventional Boost PFC converter suffers from high conduction loss when it is used in universal line voltage. Due to the wide input voltage range (90Vac-265Vac) the efficiency at low line is much lower than high line. The optimization focus on the efficiency improvement, meanwhile the complexity of circuit, the volume of auxiliary network, and power level limitation are considered. Based on the optimization some generalized Boost type PFC topology is deduced and analyzed, which can be used as general topology in system integration application in different power level.
     In conventional front end DC/DC full bridge converters the efficiency is sensitive to the input voltage range. Therefore when these dc/dc topologies used in wide voltage range (100V-400V) the efficiency falls significantly. To achieve high efficiency at such wide input voltage range, a new rectifier structure at secondary side and a hybrid control strategy are proposed. with the new rectifier structure and new control strategy the voltage stress of rectifier devices is reduced to half. Therefore the conduction loss of secondary side is reduced, and the efficiency is improved.
     In part 2, an improved small signal model for PCM converter is proposed using geometry method. This low frequency small signal model is more precise than the conventional PCM model. Also the ACM small signal model is built using similar method. with the synthesis of the PCM and ACM model, a general small signal symbolic model is got. using the general model for current mode control, the stability of PCM controlled converter is analyzed with different load, and the design criterion for loop compensation with different load condition is proposed. A simple design criterion for EMI filter is proposed for PCM DC/DC converter based on the proposed small signal model.
     The small signal model for Boost type PFC converter with ACM control is built. Analysis and experimental results verify that the small signal for PFC converter is almost identical to that of DC/DC converter with same control method. The design criterion for voltage loop band width is proposed based on the synthesizing analysis.
引文
1 Lee, F.C.; Dengming Peng, Power electronics building block and system integration, In: Conference Record of IEEE-PIEMC, 2000, vol. 1: 1-8
    2 Kevin T. Kormegay, Design issues in power electronic building block (PEBB) system integration, In: Conference Record of IEEE-VLSI, 1998:48-52
    3 Ericsen, T., Power Electronic Building Blocks-a systematic approach to power electronics, In: Conference Record of IEEE-Power Engineering Society Summer Meeting, 2000: 1216 - 1218
    4 J.D. Van Wyk, Fred C. Lee, Power Electronics Technology at the Dawn of the New Millennium -Status and Future, In: Proceedings of IEEE-PESC, 1999, vol.1: 3-12
    5 Lee, F.C.; van Wyk, J.D.; Boroyevich, D.; Guo-Quan Lu; Zhenxian Liang; Barbosa, P., Technology trends toward a system-in-a-module in power electronics, In: IEEE-Circuits and Systems Magazine, 2002:4-22
    6 National Committee on power electronics, report on power electronics and global competitiveness, EPRI.1992.
    7 Hudgins, J.L.; Mookken, J.; Beker, B.; Dougal, R.A., The new paradigm in power electronics design, In: Proceedings of IEEE-PEDS, 1999, vol.1: 1-6
    8 Gang Chen, Chucheng Xiao, W.G. Odendaal, An apparatus for loss measurement of integrated power electronics modules design and analysis, In: Conference Record of IEEE-IAS Annual Meeting, 2002, vol.1: 222-226
    9 Liyu Yang, F.C. Lee, W.G. Odendaal, Measurement-based characterization method for integrated power electronics modules, In: Proceedings of IEEE-APEC, 2003, vol.1: 490-496
    10 Rengang Chen; Canales, F.; Bo Yang; van Wyk, J.D., Volumetric optimal design of passive integrated power electronic module (IPEM) for distributed power system (DPS) front-end DC/DC converter, In: Conference Record of IEEE-IAS Annual Meeting, 2002, vol.2: 1758-1765
    11 Seung-Yo Lee, Lingyin Zhao, Johan T. Strydom, W.G. Odendaal, J.D. van Wyk, Thermal analysis for series LC integrated passive resonant module based on finite-element modeling, In: Proceedings of IEEE-PESC, 2002, vol.2: 1009-1014
    12 Seung-Yo Lee, W.G. Odendaal, J.D. van Wyk, Thermo-mechanical stress analysis for an integrated passive resonant module, In: Conference Record of IEEE-IAS Annual Meeting, 2002, vol.2: 1752-1757
    13 Simon S. Wn, Zhenxian Liang, Fred C. Lee, Guo-Quan Lu, Thermal performance of a power electronics module made by thick-film planar interconnection of power devices, In: Conference Record of IEEE-ITHERM, 2002: 1097-1101
    14 Shatil Haque, Kun Xing, GUo-Quan Lu, Douglas J. Nelson, Dusan Borojevic, F.C. Lee, Packaging for thermal management of power electronics building blocks using metal posts interconnected parallel plate structure, In: Conference Record of IEEE-ITHERM, 1998: 392 - 398
    15 Robert A. Lewis, Jerry L. Hudgins, The effects due to package parasitics of a PEBB-1 module in an ARCP circuit, In: Proceedings of IEEE-PESC, 1998, vol.2: 1951-1956
    16 Haque S., Kun Xing, Ray-Lee Lin, Suchicital C.T.A., Guo-Quan Lu, Nelson D.J., Borojevic D., Lee F.C, An innovative technique for packaging power electronic building blocks using metal posts interconnected parallel plate structures, IEEE Trans, on Advanced Packaging, 1999,22(2): 136-144
    17 Xingsheng Liu, Shatil Haque, Jinggang Wang, Guo-Quan Lu, Packaging of integrated power electronics modules using flip-chip technology, In: Proceedings of IEEE-APEC, 2000, vol.1: 290-296
    18 Xingsheng Liu, Xiukuan Jing, Guo-Quan Lu, Chip-Scale Packaging of Power Devices and Its Application in Integrated Power Electronics Modules, IEEE Trans on. Advanced Packaging, 2001, 24(2): 206-215
    19 Guo-Quan Lu, Xingsheng Liu, Application of solderable devices for assembling three-dimensional power electronics modules, In: Proceedings oflEEE-PESC, 2000, vol.2:1261-1266
    20 Zhenxian Liang, Frred C. Lee, G.Q. Lu, Dushan Borojevic, Embedded power-a multilayer integration technology for packaging of IPEMs and PEBBs, In: IEEE-IWIPP, 2000:41-45
    21 Kalyan Siddabattula, Zhou Chen, Dushan Borojevic, Evaluation of metal post interconnected parallel plate structure for power electronic building blocks, In: Proceedings of IEEE-APEC, 2000, vol.1: 271-276
    22 Zhenxian Liang, Fred C. Lee, Embedded power technology for IPEMs packaging applications, In: Proceedings of IEEE-APEC, 2001, vol.2:1057-1061
    23 Xingsheng Liu; Haque, S.; Guo-Quan Lu, Three-dimensional flip-chip on flex packaging for power electronics applications, IEEE Trans. on Advanced Packaging, 2001, 24(1): 1-9
    24 John G. Bai, Guo-Quan Lu, Xingsheng Liu, Flip-chip on flex integrated power electronics modules for high-density power integration, IEEE Trans. on Advanced Packaging, 2003, 26(1): 54-59
    25 Z.X. Liang, F.C. Lee, J.D. van Wyk, D. Boroyevich, E. Scott, J. Chen, B. Lu, Y. Pang, Integrated packaging of a 1 kW switching module using planar interconnect on embedded power chips technology, In: Proceedings of IEEE-APEC, 2003, vol. 1: 42-47
    26 Jonah Zhou Chen, Ying Fcng Pang, Dushan Boroyevich, Elaine P. Scott, Karen A. Thole, Electrical and thermal layout design considerations for integrated power electronics modules, In: Conference Record of IEEE-IAS Annual Meeting, 2002, vol. 1: 242-246
    27 Jonah Zhou Chcn, Yingxiang Wu, Christcllc Gence, Dushan Boroycvich, Jan Hclge Bohn, Integrated electrical and thermal analysis of integrated power electronics modules using iSIGHT, In: Proceedings of IEEE-APEC,2001, vol.2:1002-1006
    28 Jonah Z. Chen, Yingxiang Wu, Dushan Boroyevich, Jan H. Bohn Integrated electrical and thermal modeling and analysis of IPEMs, In: Conference Record of IEEE-COMPEL, 2000:24-27
    29 I. Celanovic, I. Milosavjevic, D. Boroyevich, R. Cooley, J. Guo, A new distributed digital controller for the next generation of power electronics building blocks, In: Proceedings of IEEE-APEC, 2000, vol.2:889-894
    30 Jinghong Guo, Ivan Celanovic, Dushan Borojevic, Distributed software architecture of PEBB-based plug and play power electronics systems, In: Proceedings of IEEE-APEC, 2001, vol.1: 772-777
    31 Jinghong Guo, Stephen H. Edwards, Dushan Borojevic, Elementary control objects toward a dataflow architecture for power electronics control software, In: Proceedings of IEEE-PESC, 2002, vol.2:1705-1710
    32 Bing Lu, Wei Dong, Shuo Wang, F. C. Lee, High Frequency Investigation of Single-switch CCM Power Factor Correction Converter. In proceeding of IEEE APEC 2004.Vol.3 : 1481-1487.
    33 钱照明,张军明,吕征宇,电力电子系统集成,中国集成电路,2003.7:39-45
    34 张军明.中功率DC/DC变流器模块标准化若干关键问题研究浙江大学博士学位论文 2004.3
    35 谢小高 小功率DC/DC变流器模块标准化若干关键问题研究浙江大学博士学位论文.2005.3
    36 Frede Blaabjerg, Alfio Consoli, J. A. Ferreira, Jacobus D. van Wyk. The Future of Electronic Power Processing and Conversion. IEEE Transactions On Power electronics 2005: 20 (3): 715-720.
    37 Matthias Stecher, Nils Jensen, Marie Denison, Rail Rudolf, Bernhard Strzalkoswi, Mark N. Muenzer Key Technologies for System-integration in the Automotive and Industrial Applications IEEE TRransactions on power Electronics, 2005 20( 3): 537-549.
    38 Tse, C.K.; Chow, M.H.L.;Theoretical study of switching power converters with power factor correction and output regulation. IEEE Transactions on. Circuits and Systems I: Fundamental Theory and Applications, 2000 47 (7): 1047 - 1055
    39 Sangsun Kim, and Prasad N. Enjet A Modular Single-Phase Power-Factor-Correction Scheme With a Harmonic Filtering Function, IEEE Transactions On Industrial Electronics, 2003 50(2): 328-335.
    40 Oruganti, R.; Cham Yew Thean; A novel PFC scheme for AC to DC converter with reduced losses. In Proceeding of IEEE IECON 1994: 639 - 645
    41 Sangsun Kim. and Prasad N. Enjeti. A Parallel-Connected Single Phase Power Factor Correction Approach With Improved Efficiency, IEEE Transactions on Power Electronics, 2004,19( l):.87-94
    1. Salmon, J.C.; Circuit topologies for PWM boost rectifiers operated from 1-phase and 3-phase AC su:lies and using either single or split DC rail voltage outputs. In proceedings of IEEE APEC 1995:473-479
    2. Enjeti, P.N.; Martinez, R.; A high performance single phase AC to DC rectifier with input power factor correction. In proceedings of IEEE APEC 1993: 190 - 195
    3. Chang-Ming Liaw; Thin-Huo Chen; A soft-switching mode rectifier with power factor correction and high frequency transformer link. IEEE Transactions on Power Electronics 2000 15(4) :644 - 654
    4. Bing Lu, Ron Brown, Marco Soldano. Bridgeless PFC Implementation Using One Cycle Control Technique. In proceedings APEC 2005 vol 2: 812-817.
    5. Bing Lu, Wei Dong, Qun Zhao, EC Lee. Performance evaluation of CoolMOS-sup -sp1 trade- and SiC diode for single-phase power factor correction a:lications In proceedings of IEEE APEC 2003:.651-657
    6. Ramesh Srinivisan, Ramesh Oruganti. A Unity Power Factor Converter Using Half-Bridge Boost Topology IEEE Transactions on Power Electronics. 1998 13 :487-500.
    7. Hua, G; Leu, C.S.; Lee, F.C.; Novel zero-voltage-transition PWM converters . In proceedings of IEEE PESC 1992:55-61
    8. Streit, R.; Tollik, D.;High efficiency telecom rectifier using a novel soft-switched boost-based input current shaper. In Proceedings of IEEE INTELEC 1991:720-726
    9. Enrique Maset, GC Hua, Fred C Lee. 100 kHz, 2 KW boost ZVT-PWM converter for power factor correction In proceedings of IEEE CIEP 1993: 102-106.
    10. Brian T Irving, Yungtaek Jang, M.Milan. A comparative study of soft-switched CCM boost rectifiers and interleaved variable-frequency DCM boost rectifier In proceedings of IEEE APEC 2000: 171-177.
    11. Denazar Crutz Martin. Falcoconders, etc. A family of DC-to-DC PWM converters using a new ZVS commutation cell. In proceedinga of IEEE PESC 1993 :524-530.
    12. Gegner, J.P.; Lee, C.Q.; Zero-voltage-transition converters using an inductor feedback technique . In proceedings of IEEE APEC 1994 : 862 - 868.
    13. de Souza, A.F.; Barbi, I.; A new ZVS-PWM unity power factor rectifier with reduced conduction losses In proceeding of IEEE PESC 1994.:.342-348.
    14. L. Freitas, P.Gomes. A high power high frequency ZCS ZVS PWM Buck converter using a feedback resonant converter In proceedings of IEEE PESC 1993: 330-336.
    15. Filho, N.P.; Jose Farias, V: Carlos, L.; de Freitas. L.C.; A novel family of DC-DC PWM converters using the self-resonance principle In proceeding of IEEE PESC 1994:. 1385-1391.
    16. Milan M. Jovanovi'c , and Yungtaek Jang, A new, soft-switched boost converter with isolated active snubber IEEE Trans. ON Industry application . 35 (2) 1999 :.496-502.
    17. Wallmeier, P.; Richter, J.; Frohleke, N.; Grotstollen, H.; Langemeyer, L.; Margaritis, B.; A high efficiency single-phase power factor corrected switched mode rectifier .In proceeding IEEE IECON 1998.: 679-684
    18. Il-Oun Lee; Lee, D.Y.; Cho, B.H.;High performance boost PFC pre-regulator with improved zero-voltage-transition (ZVT) converter. In proceeding of IEEE PESC 2002 : 1387 -1391
    19. Lin, R.L.; Zhao, Y.; Lee, F.C.; Improved soft-switching ZVT converters with active snubber . In Proceeding of IEEE APEC 1998 : 1063 - 1069
    20. Kyoung-Soo Park; Yoon-Ho Kim; A new high-efficiency zero-voltage-switching AC-DC boost converter using energy recovery circuits. In proceeding of IEEE IAS 2001: 2466-2472
    21. Hacl Bodur, A. Faruk Bakan A new ZVT-ZCT-PWM DC-DC converter IEEE Transactions ON Power Electronics, 2004.19(3): 676-684
    22. S.Y.R Hui, K.W Eric Cheng, Saligram R. Narayana Prakash A fully soft-switched extended-period quasi-resonant power-factor-correction circuit IEEE Transactons ON Power Electronics 1997.Vol. 12(5): 922-930.
    23. Dong Ho Lee; Lee, F.C.; Novel zero-voltage-transition and zero-current-transition pulse-width-modulation converters. In proceeding of IEEE PESC 1997:233-239
    24. Yang, L..; Lee. C.Q.; Analysis and design of boost zero-voltage-transition PWM converter In proceeding of IEEE APEC 1993:707-713.
    25. Mosehopoulos, G.; Jain, P.; Joos, G.; A novel zero-voltage switched PWM boost converter. In proceeding of IEEE PESC 1995. : 694-700.
    26. Chien-Ming Wang; A novel zero-voltage-switching PWM boost rectifier with high power factor and low conduction losses. In proceeding of IEEE INTELEC 2003:.224-229
    27. Hong Mao, Osama Abdel Rahman and Issa Batarseh. active resonant tank to achieve zero voltage switching for non-isoalated DC-DC converters with synchronous rectifiers In Proceedingof IEEE IECON 2005.: 585-591.
    28. Moschopoulos, G.; Jain, P.; Yan-Fei Liu; Joos, G; A zero-voltage switched PWM boost converter with an energy feed forward auxiliary circuit, In proceeding of IEEE PESC 96.: 76-82
    29. M.L. Martins, H. Pinheiro, J.R. Pinheiro, H.A. Gr.undling and H.L. Hey Family of improved ZVT PWM converters using a self-commutated auxiliary network IEE Proceeding. Electr. Power A: 2003. Vol. 150(6): 680-688.
    30. Ching-Jung Tseng and Chem-Lin Chert, Novel ZVT-PWM converters with active snubbers IEEE Trans. ON Power Electronics, 1998 13(5): 861-869.
    31. Nikhil Jain, Praveen Jain, Gkza Jobs Analysis of a zero voltage transition boost converter using a soft switching auxiliary circuit with reduced conduction losses In proceeding of IEEE PESC 2001: 1799-1804.
    32. Xu, D.M.; Zhang, J.M.; Wu, X.H.; Ren, Y.C.; Qian, Z.; A novel single-phase active-clamped ZVT-PWM PFC converter. In Proceedings of IEEE APEC 2000:456-459
    33. Martins, M.L.; Grundling, H.A.; Pinheiro, H.; Pinheiro, J.R.; Hey, H.L.; A ZVT PWM boost converter using an auxiliary resonant source. In proceeding of IEEE APEC 2002:1101-1107.
    34. M.L Martins, J.L. Russi, H.L.Hey. A comparative study for ZVT PWM converters with resonant auxiliary circuit -RAC In Proceeding oflEEE IAS 2004: 1797-1804.
    35. Bassett, J.A.: New, zero voltage switching, high frequency boost converter topology for power factor correction. In Proceeding of IEEE intelec 1995: 813-820.
    36. Cl'audio Manoel da Cunha Duarte, and lvo Barbi, A new family of ZVS-PWM active-clamping DC-to-DC boost converters analysis, design, and experimentation . IEEE Transactions ON Power Electronics, 1997. 12(5): 824-831.
    37. Simon Fraidlin, Anotoly Polikarpov. Active clamp for power converter and method of operation thereof. US.Patent: 6259235B.2001.
    38. Jovanovic, M.M.; A technique for reducing rectifier reverse-recovery-related losses in high-voltage, high-power boost converters. In proceeding of IEEE APEC 1997: 1000-1007
    39. Yungtaek Jang; Jovanovic, M.M.; Chau-Chun Wen;Design considerations and performance evaluation of a 3 kW, soft-switched boost converter with active snubber. In Proceeding of IEEE INTELEC 1998: 678-684.
    40. Yefim Berkovich and Adrian Ioinovici, High efficiency PWM zero-voltage-transition boost converter AC small signal analysis. IEEE Transactions ON Circuits and System-Ⅰ: FUNDAMENTAL THEORY AND APPLICATIONS, 2000 47(6): 860-867
    41. Gang Chen; Dehong Xu; Bo Feng; Yousheng Wang; Minimum-voltage active-clamping DC-DC converters. In proceeding of IEEE PESC 2002:403-408
    42. da Cunha Duarte, C.M.; Barbi, I.; A new ZVS-PWM active-clamping high power factor rectifier analysis, design, and experimentation. In Proceeding of IEEE APEC 1998: 230-236.
    43. Gang Chen; Dehong Xu; Bo Feng; Yousheng Wang; A family of compound active-clamping DC-DC converters. In proceeding IEEE APEC 2002:850-856
    44. Xinke Wu, Junming Zhang, Xin Ye, Zhaoming Qian. A Family of Non-isolated ZVS DC-DC Converter Based on a New Active Clamp Cell, In: proceeding of IEEE IECON 2005 : 592-597.
    45.冯波,徐德鸿.1kW复合有源筘位功率因数校正变换器[J]中国电机工程学报.2005.25(2).33-37.
    46.李冬,阮新波.一种复合型单开关功率因数校正预调节器[J].中国电机工程学报,2003 23(8):81-84.
    47.张方华,严仰光.带隔离变压器的DC/DC变换器零电流转换方案[J].中国电机工程学报,2003,23(9):63-66
    48.冯波,吴国忠,徐德鸿,等.一种新型有源箝位boost变换器[J].中国电机工程学报,2002.22(10):61-66
    49.羊彦,金雍,武小娟.1.5kW有源功率因数校正器的设计[J].电力电子技术。2004.38(2).48-50
    50.冯波,徐德鸿 1kW最小电压有源箝位PFC变换器[J]中国电机工程学报.2004.24(4).29-33.
    51.邱兴云,陆治国,彭容单相两级功率因数校正综述.[J]通讯电源技术 2003.2.5-8
    52. Fred C Lee. high frequency quasi-resonant converter topologies In Proceeding of IEEE. Vol.76.1988: 377-390.
    53. Barbi, I.; Bolacell, J.C.; Martins, D.C.; Libano, F.B.; Buck quasi-resonant converter operating at constant frequency analysis, design, and experimentation [C] In proceeding of IEEE PESC 1989: 873-880.
    54. Atoh, S.; Yoshike, H.; Sekino, Y.; PWM DC-DC converter with a resonant commutation means In Proceeding. IEEE INTELEC 1991: 308-313.
    55. Ivensky, G.; Sidi, D.; Ben-Yaakov, S.; A soft switcher optimized for IGBTs in PWM topologies In Proceeding. IEEE APEC 1995: 900-906.
    56. David M Xu; J.M Zhang; X.H Wu; Z.Qian. A novel single-phase active-clamped PFC converter. In Proc. IEEE APEC 1997: 266-271.
    57. Haci Bodur, A. Faruk Bakan. An improved ZCT-PWM DC-DC converter for high-power and frequency a:lications Trans.On. I.E. 2004 51(1): 89-95.
    58. L. H. S. C. Barreto; E. A. A. Coelho; A quasi-resonant quadratic boost converter using a single resonant network In Proc. IEEE PESC 2003:595-599
    59. Atoh, S.; Yoshike, H.; Sekino, Y.; PWM DC-DC converter with a resonant commutation means In proceeding of IEEE INTELEC 1991: 308-313
    60. Hey, H.L.; Matias, L.; Viera, J.B., Jr.;A buck ZC-ZVS PWM converter In proceeding of IEEE PESC 1994: 1379-1384
    61. Yungtaek Jang, and Milan M. Jovanovic" A new, soft-switched, high-power-factor boost converter with IGBTs. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2002.17(4): 469-476.
    62. de Souza, A.F.; Barbi, I.; A new ZCS quasi-resonant unity power factor rectifier with reduced conduction losses In Proc.IEEE PESC 1995:1171-1177.
    63. Wakabayashi, F.T.; Canesin, C.A.; A new family of zero-current-switching PWM converters and a novel HPF-ZCS-PWM boost rectifier. In Proc. IEEE APEC 1999:605-611.
    64. Carlos A. Canesin, and Ivo Barbi. Novel zero-current-switching PWM converters Trans On Industrial .Electronics. 1997. 44(3) : 372-381
    65. Jaber Abu-Qahouq and lssa Batarseh. Generalized analysis of soft-switching DC-DC converters In Proe. IEEE PESC 2000:185-192
    66. Fabio T. Wakabayashi, Marcelo J. Bonato, Carlos A. Canesin, Novel high-power-factor ZCS-PWM pre-regulators IEEE Trans On Industrial .Electronics 2001.48 (2) :322-333.
    67. Chien-ming Wang, Huang Jen Cjiu. A family of zero-current-switching (ZCS) PWM converters using a new zero-current switching auxiliary circuit. In Proc. IEEE PEDS 2003: 1407-1412.
    68. Chien-ming Wang. A novel zero-current-switching PWM boost rectifier with high power factor and low conduction losses. In Proc. IEEE IECON 2003:397-402
    69. C.A Canesin; F.A.S Goncalves. Single-phase high power-factor boost ZCS pre-regulator operating in critical conduction mode In Proc. IEEE ISIE 2003:746-751
    70. Chien-ming Wang. Zero-current-transition PWM DC-DC converters using a new zero-current-switching PWM switch cell In Proc. IEEE INTELEC 2003:790-795
    71. Hang-Seok Choi, Bo Hyung Cho. Novel zero-current-switching (ZCS) PWM switch cell minimizing additional conduction loss IEEE Trans. Industrial Electronics 2002.49(1): 165-172.
    72. Hang-Seok Choi; Cho, B.H.; Power factor pre-regulator (PFP) with an improved zero-current-switching (ZCS) PWM switch cell In Proe. IEEE PCC Osaka 2002: 19-24.
    73. Chien-ming Wang. Novel zero-current-switching (ZCS) PWM converters In Proc. IEEE IECON 2003:391-396
    74. Dong-Yun Lee, Min-Kwang Lee, Dong-Seok Hyun, Ick Choy, New zero-current-transition PWM DC-DC converters without current stress IEEE Trans. Power.Electronics.2003.18(1): 95-104
    75. Chien-ming Wang. A new single-phase ZCS-PWM boost rectifier with high power factor and low conduction losses In Proc. IEEE APEC 2004:1458-1464
    76. Chien-ming Wang. ZCS-PWM boost rectifier with high power factor and low conduction losses. IEEE Trans. On Aerospace and Electronic Systems, 2004 40(2): 650-660.
    77. Carlos A. Canesin, and Ivo Barbi, Novel zero-current-switching PWM converters IEEE Trans. ON Industrial electronics, 1997. 44(3):.372-381.
    78. Hosseini, S.H.; Almaleki, M.; Frequency & duty cycle control considerations for soft-switching buck cho:er. In Proceeding oflEEE ICECS 2003: 842-845.
    79. Rodrigo Cardozo Fuentes and H'elio Le'aes Hey. An improved ZCS-PWM commutation cell for IGBT's application. IEEE Trans. ON Power Electronics, 1999 14(5): 939-948.
    80. Pritam Das. Gerry Moschopulos. A comparative study of zero current transition PWM converters. In proceeding of IEEE APEC 2005:318-323.
    81. Barreto, L.H.S.C.; Coelho, E.A.A.; Farias, V.J.; de Freitas, L.C.; Vieira, J.B., Jr.; A quasi-resonant quadratic boost converter using a single resonant network. In proceeding of IEEE PESC 2003: 595-599
    82. Hey, H.L.; Matias, L.; Viera, J.B., Jr.;A buck ZC-ZVS PWM converter. In proceeding of IEEE PESC 1994: 1379-1384
    83. Guichao Hua, E.X.; Yimin Jiang; Lee, F.C.; Novel zero-current-transition PWM converters. IEEE Transactions on power electronics 1994 9(6): 601-606
    84. Hengchun Mao; Lee, F.C.Y.; Xunwei Zhou; Heping Dai; Cosan, M.; Boroyevich, D.; Improved zero-current transition converters for high-power applications, IEEE Transactions on Industry Applications, 1997 33(5): 1220-1232
    85. Lin, R.L.; Lee, F.C.; Novel zero current switching zero voltage switching converters In Proc. IEEE PESC 1996: 438-442.
    86. Tae-Woo Kim; Hack-Sung Kim; New ZCS PWM converter with operating a dual converter, In proceeding of IEEE APEC 2001: 638-641.
    87. Abu-Qahouq, J.; Batarseh, I.;Generalized analysis of soft-switching DC-DC converters, In proceeding ofIEEE PESC 2000: 185-192.
    88. Femia, N.; Viteili, M.; Cerbasi, D.; Spagnuolo, G.; Analysis of soft synchronous commutations in switching converters, In proceedings of IEEE ISCAS 2000. vol. 1:268-271 vol. 1
    89. Jiuchun Jiang; Weige Zhang; Bo Shen; Analysis and design of a novel ZCT-PWM converter, In proceeding of EEE PEDS 2003: 126-130.
    90. X.H.Wu David M.Xu J.H.Kong C.Yang. High power high frequency zero current transition full bridge DC-DC converter, In Proc. IEEEAPEC 1998:823-828
    91. Jia Wu, Fred C. Lee, Dushan Boroyevich, Heping Dai, Kun Xing, Dengming Peng. A 100 kW high-performance PWM rectifier with a ZCT soft-switching technique, IEEE Trans. On Power. Electronics. 2003.18(6): 1302-1308.
    92. Tae-Woo Kim, Hack-Sung Kim. new ZCS PWM converter with operating a dual converter In Proc. IEEE APEC 2001:638-641
    93. Haci Bodur, and A. Faruk Bakan. A new ZVT-ZCT-PWM DC-DC converter IEEE Trans. On Power Electronics, 2004. 19(3):676-684.
    94. Carlos Marcelo de Oliveira Stein, etd. A True ZCZVT Commutation cell for PWM Converters. IEEE Trans On Power Electronics. 2000. 15(1): 185-193.
    95. Jovanovic, M.M.; Yungtaek Jang; A novel active snubber for high-power boost converters IEEE Transactions on Power Electronics, 2000 15(2):278-284
    96. Zhu, J.Y.; Daohong Ding; Zero-voltage- and zero-current-switched PWM DC-DC converters using active snubber, IEEE Transactions on Industry Applications, 1999.35(6):1406-1412
    97. Michael Frisch, etc 2nd generation of PFC solution. In proceeding of IEEE PCIM.2005: 33-36.
    98. Zhang, M.T.; Yimin Jiang; Lee, F.C.; Jovanovic, M.M.; Single-phase three-level boost power factor correction converter. In proceeding of IEEE APEC 1995: 434-439
    99. Hongyang Wu; Xiangning He;Single phase three-level power factor correction circuit with passive lossless snubber., IEEE Transactions on Power Electronics, 2002 17(6) :946-953
    100. Barbosa, P.; Canales, F.; Lee, F.; Analysis and evaluation of the two-switch three-level boost rectifier. In proceeding of IEEE PESC 2001: 1659-1664
    101. Yousefzadeh, V.; Alarcon, E.; Maksimovic, D.; Three-Level Buck Converter for Envelope Tracking A:lications IEEE Transactions on Power Electronics, 2006 21(2):549-552
    102. Meynard, T.A.; Foch, H.; Multi-level conversion high voltage eho:ers and voltage-source inverters In Proceeding of IEEE PESC 1992:397-403
    103.冯波.软开关功率因数校正技术研究 浙江大学博士学位论文.2004.7
    104.朱世海.功率因数校正拓扑结构优化的研究.浙江大学硕士学位论文.2003.3
    105.丰年凯.功率因数校正的拓扑结构研究.浙江大学硕士学位论文.2001.5
    106. Sam Ben Yaakov , Ilya Zeltser. PWM converter with resistive input. IEEE Trans. On Industrial Electrnics, 1998 45(3) : 519-520.
    107 Wei Chen, Zhaoming Qian. A novel and simple a.roach to su:ress common-mode EMI in power converters. In proceeding of IEEE INTELEC 2004: 589-592.
    108 Milan M. Jovanovi'c and Yungtaek Jang. A new, soft-switched boost converter with isolated active snubber IEEE Trans. ON industry application, 1999. 35(2): 496-502.
    109 Sangsun Kim, and Prasad N. Enjet A Modular Single-Phase Power-Factor-Correction Scheme With a Harmonic Filtering Function, IEEE Trans. ON Industrial Electronics, 2003. 50(2): 328-335.
    110 Oruganti, R.; Cham Yew Thean; A novel PFC scheme for AC to DC converter with reduced losses In Proceeding of IEEE IECON 1994 : 639 - 645
    111 Sangsun Kim. and Prasad N. Enjeti. A Parallel-Connected Single Phase Power Factor Correction A:roach With Improved Efficiency, IEEE Trans. ON Power electronics, 2004. 19(1): 87-94
    1 Bo Yang; Lee, F.C; Zhang, A.J; Guisong Huang, LLC resonant converter for front end Dc/Dc conversion, In proceeding of IEEE APEC 2002, Vol.2 : 1108-1112
    2 Guisong Huang, Yilei Gu, Zhang, A.J, LLC series resonant Dc/Dc converter, Journal of Power Supply, China, 2002.1(1):61-66
    3 Steigerwald, R.L, A comparison of half-bridge resonant converter topologies IEEE Transactions on Power Electronics, 1988 3(2): 174-182
    4 Lazar, J.F.; Martinelli, R., Steady-state analysis of the LLC series resonant converter, In proceeding of IEEE APEC 2001, Vol.2,2001: 728-735
    5 Bing Lu, Wenduo Liu, Yang Liang, Lee.F.C, Optimum design methodology for LLC resonant converter In proceeding of IEEE APEC 2006 vol.2: 339-345
    6 Xiaogao Xie, Zhuo Zhao, Chen Zhao, Junming Zhang, Zhaoming Qian, Analysis and optimization of LLC resonant converter with a Novel Over current protection circuit In proceeding of IEEE INTELEC 2005: 487-490
    7 Bo Yang, Rengang Chen, Fred C. Lee, Integrated Magnetic for LLC Resonant Converter , In proceeding of IEEE APEC 2002 : 346-351
    8 Bo Yang, Fred C. Lee, Matthew Concannon, Over current protection methods for LLC resonant converter APEC03, pp.605-609
    9 Bo Yang, Topology Investigation for Front End DC/DC Power Conversion for Distributed Power System , Ph.D dissertation, VPI&SU, Sep. 2003.
    10 Loveday.H,Weene; chris A. Wright; A 1 kW, 500 kHz front-end converter for a distributed power supply system In Proc. Of IEEE APEC . 1989:423-432.
    11 J.A, sabate; V.Vlatkovic; R.B, Redley; F.C.Lee; Design considerations for high-voltage high-power full-bridge zero-voltage-switched PWM converter In Proceeding of IEEE APEC 1990. California: 275-284.
    12 Richard Redl; Laslzo Balogh; David W Edwards. Optimum ZVS full-bridge DC-DC converter with PWM phase-shift control analysis design consideration and experimental results . In Proc. IEEE APEC. 1994. Florida: 159-165.
    13 Robert Watson; Fred lee; Analysis, design, and experimental results of a 1-kW ZVS-FB-PWM converter employing magamp secondary-side control , IEEE Trans. Industrial Electronics, 1998 45(5):806-813.
    14 Milivoje Brkovic; Andrzej Pietkiewicz; Novel soft-switching full-bridge converter with magnetic amplifiers In Proceeding of IEEE INTELEC. 1994.: 155-162.
    15 Rajapandian Ayyanar; ned mohan; a novel full bridge dc-dc converter for battery charging using secondary side control combines soft switching over the full load range and low magnetics requirement. IEEE Trans Industry Applications. 2001 37(2) :559-565.
    16 Praveen K.Jain; Wen Kang; Harry Soin; Analysis and design considerations of a load and line independent zero voltage switching full bridge DC-DC converter topology IEEE Trans. Power .Electronics. 2002 , 17(5): 649-657.
    17 Yungtaek Jang; M.M, Jovanovic; A new ZVS-PWM full-bridge converter In Proceeding of IEEE INTELEC 2002: 232-239
    18 Yungtaek Jang; M.M, Jovanovic; A new family of full-bridge ZVS converters In Proceeding. IEEE APEC 2003. Florida : 2-628.
    19 G. Hua, F.C. Lee, M.M Jovanovic. An improved zero voltage switched PWM converter using a saturable inductor.In Proceeding of IEEE PESC. 1991:189-194.
    20 Xinke Wu, Junming Zhang, Zhaoming Qian. An improved high efficiency Full Bridge ZVS DC-DC converter with overall load range soft switching. In Proceeding of IEEE PESC 2004:1605-1611.
    21 Jiao, D.Z.; Zhang, J.M.; Xie, X.G.; Zhaoming Qian; Analysis and design considerations for a novel ZVS DC-DC converter In Proceeding of IEEE INTELEC 2003:632-635..
    22 张军明 中功率DC/DC变流器模块标准化若干关键问题研究 浙江大学博士学位论文.2004.3
    [1] R.D Middlebrook. Input filter design considerations in design and application of switching regulator In proceeding of IEEE IAS 1976.: 91-107.
    [2] S.Schulz, B.H.Cho, F.C Lee. Design considerations for a distributed power system In proceeding of IEEE PESC 1990. : 611-617.
    [3] B.H Cho, B.Choi. Analysis and design of multi-stage distributed power system in proceeding of IEEE INTELEC1991: 220-226.
    [4] Sandra Y. Erich, William M. Polivka, Input Filter Design Criterion for Current- Programmed Regulators , IEEE Trans, on Power Electronics, 1992, 7(1): 143-151
    [5] Charles R. Kohut. input filter design for switching regulator using current mode programming IEEE Trans, on Power Electronics, 1992, 7(1): 469-479.
    [6] Carl M. Wildrick, Fred C. Lee, Bo H. Cho, and Byungcho Choi. A method of defining the load impedance specification for a stable distributed power system IEEE Trans, on Power .Electronics. 1995, 10(3).: 280-285.
    [7] Xiaogang Feng, Jinjun Liu, F.C Lee. impedance specification for stable DC distributed power system IEEE Trans, on Power Electronics. 2002, 17(2): 157-162.
    [8] Junming Zhang, X.G Xie, D.Z Jiao, Z.M Qian. Stability problems and input impedance improvement for cascade power electronic system In proceeding of IEEE APEC 2004 vol.2: 1018-1024.
    [9] Cahit Gezgin, Wayne C Bowman. A stability acessment tool for DC-DC converters In proceeding of IEEE APEC 2002.: 367-373.
    [10] Peng Li, Brad Lehman. Performance prediction of DC-DC converters with impedances as load, IEEE Trans.on Power Electronics,. 2004, 19(1) : 201-209.
    [11] Peng Li, Brad Lehman . Accurate loop gain prediction for load DC-DC converters in On-board distributed power system In proceeding of IEEE APEC 2004: 1011-1017.
    [12] Wayne.C.Bowman, Chris Young. Tools to design and evaluate the stability of highly complex distributed power architecture In conference record IEEE APEC 2001: senimor S10.
    [13] Raymond Ridley. Secondary LC filter analysis and design techniques for current mode controlled converters Trans.On Power Electronics. 1988, 3(4): 499-507.
    
    14. R.D Middlebrook. Topics in multiple-loop regulators and current mode programming . In proceeding of IEEE PESC 1985 : 716-732.
    
    15. modeling current programmed Buck and Boost regulators IEEE Trans.on Power .Electronics .1989.4(1) : 36-52.
    
    16. Small signal modeling of pulse width modulated switched mode power converter In IEEE Proceeding. 1988. 76(4): 343-354.
    
    17. Richard Tymerski, Duwang Li. State space models for current programmed pulse width modulation converters IEEE Trans.on Power .Electronics. 1993. 18(2) : 271 -278.
    
    18. David J.Perreault, George C.Verghese. Time varying effects and averaging issues in models for current mode control IEEE Trans.On Power .Electronics . 1997, 12(3) : 453-461.
    
    19. Raymond B.ridley. A new continuous time model for current mode control IEEE Trans.on Power Electronics. 1991.6(2): 271-280.
    
    20. F.Dong Tan, R.D Middlebrook. A unified model for current programmed converters IEEE Trans.on Power Electronics, 1995. 10(4) : 397-408.
    
    21. C. Deisch, Simple switching control method changes power converter into a current source, In proceeding of IEEE PESC, 1978 : .300-306.
    22. S. Hsu, A. Brown, L. Rensink, R. D. Middlebrook, Modeling and analysis of switching dc-to-dc converters in constant-frequency current programmed mode, In proceeding IEEE PESC, 1979 Record :284-301.
    23. G.C. Verghese, CA. Bruzos, K.N. Mahabir, Averaged and sampled data models for current mode control: a re-examination, In Proc, of the Annual meeting IEEE PESC 1989.: 484 - 491
    24. R. W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, 2nd Edition, Chapter 12 and Appendix B .3, Kluwer Academic Publishers, 2001.
    25. F. Dong Tan and R.D. Middlebrook, Unified and Measurements of Current-Programmed Converters, Proc, of the IEEE PESC 1993,: 380-387 .
    26. vatche Vorperian. Simplified Analysis of PWM converters using model switch part 1: continuous conduction mode IEEE Transactions on Aeraspace and Electric System , 2000,24(3): 490-496.
    27. A.S Kislovski. small signal low frequency analysis of a buck type PWM conductance controller In proceeding of IEEE PESC 1990 : 88-94.
    28. O'sullivan D. Spruty H, PWM conductance control . In IEEE Proceeding of IEEE PESC 1988 : 351-359.
    29. Lloyd Dixon. Average current mode control of switching power supplyies In Unitrode application Note. U-140.: 3-356-3369.
    30. Wei Tang, Fred C.Lee. Small signal modeling of average current mode control IEEE Trans.On Power .Electronics. 1993, 8(2): 112-118.
    31. Young Seok Jung, Junyoung Lee, MyungJoongYoun. A new small signal modeling of average current mode control In proceeding of IEEE PESC 1998 : 1118-1124.
    32. Philips Cooke. Modeling average current mode control In proceeding of IEEE APEC 2000.: 256-262.
    33. Jian Sun. Modeling and pratical design issues for average currentcontrol In proceeding of IEEE APEC 1999: 88-94.
    34. Yen Wu Lo, Roger J.King. Sampled date modeling of the average input current mode controlled buck converter IEEE Trans.On Power .Electronics .1999, 14(5) : 918-927.
    35. Chunxiao Sun, Brad Lehman. Discussion on control loop design in average current mode control. In Proceeding of IEEE IAS 2000.: 2411-2417.
    36. E.W Gholdston, K.Rarimi. Stability' of large DC power system using switching converter with application to the international space station In proceeding of IEEE 1ECEC 1996.: 166-171.
    37. B.H.Cho, and B.Choi. Analysis and design of multi-stage distributed power system In Proceeding of IEEE INTELEC 1991.: 220-226.
    38. B.H Cho, and F.C Lee. Measurement of loop gain with the digital modulator In Proceeding of IEEE PESC 1984.: 363-373.
    39. L.R Lewis, B.H Cho. Modeling analysis and design of distributed power system In proceeding of IEEE PESC 1989: 152-159.
    40. Vald Grigore, Jari Hatonen. Dynamics of a buck converter with a constant power load In Proceeding of IEEE PESC 1998.: 72-78.
    41. Raymond B.Ridley, Bo H.CHO..F.C Lee. Analysis and interpretation of loop gain of multi loop-controlled switching regulators IEEE Trans.On Power .Electronisc.1988. 3(4): 489-498.
    42. Richard Redl, Andre S.Kislovski. Source impedance and current control loop interaction in high frequency power factor corrections, In proceeding of IEEE PESC 1992: 483-488.
    43. Dan M Sable, R.B Ridlcy, B.H Cho. Comparison of performance of single loop and current injection control for PWM converters that operate in both continuous and discontinuous modes of operation IEEE Trans.On Power.Electronics. 1992,7(1): 136-142.
    44. Awang bin Jusoh. The Instability effect of constant power load In proceeding of IEEE Powercon 2004.: 175-179.
    45. Tenvo Suntio. Input filter interactions in peak current mode controlled buck converter operating in CICM IEEE Trans.On Industrial Electronics.2002, 49(1): 76-86.
    46. Yungtaek Jang, Robert Erickson. Physical origins of input oscillation in current programmed converter Trans.On Power Electronics. 1992, 7(4):.725-733.
    47. Martin Florez-Lizarraga., Arthur F.Witulski. Input filter design for multiple module DC power syetem Trans.On Power Electronics. 1996, 11(3).: 472-479.
    48. Byungeho Choi, Be H.Cho. Intermediate line filter design to meet both impedance compatibility and EMI specification Trans.On Power Electronics. 1995, 10(5): 583-588.
    49. Daniel M.Mitchell Power line filter design considerations for DC-DC converters IEEE Industry.Applications maganize. 1999, 5(6): 16-26.
    50 张军明,中功率DC/DC变流器模块标准化若干关键问题的研究,浙江大学博士学位论文,2004.3
    51 邹伯敏.自动控制理论.机械工业出版社.2002.1
    52 Marian K.Kazimiercrzuk. Transfer function of current modulator in PWM converter with current mode control. IEEE Trans. On Circuit and system-Ⅰ: Fundamental theory and application Vol.47 No.9.2000.pp. 1407-1412.
    [1] R. Redl, A.. S. Kislowski, Source Impedance and Current -Control Loop Interaction in High-Frequency Power-Factor Correctors, In: Proceedings of IEEE-PESC, 1992: 483-488
    [2] Dominggos S. L. Simonetti, Javier Sebastian, Javier Uceda, Modelling the Modulated-Frequency Boost AC-DC Preregulator, In: Conference Record of IEEE-CIEP, 1993: 18-23
    [3] C. Michael Hoff, Instability of PFC supplies with Some AC Sources, PCIM, 1993: 1-8
    [4] C. Michael Hoff, Sarma Mulukutla, Analysis of the Instability of PFC Supplies with Various AC Sources, In: Proceedings of IEEE-APEC, 1994, vol.1: 696-702
    [5] Giorgio Spiazzi, Leopoldo Rossetto, Analysis of EMI filter Induced Instabilities in Boost Power Factor Preregulators, In: Proceedings of IEEE-PESC, 1998: 1048-1053
    [6] Giorgio Spiazzi, Jose Antenor Pomilio, Interaction Between EMI filter and Power Factor Pre-regulators with Average Current Control: Analysis and Design Considerations, IEEE Trans. On Industry Electronics, 1999,46(3): 577-584
    [7] Jian Sun, Richard M. Bass, Modeling and practical design issues for average current control, In: Proceedings of IEEE-APEC, 1999, vol.2: 980-986
    [8] Vinod Rajasekaran, Jian Sun, Practical Design Issues for PFC converters with Input Filters, In: Conference Record of HFPC, 2000: 97-107
    [9] Jian Sun, Demystifying Zero-Crossing Distortion in Single-Phase PFC Converters, In: Proceedings of IEEE-PESC, 2002
    [10] Jian Sun, Input Impedance Analysis of Single-Phase PFC Converters, In: Proceedings of IEEE-APEC, 2003, vol.1: 361-367
    [11]C. D. Davidson, R. Szasz, Compatibility of Switchmode Rectifiers with Engine Generators, In: Proceedings of of IEEE-INTELEC, 2000: 626-631
    
    [12]P.C. Todd, UC3854 Power Factor Correction Circuit Design, Unitrode Application U-134
    [13]UCC2817, UCC2818, UCC3817, UCC3818 BiCMOS Power Factor Preregulator, Texas Instruments
    [14]Vlatko Vlatkovic, Dusan Borojevic, Fred C. Lee, Input Filter Design for Power Factor Correction Circuits, IEEE Trans, on Power Electronics, 1996, 11(1): 199-205
    [15]R. D. Middlebrook, Slobodan Cuk, A General Unified Approach to Modeling Switching-Converter Power Stages, In: Proceedings of IEEE-PESC, 1976: 18-34
    [16] Slobodan Cuk, R. D. Middlebrook, A General Unified Approach to Modeling Switching DC-to-DC Converters in Discontinuous Conduction Mode, In: Proceedings of IEEE-PESC, 1977: 36-57
    [17] Shi-Ping Hsu, Art Brown, Loman Rensink, R. D. Middlebrook, Modeling and analysis of Switching DC-to-DC Converters in Constant-Frequency Current-Programmed Mode, In: Proceedings of IEEE-PESC, 1979: 284-301
    [18]R. D. Middlebrook, Topics in Multiple-Loop Regulators and Current-Mode Programming, In: Proceedings of IEEE-PESC, 1985: 716-732
    [19]R.D. Middlebrook, Modeling Current-Programmed Buck and Boost Regulator, IEEE Trans, on Power Electronics, 1989,4(1): 36-52
    [20]Kaiwei Yao, Yu Meng, Peng Xu, Fred C. Lee, Design Considerations for VRM Transient Response Based on the Output Impedance, In: Proceedings of IEEE-APEC, 2002, vol. 1: 146-152
    [21] A. Waizman, C.Y. Chung, Resonant flee Power Network Design Using Extended Adaptive Voltage Positioning (EAVP) methodology, IEEE Trans. on Advanced Packaging, 2001, 24:236-244
    [22] R.D. Middlerook, Input Filter Considerations in Design and Application of Switching Regulators, In: Conference Record of IEEE-IAS Annual Meeting, 1976:91-107
    [23] 钱照明,程肇基,电磁兼容设计基础及干扰抑制技术,杭州:浙江大学出版社,2000
    [24] James B.Williams. Design of Feedback loop in unity power factor AC to DC converter. In Proceeding of IEEE-PESC.1989: 959-967.
    [25] James P.Noon, Dhaval Dalai. Practical design issues for PFC circuits. In Proceeding of IEEE APEC 1997.vol.1: 51-58.
    [26] Roger J.King. Feed-forward control laws for the buck converter. In proceeding of IEEE conference record Computers in Power Electronics, 1994:. 192-197.
    [27] Fakhralden A.Huliehel, Fred Lee. Small signal modeling of the single phase boost power factor correction with constant frequency control. In proceeding of IEEE PESC 1992: 475-482.
    [28] 邹伯敏.自动控制理论.机械工业出版社.2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700