微网双模式运行的控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用电负荷不断增长、用户对电能质量与可靠性的要求不断提高、电网设备老化、能源利用效率存在瓶颈、环保问题日益突出,这些都已成为当今世界各国电力工业面临的严峻挑战。微网(Microgrid)作为一种整合利用分布式电源的有效形式,既能实现对可再生能源的充分利用,又能通过灵活的控制提高供电质量与可靠性,因而受到了广泛关注。运行控制是微网的关键技术之一,良好的控制策略是微网诸多技术经济优势得以发挥的前提。
     本文围绕微网孤岛、并网两种模式的运行控制策略展开研究,在电源层面上将分布式发电DG(Distributed Generation)分为功率间歇型并网DG和功率可控型组网DG,并网DG执行最大功率跟踪控制,而组网DG则承担起形成微网电压、频率的任务,对微网的运行特性起主导作用。以直驱风力发电系统作为并网DG的典型代表,建立了系统的完整模型,对双PWM变换器的控制策略进行了深入研究,机侧变换器控制实现风机的最大功率跟踪,网侧变换器控制实现入网功率的有功无功(PQ)解耦。对于组网DG,本文用理想直流电压源对“原动机+储能元件”的组合进行等效,着重研究其并网逆变器的控制策略。组网DG的控制策略以下垂控制为基础,针对下垂控制无功均流性能的缺陷,本文提出补偿线路压降的无功-电压(Q-V)下垂控制方法,有效改善了孤岛运行时下垂控制的无功均流性能。并在下垂控制器的基础上设计了逆变器预同步控制单元,用于实现组网DG的平滑并联。针对微网并网运行的需要,本文在组网DG的下垂控制器中引入下垂额定点调整环以稳定其功率输出,实现PQ控制。通过该环节的投切实现组网DG在PQ控制与下垂控制之间的切换,控制上具有较强的连续性,这对于微网运行模式的平滑切换十分有利。
     在系统级的运行控制层面上,采用微网分层控制体系,以组网DG的下垂控制和并网DG的PQ电流解耦控制作为底层控制,在此基础上利用微网管理器对DG和负载进行综合调控,并加入了频率恢复算法改善孤岛系统的频率质量。在分层控制体系下,微网能够实现多种运行方式,可以根据需要灵活选择,并能在孤岛与并网模式之间实现平滑切换,切换过程满足对重要负载的不间断供电。在微网通信失效的情况下,底层控制作为后备仍然能够维持微网的稳定运行。
     最后,搭建了基于Matlab/Simulink的微网仿真平台,对微网孤岛、并网以及模式切换等多种运行工况进行了仿真实验,并对仿真结果进行了详细的分析,验证了所提出的微网架构和控制策略的有效性。
Electrical loads are continually growing while the requirements for power quality and reliability are increasingly high. The aging power equipments, bottlenecks of energy efficiency and environment problems are all becoming great challenges to the world’s power industry. Microgrid has drawn a lot of attention for it has good potential to achieve the full utilization of renewable energy, and improve the quality of power supply. Operation and control is one of the key technologies of microgrid, good control strategy ensures the advantages of microgrid.
     This thesis focuses on the control strategies for both islanded and grid connected operation of microgrid. On the level of distributed generation control, DGs are divided into two categories, Grid-Forming DG (GFDG) and Power Injection DG (PIDG), GF DG forms the microgrid while the PIDG usually implements MPPT control, the operation characteristic of microgrid is dominated by the GFDGs. The direct-drive wind power generation system is modeled as a typical PIDG, and the control scheme of the back to back PWM converter is investigated, the generator side converter achieves maximum wind power tracking while the grid-side converter achieves PQ decoupled control. As for the GFDG, a simplified model was implemented using an ideal DC voltage source instead of the combination of prime mover and storage, the focus was on the control of the grid-tied inverters. The control scheme of GFDG was based on droop control, and it is improved by adding the line voltage drop compensation into the Q-V droop characteristic to achieve the precise sharing of reactive power. A pre-synchronizing control unit was designed base on the droop controller to achieve the smooth connection between the GFDGs and the main grid. Considering the operation features of grid connected operation mode of microgrid, a droop setting adjustment loop was added to the droop controller to implement PQ control of the GFDG. The control mode could be changed by switch this loop. The control scheme has a strong continuity between the 2 modes, which is favorable for the smooth operation mode transfer.
     At the system operation level of the microgrid, a hierarchical control structure was implemented. The local control of GFDG and PIDG was the basis of microgrid control and the whole network was regulated by the Microgrid Manager, a frequency restoration algorithm implemented to improve the frequency quality of the islanded microgrid. under the hierarchical control system, the microgrid can achieve a variety of operation modes and flexibility to choose it according to need, and can switch between the 2 operation modes smoothly. The switching process guarantees the uninterrupted supply of critical loads. In case of communication failures, the underlying control can maintain the stability of microgrid operation as a backup.
     Finally, a simulation platform of microgrid was built base on Matlab Simulink software. Several operation conditions were simulated in both islanded and grid connected modes as well as the transferring of operation mode to verify the control strategies, the simulation results was discussed in detail.
引文
[1]鲁宗相,王彩霞,闵勇等.微电网研究综述[J].电力系统自动化,2007 , 31 (19): 100-108.
    [2] Lasseter. Microgrids. IEEE Power Engineering Society Winter Meeting[C]. New York, USA, 2001, 1: 146-149.
    [3] Sanchez M. Overview of Microgrid research and development activities in the EU[C]. Montreal symposium on Microgrids, 2006, 1: 355-361.
    [4]李鹏,张玲,盛银波.新能源及可再生能源并网发电规模化应用的有效途径—微网技术[J].华北电力大学学报,2009,36(1): 10-14.
    [5] Hatziargyriou N, Asano H, Iravani R, et al. Microgrids[J]. IEEE Power and Energy Magazine, 2007, 5(4): 78-94.
    [6] Benjamin K, R.H. Lasseter, Toshifumi, et al. Making Microgrids work[J]. IEEE Power and Energy Magazine, 2008, 6(3): 41-53.
    [7]郑漳华,艾芊.微电网的研究现状及在我国的应用前景[J].电网技术,2008,32(16): 27-31.
    [8]王成山,王守相.分布式发电供能系统若干问题研究[J].电力系统自动化,2008,32(10): 1-4.
    [9]郭力,王成山,王守相等.微型燃气轮机微网技术方案[J].电力系统自动化,2009, 39(9): 81-85.
    [10]杨占刚,王成山,车延博.可实现运行模式灵活切换的小型微网实验系统[J].电力系统自动化,2009, 33(14): 89-92.
    [11]陶晓峰.分布式互补能源微网系统的控制策略研究[D].合肥工业大学硕士学位论文,2010.
    [12] M Barnes, G Ventakaramanan, J Kondoh, R Lasseter, H Asano, N Hatziargyriou, J Oyarzabal, T Green. Real World Microgrids -an Overview[C]. IEEE Systems of Systems Engineering Conference, 2007.
    [13] Lasseter, Robert, Akhil, Abbas, Marnay, et al, White paper on Integration of Distributed Energy Resources[R], CERTS MicroGrid Review, 2003.10.
    [14] Paolo Piagi. Microgrid control [D]. University of Wisconsin-Madison, 2005.
    [15] J. A P. Lopes, C. L. Moreira, and A. G. Madureiara. Defining control strategies for MicroGrids islanded operation[J]. IEEE Transactions on Power Systems, 2006, 21(2): 916–924.
    [16]王成山,肖朝霞,王守相.微网综合控制与分析[J].电力系统自动化,2008, 32(7): 98-103.
    [17]郭力,王成山等.含多种分布式电源的微网动态仿真[J].电力系统自动化,2009,32(2): 82-86.
    [18]肖朝霞,王成山,王守相.含多微型电源的微网小信号稳定性分析[J].电力系统自动化, 2009, 33(6): 81-85.
    [19] E. Barklund, Nagaraju Pogaku, Milan Prodanovic. Energy Management in Autonomous Microgrid Using Stability-Constrained Droop Control of Inverters[J]. IEEE Transactions on Power Electronics, 2008, 23(5): 2346-2352.
    [20] Josep M. Guerrero, JoséMatas. Wireless Control Strategy for Parallel Operation of Distributed Generation Inverters[J]. IEEE Transactions on Industrial Electronics, 2006, 53(5): 1461-1470
    [21] K. De Brabandere, B Bolsens, J Van den Keybus. A voltage and frequency droop control method for parallel Inverters[C]. Proc. IEEE Power Electronics Specialists Conference (PESC’04), Aachen, Germany, 2004,6: 2501-2507.
    [22]丁明,杨向真,苏建徽.基于虚拟同步发电机思想的微电网逆变电源控制策略[J].电力系统自动化,2009.8(33): 89-93.
    [23] Aris L. Dimeas, Nikos D. Hatziargyriou. Operation of a Multiagent System for Microgrid Control[J]. IEEE Transactions on Power Systems, 2005, 20(3): 1447-1455.
    [24]王守相,李晓静,肖朝霞等.含分布式电源的配电网供电恢复的多代理方法[J].电力系统自动化,2007, 3l(10): 61-65.
    [25]廖华.基于无互连线下垂控制逆变器组网的自治微电网运行特性的研究[D].中国科学院研究生院博士学位论文,2008.
    [26]黄荣赓.小型风力发电并网系统的高电感电机的设计和控制[D].合肥工业大学硕士学位论文,2010
    [27]李德孚.小型风力发电行业现状与发展趋势[J].新能源产业,2007, 1: 47-50.
    [28]王文亮.储能型永磁直驱风力发电系统并网运行控制研究[D].北京交通大学硕士学位论文,2010.
    [29]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,1997.
    [30]廖勇,庄凯,姚骏等.直驱永磁同步风力发电机双模功率控制策略的仿真研究[J].中国电机工程学报,2009, 29(33): 76-82.
    [31]姚骏,廖勇,瞿兴鸿等.直驱永磁同步风力发电机的最佳风能跟踪控制[J].电网技术,2008,32(10):11-15.
    [32]刘芳. LCL-VSR的控制与设计[D].合肥工业大学硕士学位论文,2008.
    [33]魏星,肖岚.三相并网逆变器的LCL滤波器设计[J].电力电子技术,2010, 44(11): 13-15
    [34]盛鹍,孔力,齐智平等.新型电网——微电网(Microgrid)研究综述[J].继电器,2007, 35(12): 75-81.
    [35]陈达威,朱桂萍.低压微电网中的功率传输特性[J].电工技术学报,2010, 7(25):117-122.
    [36]王福昌,鲁昆生.锁相技术[M].武汉:华中科技大学出版社,1997.
    [37] Katiraei F, Iravani M. R. Power Management Strategies for a Microgrid With Multiple Distributed Generation Units [J]. IEEE Transactions on Power Systems, 2006, 21(4): 1821- 1831.
    [38] Madureira A, Moreira C, Lopes J A P. Secondary load-frequencycontrol for microgrids in islanded operation[C]. International Conference on Renewable Energy Power Quality, Spain, 2005.
    [39]王赞,肖岚,姚志垒.并网独立双模式控制高性能逆变器设计与实现[J].中国电机工程学报,2007,1(27): 54-59
    [40]杨子龙,伍春生.三相并网/独立双模式逆变器系统的设计[J].电力电子技术,2010, 44(1): 14-16
    [41] Piagi P,Lasseter R H. Autonomous control of microgrids[C]. IEEE Power Engineering Society General Meeting, Québec, Canada, 2006.
    [42] D. Mahinda Vilathgamuwa, Poh Chiang Loh, Yunwei Li. Protection of Microgrids During Utility Voltage Sags[J]. IEEE Transactions on Industrial Electronics, 2006, 53(5):1427-1436.
    [43] Pedrasa M, Spooner T. A survey of techniques used to control microgrid generation and storage during island operation[C]. The AUPEC 2006 Conference, Melbourne, 2006.
    [44]苏玲,张建华.微型燃气轮机微网控制策略[J].高电压技术,2010.36(2): 513-518
    [45] J. M. Guerrero, L. G. de Vicuna, J. Matas, M. Castilla. A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems[J]. IEEE Transactions on Power Electronics. 2004, 19(5): 1205-1213.
    [46] Li yunwei, Vilathgamuwa D M, Loh P C. Robust control scheme for a microgrid with PFC capacitor connected[J]. IEEE Transactions on Industry Applications, 2007, 43 (5): 1172-1182.
    [47]裴玮,李澍森,李惠宇等.微网运行控制的关键技术及其测试平台[J].电力系统自动化,2010, 34(1): 94-98.
    [48]王新刚,艾芊.含分布式发电的微电网能量管理多目标优化[J].电力系统保护与控制,2009, 37(20): 79-83.
    [49] P.Arboleya, et al. An improved control scheme based in droop characteristic for microgrid converter[J]. Electric Power System Research, 2010, 4(3):1-7.
    [50]丁明,丁银.微电网系统CIM/XML模型研究[J].电力系统保护与控制,2010, 38(9): 37-42
    [51] A. Engler, N.Soultanis. Droop control in LV-Grids[C]. International Conference on Future Power Systems, Amsterdam, 2005,11: 142-147.
    [52]杨向真,苏建徽,丁明.微网孤岛运行时的频率控制策略[J].电网技术,2010,34(1): 164-168.
    [53]徐德鸿.电力电子系统建模及控制[M].北京:机械工业出版社,2005.
    [54]张崇巍,张兴. PWM整流器及其控制[M].北京:机械工业出版社,2003.
    [55]林新春,段善旭,康勇等.基于下垂特性控制的无互连线并联UPS建模与稳定性分析[J].中国电机工程学报,2004, 24(2): 33-38.
    [56] Wu Tsai-Fu, Chen Yu-Kai, Huang Yong-He. 3C Strategy for Inverters in Parallel Operation Achieving an Equal Current Distribution[J]. IEEE Transactions on Industrial Electronics, 2000, 47(2):273-281.
    [57]陈珩.电力系统稳态分析[M].北京:中国电力出版社. 1995.
    [58]王兆安,杨君,刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版社,1998.
    [59] The MathWorks, Inc. Simulink: Simulation and Model based Design[Z]. USA: The MathWorks Inc., 2004.6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700