内蒙古巴仁哲里木地区岩脉特征及其构造背景
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内蒙古巴仁哲里木地区脉岩主要呈北东、北西向展布,脉岩的主要类型为花岗斑岩、二长斑岩、闪长岩、闪长玢岩和正长斑岩等。本文利用锆石LA-ICP-MS U-Pb定年技术确定了内蒙古巴仁哲里木地区脉岩的形成时代于113-137ma之间,为晚侏罗世-早白垩世岩浆活动的产物,利用岩石的岩石地球化学及Hf同位素地球化学示踪技术,认为这些脉岩具有明显的岩浆混合作用特征。通过岩石的地球化学和Hf同位素的研究认为该区脉岩来源于上地幔和下地壳,应是上地幔和地壳物质部分熔融的产物。脉岩的形成与岩石圈的伸展-减薄机制有关。
The Mesozoic Volcanic rocks and dykes are grow widely in Barenzhelimu area, inner Mongolia province. it may provide the basis formations for differentiating regional tectonic evolution in Mesozoic about the study of the rock geochemistry and the spatial distribution. The essay takes the dykes in Barenzhelimu area as the study objects and uses the ways of systemic Petrology, geochemistry and Zircon U-Pb chronology to define the formation age of the dykes. Also we use the method of the isotope "Hf" chronology to probe the Magma sources and its' nature. And at least we clarify the forming tectonic setting for the dykes in this area.
     The dykes' Temporal and spatial distribution feature in Barenzhelimu area.
     The dykes distributed widely in this area. In space, the dykes accompanied with the Mesozoic Volcanic rocks emerged banded and its' direction is north-east. In some portion the dykes are concentrated relatively. And they make up the N-E Intrusive rock belt. In time, the dykes in this area may divided into two period. The early development time is about 137 ma and the late time is about 113 ma. In this area, the Magma intrusion started from Late Jurassic and ended in early Cretaceous.
     The mainly types of the dykes and their geochemistry feature
     In the study area, the mainly types of the dykes are Granite porphyry, Monzonite porphyry, Diorite and Diorite porphyry etc. their geochemistry feature are mainly similar. They all belongs to High-K calc-alkaline rocks. And their Trace Elements feature are::LREE enrichment, HREE loss, Negative Eu anomaly and enrichment of large ion lithophile elements. The dykes' geochemistry features (major elements, trace elements and REE) indicated that they are similar with the feature of the component of the bottom of the crust. According to the tectonic history, we analyzed that the dykes in this area are suspected to be the outcome in the Period of crustal uplift after Plate collision..
     The dykes' Zircon U-Pb chronology in Barenzhelimu area
     The essay uses the way of LA-ICP-MS to define the age on zircon. The result demonstrates that the Crystallization age of emplacement of dykes in this area is between 113±61 Ma ---137.2±1.5 Ma. The emplacement time of Diorite which is 137.2±1.5 Ma,(i.e. late Jurassic) is earlier than other types of dykes, while Granite porphyry and Diorite porphyry's emplacement time are 121.6±1.7 Ma and 113±61 Ma respectively(i.e. early Cretaceous.). And they are later than Diorite' on time. Combined with geological data in this area, we analysis that the diorite intrusive into the strata of this area in late Jurassic firstly. Accompany with the beginning of the Volcanic activity in late Jurassic, magmatic activity intensified. Then the Diorite which intrusive earlier was destroyed by the Granite porphyry and Diorite porphyry who intrusive late in early Cretaceous.
     The dykes' Zircon isotope Hf chronology in Barenzhelimu area
     The essay uses the way of LA-ICP-MS to determination of isotopic Hf's composition. And we take the granite porphyry and diorite as the test samples. The result show that the zircon particles of the samples are coarse, and develop the oscillatory zoning. Where they come from is upper mantle or lower crust. And they are outcomes of partial melting from upper mantle or lower crust. The reason of their conformation related with the role of lithospheric extension after collisional orogeny.
     The dykes' cause and its' tectonic setting
     By the study of the geochemistry, Zircon U-Pb chronology and Zircon isotope Hf chronology of dykes, the author think that the initial magma of the dykes in this area was from upper mantle and lower crust. It is the outcome who had been formed because something melt partially from upper mantle and lower crust. And the dykes in this area took shapes in a extensional environment after the collisional.
     During the late Jurassic and the early Cretaceous, the effect of the orogeny of the Mongolia-Okhotsk strengthened.and all the eastern China was in a dextral extensional environment. In this stage the crust' feature is early brittle extension and sudden upwelling of hot in deep. At the same stage, the compression had been decreasing in north-west and trending fault zone in north-east depressurized relatively as north Daxing'anling areas of the Pacific plate motion change of direction. In the context of this regional structure, the study area had been undergoing the effect of the extension, thinning and asthenospheric upwelling of the lithospheric. Then it prompt the things from the upper mantle and lower crust to melt. The forming magma had experienced the course of the fractional crystallization and the continental crust contamination. After this, the magma intrusive increased along the north-east direction. It is the reason why the mid-acid dykes grow widely in Barenzhelimu area.
引文
[1]Chen B., Jahn B. M., Arakawa Y., Zhai M. G. Petrogenesis of the Mesozoic intrusive complexes from. the southern Taihang orogen, North China Craton:elemental and Sr-Nd-Pb isotopic constraints.Contrib[J]. Mineral. Petrol.,2004,148(4):489-501
    [2]Pouchon MA,Curti E,Degueldre C.The influence of carbonate complexes on the solubility of zirconia:new experimental data[J].Progress in Nuclear Energy,2001,38(3-4):443-446.
    [3]Hou M L,Jiang Y H,Jiang S Y,Ling H F,Zhao K D.Contrasting origins of late Mesozoic adakitic granitoids from the northwestern Jiaodong Penisula east China:implications for crustal thickening to delamination[J].Geol Mag,2007,144:619-631.
    [4]Yoder H S Jr.and Tilley C E.Origin of basalt magmas;an experimental study of natural and synthetic rock systems[J]. Journal of Petrology.1962,3(3):342-529.
    [5]Wood D A.The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J].Earth and Planetary Science Letters,1980,50,11-30.
    [6]Faure M.and Natal'in B.A.The geodynamic evolution of the eastern Eurasia margin in Mesozoic time[J].Tectonophysics,1992,202,397-411.
    [7]Condie K.C.Chemical composition and evolution of the upper continental crust:contrasting results from surface samples and shales[J].Chemical Geology,1993,104:1-37.
    [8]PitcherW5.1979.Commentsonthegeologiealenvirorunentsofgramtes. OriginofGraniteBatholits:Geoehe ealEvidenee[J].ShivaPublishingLimited 1-8.
    [9]PiteherW5.1983.Granitetypeandteetonieenvironment.In:HsuK(eds), Mountain lding Proeesses[J], London:AeademiePress,19-20.
    [10]ThomPsonABandConnollyJAD.1995.Meltingofeoniinentalerust:somethermalandpetrologieale onstraintsonanatexisineontinentaleollisionzones andotherteeto esettings[J].Joumal of GeoP sieal Research,100(BS):15565-15579.
    [11]Wu Y B, Zheng Y F.The study on the zircon genesis mineralogy and its impacts on the interpretation of U-Pb age restriction[J]. Chinese Science Bulletin,2004,49:1589-1604.
    [12]Wu F Y, Yang J H,Wilde S A.Detrital zircon U-Pb and Hf isotopic constraints on the crustal evolution of North Korea[J].Precambrian Research,2007b,159:155-177.
    [13]Wu F Y, Yang J H, Lo C H, et al. The Heilongjiang Group:a Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China[J]. Journal of Asian Earth Sciences,2007,30:542-556.
    [14]Wu F Y, Sun D Y, Li H M, et al.A-type granites in northeast China:age and geochemical constrains on their petrogenesis[J]. Chemical Geology,2002,187:143-173.
    [15]Wu F Y, Jahn B M, Wilde S A,et al. Phanerozoic crustal growth:U-Pb and Sr-Nd isotopic
    evidence from the granites in northeastern China[J].Tectonophysics,2000,328:89-113.
    [16]Williams I S.Some observations on the use of zircon U-Pb geochronology on the study of granitic rocks[J].Transactions of the Royal Society of Edinburge:Earth Science,1992,83: 447-458. [17] Wilde S A, Wu F Y, Zhang X Z.Late Pan-African magmatism in northeast China:SHRIMP U-Pb zircon evidence from granitoids in the Jiamusi Massif[J].Precambrian Research,2003,122:311-327.
    [18]Wilde S A, Zhang X Z, Wu F Y.Extension of a newly idenfied 500 Ma metamorphic terrane in North East China:further U-Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China[J].Tectonophysics,2000,328:115-130.
    [19]Whalen J B, Currie K L, Chappell B W. A-type granites:Geochemical characteristics discrimination and petrogenesis[J].Contributions to Mineralogy and Petrology,1987,95: 407-419.
    [20]Sun S S, McDonough W F.A Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process[M]//Saunder A D:Magmatism in the Ocean Basins[J]. Geological Society Special Publication,42:313-345.
    [21]Pei F P, Xu W L,Yang D B,et al. Zircon U-Pb geochronology of basement metamorphic rocks in the Songliao Basin [J]. Chinese Science Bulletin,2007,52(7):942-948.
    [22]Pearce J A, Harris NBW,Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of Petrology,1984,25:956-983.
    [23]Michael P G, Eva S S. From continents to island arcs:Ageochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks[J].Canada Mineralogy,2000,38:1065-1073.
    [24]Moecher D P, Samson S D.Differential zircon fertility of source terranes and natural bias in the detrital zircon record:implications for sedimentary provenance analysis[J].Earth and Planetary Science Letters,2006,247:252-266.
    [25]Meng E, Xu W L, Pei F P, et al. Detrital-zircon geochronology of Lat e Paleozoic sedimentary rocks in eastern Heilongjiang Province, NE China:Implications for the tectonic evolution of the eastern segment of the Central Asian Orogenic Belt[J].Tectonophysics,2010,485:42-51.
    [26]Meng E, Xu W L,Yang D B, et al. Permian volcanisms in eastern and southeastern margins of the Jiamusi Massif,northeastern China:zircon U-Pb chronology,geochemistry and its tectonic implications[J]. Chinese Science Bulletin,2008,53(8):1231-1245.
    [27]Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin,1989,101:635-643.
    [28]Liu Y S, Gao S,Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths [J]. Journal of Petrology,2010,51:537-571.
    [29]Liu Y S, Hu Z C,Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard [J]. Chemical Geology,2008, 257:34-43.
    [30]Li X H, Liang X R,Sun M, et al. Precise 206Pb/238U age determination on zircons by laser ablation microprobe-inductively coupled plasma-mass spectrometry using continuous linear ablation[J]. Chemical Geology,2001,175:209-219.
    [31]Li J Y. Permian geodynamic setting of Northeast China and adjacent regions:closure of the Paleo-Asian ocean and subduction of the Paleo-pacific plate[J]. Journal of Asian Earth Science,2006,26(3-4):207-224.
    [32]Lee J, Williams I, Ellis D.Pb,U and Th diffusion in nature Zircon[J]. Nature,1997, 390:159-162.
    [33]Le Bas M J, LeMaitre R W,Streckeisen A L, et al.A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. J Petro,1986,27(3):745-750.
    [34]Lanyon R, Black R P,Seitz H M.U-Pb zircon dating of mafic dykes and its application to the Proterozoic geological history of the Vestford Hills, East Antarctica[J].Contributions to Mineralogy and Petrology,1993,115:84-203.
    [35]Kosler J, Sylvester P.Present trends and the future of zircon in geochronology:laser ablation ICPMS[G]//Hanchar J M,Hoskiin P M O:Zircon.Review of Mineral Geochemistry, 2003,53:243-275.
    [36]Kelty T K, Yin A,Dash B,et al.Detrital-zircon geochronology of Paleozoic sedimentary rock in the Hangay-Hentey basin, north-central Mongolia:implications for the tectonic evolution of the Mongol-Okhotsk Ocean in central Asia[J].Tectonophysics,2008,451:97-122.
    [37]葛文春吴福元周长勇大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J]科学通报200550(2)
    [38]徐义刚.华北岩石圈减薄的时空不均一性特征[J].高校地质学报,2004,10:324-331
    [39]翟明国,孟庆任,刘建民,侯泉林,胡圣标,李忠,张宏福,刘伟,邵济安,朱日祥.华北东部中生代构造体制转折峰期的主要地质效应和形成动力学探讨[J].地学前缘,2004,11,285-298
    [40]李晓勇,范蔚茗,郭锋,王岳军,李超文.古亚洲洋对华北陆缘岩石圈的改造作用:来自于西山南大岭组中基性火山岩的地球化学证据[J].岩石学报,2004,20(3):557-566
    [41]牛耀龄.玄武岩浆起源和演化的一些基本概念以及对中国东部中—新生代基性火山岩成因的新思路[J].高校地质学报,2005,11,9-46.
    [42]郑建平.中国东部地幔置换作用与中新生代岩石圈减薄[M].武汉:中国地质大学出版社,1999
    [43]郑永飞.新元古代岩浆活动与全球变化[J].科学通报,2003,48(16):1705-1720
    [44]张旗,王元龙,王焰.燕山期中国东部高原下地壳组成初探:埃达克质岩Sr、Nd同位素制约[J].岩石学报,2001,17(4):505-513
    [45]邵济安,张履桥.华北北部中生代岩墙群[J].岩石学报,2002,18(3):312-318
    [46]邵济安,李献华,张履桥,牟保磊,刘玉琳.南口-古崖居中生代双峰式岩墙群形成机制的地球化学制约[J].地球化学,2001,30(6):517-524
    [47]柳小明.华北克拉通中生代壳幔交换作用的地球化学研究[J].西北大学博士学位论文,2004.
    [48]路凤香,郑建平,李伍平,等.中国东部显生宙地幔演化的主要样式:“蘑茹云”模型[J].地学前缘,2000,7(1):97-107.
    [49]路凤香,郑建平,邵济安,张瑞生,陈美华,余淳梅.华北东部中生代晚期—新生代软流圈上涌与岩石圈减薄[J].地学前缘,2006,13(2),86-92
    [50]路孝平,吴福元,赵成弼,张艳斌.通化地区印支期花岗岩锆石U-Pb年龄及其与大别-山超高压带碰撞造山作用之间的关系[J].科学通报,2003,48(8):843-849.
    [51]路孝平.通化地区古元古代构造岩浆事件[J].吉林大学博士论文.2004.
    [52]裴福萍辽南-吉南中生代脉岩锆石U-Pb年代学和地球化学吉林大学博士论文2008
    [53]赵越,杨振宇,马醒华.东亚大地构造发展的重要转折[J].地质科学,1994,29(2):105-119.
    [54]赵春荆,彭玉鲸,党增欣,等.吉黑东部构造格架及地壳演化[M].沈阳:辽宁大学出版社,1996.
    [55]赵寒冬.东北地区小兴安岭南段-张广才岭北段古生代火成岩组合与构造演化[D].北京:中国地质大学,2009.
    [56]张昱.黑龙江省东部早中生代火成岩构造组合及其大地构造演化[D].北京:中国地质大学,2008.
    [57]张兴洲,穆石敏,杨宝俊,等.拼合的大陆板块[M]//张贻侠,孙运生,张兴洲,等.中国满洲里-绥芬河地学断面1:1000000说明书[J].北京:地质出版社,1999:6-19.
    [58]张兴洲,张元厚.蓝片岩与绿片岩共存:龙江岩系构造演化新证据[J].长春地质学院学报,1991,21(3):277-282.
    [59]余振兵.中上扬子上元古界-中生界碎屑锆石年代学研究[D].武汉:中国地质大学,2007.
    [60]杨现力.扎兰屯浅变质岩系地质特征及碎屑锆石年代学研究[D].长春:吉林大学,2007.
    [61]杨德彬.蚌埠隆起区花岗岩的年代学和地球化学:对华北克拉通东部构造演化的制约[D].长春:吉林大学,2009b.
    [62]杨德彬,许文良,裴福萍,等.蚌埠隆起区古元古代钾长花岗岩的成因:岩石地球化学、锆石U-Pb年代学与Hf同位素的制约[J].地球科学,2009a,34(1):148-164.
    [63]阎欣,储著银,孙敏,等.激光探针等离子质谱锆石微区207Pb/206Pb测定尝试[J].科学通报,1998,43:2101-2105.
    [64]许文良,孙德有,周燕,等.满洲里-绥芬河地学断面:岩浆作用和地壳结构[M].北京:地质出版社,1994.
    [65]徐公愉.东北亚地区古亚洲洋的构造演化特点[J].吉林地质,1993,3:1-8.
    [66]颉颃强,苗来成,陈福坤,等.黑龙江东南部穆棱地区“麻山群”的特征及花岗岩锆石SHRIMP U-Pb定年——对佳木斯地块最南缘地壳演化的制约[J].地质通报,2008,27(12):2127-2137.
    [67]颉颃强,张福勤,苗来成,等.东北牡丹江地区“黑龙江群”中斜长角闪岩与花岗岩的锆石SHRIMP U-Pb定年及其地质意义[J].岩石学报,2008,24(6):1237-1250.
    [68]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004, 49(16):1589-1604.
    [69]吴福元,Wilde S,孙德有.佳木斯地块片麻状花岗岩的锆石离子探针U-Pb年龄[J].岩石学报,2001,17(3):443-452.
    [70]吴福元,曹林.东北亚地区的若干重要基础地质问题[J].世界地质,1999a,7(7):1-13.
    [71]吴福元,林强,葛文春,等.张广才岭新华屯岩体的形成时代与成因研究[J].岩石矿物学杂志,1998,17(3):226-234.
    [72]Widle S A,吴福元,张兴洲.中国东北麻山杂岩晚泛非期变质的锆石SHRIMP年龄证据及全球大陆再造意义[J].地球化学,2001,30:35-50.
    [73]王晓蕊.辽西早白垩世四合屯组火山岩地球化学研究[D].西安:西北大学,2005.
    [74]王枫,许文良,李军,等.吉林中部烟筒山早白垩世辉长闪长岩的年代学和地球化学[J].世界地质,2009,28(4):403-411.
    [75]孙德有,吴福元,高山.张广才岭东部清水岩体的锆石激光探针U-Pb年龄测定[J].地球学报,2004。
    [76]孙德有,吴福元,高山.同位素地质新进展:技术、方法、理论与应用学术研讨会论文(摘要集)[C].2003.
    [77]孙德有,吴福元,林强,等.张广才岭燕山早期白石山岩体成因与壳幔相互作用[J].岩石学报,2001b,17(2):227-235.
    [78]孙德有.张广才岭中生代花岗岩成因及其地球动力学意义[D].长春:吉林大学,2001a.
    [79]孙德有,吴福元,李惠民,等.小兴安岭西北部造山后A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系[J].科学通报,2000,45(20):2217-2222.
    [80]隋振民.大兴安岭东北部花岗岩类锆石U-Pb年龄、岩石成因及地壳演化[D].长春:吉林大学,2007.
    [81]宋海斌,郝天珧,江为为.张裂大陆边缘地壳结构与形成机制研究进展[M]//高抒主编.中国边缘海的形成演化.北京:海洋出版社,2002:25-34.
    [82]宋彪,牛宝贵,李锦轶,等.牡丹江-鸡西花岗岩类地质同位素年代学研究[J].岩石矿物学杂志,1994,13(2):204-213.
    [83]曲关生主编.黑龙江省岩石地层[M].武汉:中国地质大学出版社,1997.
    [84]裴福萍,许文良,杨德彬,等.松辽盆地南部中生代火山岩:锆石U-Pb年代学及其对基底性质的制约[J].地球科学,2008,33(5):603-617.
    [85]苗来成,刘敦一,张福勤,等.佳疙瘩组变碎屑岩地球化学特征及古构造环境[J].科学通 报,2007,52(5):591-601.
    [86]孟恩,许文良,裴福萍.滨东地区早二叠世双峰式火山岩年代学、地球化学特征及其构造意义[C].全国岩石学与地球动力学研讨会论文摘要,长春,2009.
    [87]孟恩,许文良,裴福萍,等.黑龙江东部晚古生代沉积岩中碎屑锆石U-Pb年龄:对盆地沉积时限和区域构造演化的制约[J].矿物岩石地球化学通报,2008,27(增刊):265.
    [88]孟恩.佳木斯地块东缘及东南缘晚古生代火山岩的年代学和岩石地球化学[D].长春:吉林大学,2008.
    [89]吕志成,段国正,郝立波,等.佳疙瘩组变碎屑岩地球化学特征及古构造环境[J].吉林大学学报(地球科学版),2002,32(2):111-115.
    [90]吕志成,段国正,郝立波,等.满洲里-额尔古纳地区岩浆作用及其大地构造意义[J].矿物岩石,2001,21(1):77-85.
    [91]罗毅,王正邦,周德安.额尔古纳超大型火山热液型铀成矿带地质特征及找矿前景[J].地质科学,1997,20(1):1-10.
    [92]柳晓明.华北克拉通中生代壳幔交换作用的地球化学研究[D].西安:西北大学,2004.
    [93]刘民武,赫英.激光剥蚀等离子质谱微区分析在固体地球科学中的应用进展[J].地球科学进展,2003,18(1):116-121.
    [94]刘建峰,迟效国,董春艳,等.小兴安岭东部早古生代花岗岩的发现及其构造意义[J].地质通报,2008,27(4):534-544.
    [95]刘建峰,迟效国,孙德有,等.小兴安岭东部早古生代花岗岩地球化学特征及其构造意义[J].矿物岩石地球化学通报,2007,26(增刊):511-512.
    [96]刘建峰.小兴安岭东部早古生代花岗岩地球化学特征及其构造意义[D].长春:吉林大学,2006.
    [97]刘建峰,迟效国,周燕,等.小兴安岭东北部金林岩体全岩-角闪石Rb-Sr年龄[J].吉林大学学报(地球科学版),2005,35(6):690-693.
    [98]刘海巨,朱炳泉,张展霞.LAM-ICP-MS法用于单颗粒锆石定年研究[J].科学通报,1998,43:1103-1106.
    [99]李伟民.黑龙江杂岩带中的蓝片岩岩石学、地质年代学研究及其地质意义[D].长春:吉林大学,2008.
    [100]李双林,欧阳自远.兴蒙造山带及邻区的构造格局与构造演化[J].海洋地质与第四纪地质,1998,18(3):45-54.
    [101]李锦轶,牛宝贵,宋彪,等.长白山北段地壳的形成与演化[M].北京:地质出版社,1999.
    [102]李锦轶.中国东北及邻区若干地质构造问题的新认识[J].地质论评,1998,44(4):339-347.
    [103]李锦轶,牛宝贵,宋彪.黑龙江省东部中太古代碎屑岩浆锆石的发现及其地质意义[J].地球学报,1995(3):331-333.
    [104]李春昱,汤耀庆.亚洲古板块划分以及有关问题[J].地质学报,1983,1:1-10.
    [105]纪伟强.吉黑东部中生代晚期火山岩的年代学和地球化学[D].长春:吉林大学,2007.
    [106]黄映聪,任东辉,张兴洲,等.黑龙江省东部桦南隆起美作花岗岩的锆石U-Pb定年及其地质意义[J].吉林大学学报(地球科学版),2008,38(4):631-638.
    [107]洪大卫,黄怀曾,肖宜君,等.内蒙古中部二叠纪碱性花岗岩及其地球动力学意义[J].地质学报,1994,68(3):219-230.
    [108]葛文春,隋振民,吴福元,等.大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及其地质意义[J].岩石学报,2007,23(2):423-440.
    [109]高晓峰.东北地区中生代火成岩Sr-Nd-Pb同位素填图及其对区域构造演化的制约[D].广州:中国科学院广州地球化学研究所,2007.
    [110]方文昌.吉林省花岗岩类及成矿作用[M].长春:吉林科学技术出版社,1992.
    [111]段吉业,张梅生,王卫东.东北北部古生代生物古地理格局[M]//M-SGT地质课题组编.中国满洲里—绥芬河地学断面域内岩石圈结构及其演化的地质研究.北京:地质出版社,1994:84-97.
    [112]第五春荣,孙勇,袁洪林,等.河南登封地区嵩山石英岩碎屑锆石U-Pb年代学、Hf同位素组成及其地质意义[J].科学通报,2008,53(16):1923-1934.
    [113]陈道公,李彬贤,夏群科,等.变质岩中锆石U-Pb计时问题评述—兼论大别造山带锆石定年[J].岩石学报,2001,17(1):129-138.
    [114]曹熹,党增欣,张兴洲,等.佳木斯复合地体[M].长春:吉林科学技术出版社,1992.
    [115]韩宝福,张磊,古丽冰,张文慧,谢烈文,杨岳衡,2006.岩石样品Hf化学分离及MC-ICP-MS同位素分析:离子交换色谱法的应用[J].岩石学报,22;513—516
    [116]胡芳芳,范宏瑞,杨进辉,翟明国,金成伟,谢烈文,杨岳衡,2005.胶东文登长山南花岗闪长岩体的岩桨混合成因:闪长质包体及寄主岩石的地球化学、Sr-Nd同位素和错石Hi同位素证据[J].岩石学报,21:569—586
    [117]李献华,祁昌实,刘颖,梁细荣,2005a。岩石样品快速Hf分离与MC-ICPMS同位素 分析:一个改进的单柱提取色谱方法[J]。地球化学,34:109—114
    [118]李献华,祁昌实,刘颖,梁细荣,涂湘林,谢烈文,杨岳衡,20056.扬子块体西缘新元古代双峰式火山岩成因:Hf同位素和Fe/Mn新制约[J].科学通报,50,2155—2160
    [119]凌文黎,程建萍,19980高精度Lu-Hf同位家测定的新技术与新方法[J]。地质科技情报
    [120]丘志力,吴福元,于庆媛,谢烈文,杨树锋,2005.中国东部岩石圈地幔的Hf同位素组成[J].科学通报,50;2370—2379
    [121]汪相,Grigin WL,王志成,周新民,汪传胜,2003。湖南丫江桥花岗岩中锆石的Hf同位素地球化学[J]。科学通报,48:379—382
    [122]王孝磊,周金城,邱检生,张文兰,柳小明,张桂林,2006.桂北新元古代强过铝花岗岩的成因:钻石年代学和Hf同位家制约[J].岩石学报,22:326—342
    [123]徐平,吴福元,谢烈文,杨岳衡,20040 U-Pb同位素标准锆石的Hf同位家[J]。科学通报,49:1403—1410
    [124]杨进辉,吴福元,邵济安,谢烈文.柳小明,zoob.冀北张宜地区后城组、张家A组火山岩锆石U-Pb年龄和Hf同位素[J]地球科学,31:71—80
    [125]杨岳衡,张宏福,谢烈文,刘颖,祁昌实,涂湘林,2006a.华北克拉通中、新生代典型火山岩的岩石成因:Hf同位素新证据[J].岩石学报.22:1665—1671
    [126]杨岳衡,张宏福,谢烈文,吴福元,20066.地质样品中镥-铪同位素体系的化学分离与质谱测试新进展[J].岩矿测试,25:151—158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700