珲春小西南岔地区花岗岩类的时代、地球化学特征与成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对小西南岔地区花岗岩类进行了详细的岩石学、年代学、地球化学及锆石Hf同位素研究,确定了花岗岩类的形成时代和岩石组合,阐述了花岗岩类的成因演化,探讨了其形成的构造背景。小西南岔地区花岗岩类可分为4期:①晚二叠世英云闪长岩-花岗闪长岩(252~256Ma);②中三叠世石英闪长岩(240~241Ma);③早侏罗世二长花岗岩(183Ma);④早白垩世英云闪长岩和花岗闪长岩(105~112Ma)。
     该区花岗岩均为I型花岗岩,源岩为玄武质下地壳。其中,①晚二叠世花岗岩属于钠质钙碱性系列,在其演化过程中存在结晶分异作用,形成于古亚洲洋构造域活动陆缘环境;②早侏罗世花岗岩为钾质高钾钙碱性系列,形成于太平洋板块俯冲导致的伸展环境下的活动陆缘。③早白垩世花岗岩形成于太平洋板块斜向俯冲造成的岩石圈伸展背景下的活动陆缘环境,其中英云闪长岩属于钠质钙碱性系列,花岗闪长岩属于钾质高钾钙碱性系列。
     运用最新的花岗岩Sr-Yb分类方法对研究区显生宙花岗岩的源区深度、残留相等进行了限定,认为:①晚二叠世花岗岩形成于低压条件下,残留相为斜长石和角闪石;②早侏罗世花岗岩形成压力可能非常低,与地壳减薄有关;③早白垩世两类花岗岩形成深度明显不同,英云闪长岩的形成压力为研究区内所有花岗岩中最高,残留相为石榴石(±金红石),并首次鉴别出该类花岗岩为阿留申型埃达克岩;花岗闪长岩形成于中等压力下,残留相为石榴石和斜长石。
     首次发现该区中三叠世钠质钙碱性系列石英闪长岩为高镁闪长岩,其地球化学特征与赞岐岩相似,源区为含水地幔橄榄岩。
     Hf同位素特征显示,新元古代-显生宙期间该区存在幔源岩浆底侵的地壳增生作用,提出该区乃至延边地区在240Ma左右的中三叠世存在一次重要的地壳增生事件。
The research region, located in Yanbian, Jilin province, belongs to the crossing zone between the ancient Asian Ocean tectonic belt in the eastern Xingmeng orogenic belt and the Mesozoic circum-Pacific Ocean tectonic belt. The evolution traces of both the ancient Asian ocean and the circum-Pacific Ocean tectonic belt have been found. There occur extensive Phanerozoic granitiod intrusions and abundant mineral resources of gold, copper, tungsten and molybdenum. Studies on the granitiod intrusions play an important role on discussing evolution of the two tectonic belt and mineral exploration in the district.
     1 Geochronology and rock combination of granitoid
     Based on the former data, detailed field geologic survey and lithology research as well as zircon LA-ICP-MS U-Pb Geochronology, granites occurring in this area can be classified into four periods:①Late Permian tonalite- granodiorite(252~256Ma);②Middle Triassic quartz diorite(240~241 Ma);③Early Jurassic monzogranite(183Ma);④Early Cretaceous tonalite and granodiorite(105~112Ma).
     2 Geochemistry and Hf isotope composition of granitoid
     2.1 Late Permian tonalite-granodiorite
     In the K2O-Na2O scheme, granites formed in this period belong to the series of natrium calc-alkiline, and is located in the I-type granites zone completely. It is shown that P2O5 and A/NK value decreases with increasing of SiO2, whereas A/CNK value changes in the opposite direction. Moreover, such elements are enriched as Rb、La、Ce、Zr and Hf, while some are depleted as Ba、Nb、Ta、Sr、P and Ti elements. The tonalite is belonged to metaluminous type rock(A/CNK=0.91~0.92), the total REE content is lower(ΣREE=96.56~157.22ppm ) , showing the weak fractionation between LREE and HREE [(La/Yb)N=2.14~4.85],the value ofδEu is between 0.47 to 0.81. The granodiorite, however, is the weakly peraluminous rock (A/CNK=1.08)of, with the upper total REE content (ΣREE=171.23ppm) than the tonalite, the fractionation beteween LREE and HREE is strong [(La/Yb)N=14.17],and the value ofδEu is 0.80. The 176Hf/177Hf values of zircons from granites in this period is between 0.282738 to 0.283045, the value ofεHf(t) is between 4.38 to 14.99,and TDM2 is between 305 to 858Ma.
     2.2 Middle Triassic quartz diorite
     The quartz diorite in this period are sodic calc-alkaline series and belongs to the metaluminous high-Mg diorite, the normalized curves of REE distribution are close to flat. There is an unclear fractionation between LREE and HREE. Rocks are enriched in Rb, depleted in Ba, Nb, Ta, P and Ti. The differences between different rock types are that, the fine granular quartz diorite have relatively high content of rare earth elements(ΣREE=82.43~129.43ppm),δEu=0.47~0.73, also enrich in K, Nd and Sm. The total amount of rare earth elements in mylonization quartz diorite are relatively lower(ΣREE=39.96~48.81ppm),δEu=0.91~1.03, also enrich in U. Zircon Hf isotopic analyses show that 176Hf/177Hf value in quartz diorite if from 0.282542 to 0.283085,εHf(t) from -3.52 to 15.95 and TDM1 from 246 to 1096Ma。
     2.3 Early Jurassic monzogranite
     Granites in this period are potassic high-K calc-alkaline series with weakly peraluminous (A/CNK=1.06). On the diagram of K2O-Na2O, all samples located in the region of I-type granite. The total amount of rare earth elements is 104.31ppm, REE distribution patterns are right-inclined type with obvious fractionation of HREE and LREE [(La/Yb)N=4.94],δEu=0.32. The spider diagram are strongly right-inclined and rich in incompatible elements. The rock is enriched in Rb, Th and K, depleted in Ba, U, Nb, Ta, Sr, P and Ti, characterized by strong depletion of Sr, P and Ti. The 176Hf/177Hf ratio of monzogranite range from 0.282407 to 0.282750,εHf(t) from -9.27 to 3.16, two-stage model age of the rock(TDM2) is 862 to 1495Ma.
     2.4 Early Cretaceous tonalite and granodiorite
     All granites formed in this period are metaluminous, on the diagram of K2O-Na2O, all samples located in the region of I-type granite. Companying with the increasing of SiO2 content, P2O5 contents gradually decreased. The normalized curves of REE distribution patterns are strongly right-inclined type with obvious fractionation of HREE and LREE; Rocks are enriched in Rb, Zr and Hf, depleted in Ba, Nb, Ta, P and Ti; The differences between them are that, tonalite belongs to sodic calci-alkaline series, low the total amount of rare earth elements (ΣREE=67.42~112.23ppm ), Eu anomalyδEu=0.82~1.10, slightly enriched in Sr. Granodiorite belongs to potassic high-K calc-alkaline series, have relatively higher total amount of rare earth elements(ΣREE=83.97~148.22ppm),δEu=0.57~0.91, slightly depleted in Sr.
     3 Petrogenesis and tectonic setting of granitoid
     3.1 Late Permian tonalite-granodiorite
     Late Permian granites are I-type formed at low pressures, with plagioclase and hornblende in residual phase, pressure lower than 1.0Gpa, the corresponding crustal thickness is 30-40 km, fractional crystallization exists in the process of evolution. Analysis of major element and Hf isotope (εHf(t)=-3.52~15.95) shows that the source rock is mainly basaltic rocks (lower crust), with little old crustal materials.
     Granites at this period belong to sodic calc-alkaline series, and are metaluminous to weakly peraluminous I-type granite. They are composed of tonalite, belong to cordilleran I-type granite in active continental margin, and deplet Nb, Sr, P and Ti. Their characteristics above are similar to the granite in active continental margin. Based on the trace elements tectonic discrimination diagram, and compared with the trace element spider diagram formed in typical tectonic settings, Yanbian area are located in the surrounding of active continental margin in late Permian, the ancient-Asian Ocean was not closed completely.
     3.2 Middle Triassic quartz diorite
     The quartz diorite emplaced in middle Triassic is High-Mg diorite which wasderived from sanukitic HMA magmas, namely, the partial melting matter of mantle peridotite with water. Data from Hf isotopic composition also support the conclusion.
     Quartz diorite of this period is middle-low potassic calc-alkaline series, is depleted in Ba, Nb, Ta, P and Ti, etc,which shows the formation environment of the active continent. In the tectonic setting discrimination diagram of trace elements, the Quartz diorite belongs to the tectonic setting relating to plate subduction. Research data show that the sanukitic High-Mg diorite are generated by the partial melting of a young and/or hot oceanic slab, probably be created in mantle wedge above subduction zone of slab. So we think the Quartz diorite is generated in mantle wadge contecting with subduction of slab. The conclusion is consistent with the former points - the ancient Asia Ocean had completely closed, and the mantle wadge formation the Quartz diorite may generate the hysteresis effect.
     3.3 Early Jurassic monzogranite
     Granites in this period are I-type rocks, which formed in the much lower pressure, maybe less than 0.8Gpa, and it is related to the lithospheric thinning event, the depth is less than 30Km.Main elements and Hf isotope(εHf(t)=-9.27~3.16)analysis indicates that the mother rock of this period granite is basaltic rock(lower crust), at same time, more older crust materials were involved in the evolvement. The granites are weakly peraluminous and belonging to potassic high-k calc-alkaline series. They consist only of monzogranite, strongly depleted Nb, Sr, P and Ti, which indicate that their characteristics are similar to the granite in active continental margin. The conclusion is accord with the one from the trace elements tectonic discrimination diagram, and the granites was formed at lower pressures, associated with thinning of the lithosphere. Based on the former data, it is concluded that the granites are generated active continental margin resulted from the subduction of Pacific Ocean slab.
     3.4 Early Cretaceous tonalite and granodiorite
     Early cretaceous granites are I-type absolutely, the tonalite type belongs to Aleutian-type adacite, and the mother rock is the basaltic rock derived from the bottom of upper crust, the forming pressure is at least more than 1.0Gpa, general than 1.5Gpa, the same to, the corresponding depth is larger than 40Km, general than 50km. While the granodiorite is formed below the middling pressure, the forming depth is bewteen 40Km to 50Km, going with the forming pressure is bewteen 1.0Gpa to 1.5Gpa, and residual phase conclude garnet and plagioclase,so the mother rock must be the basaltic rock.
     The granites is metaluminous I type granite of sodic calci-alkaline series, include tonalite and granodiorite, belong to cordilleran I-type granite in active continental margin. Among them, the ranodiorite is depleted Nb, Sr, P and Ti, which shows similar characters to the granite in active continental margin. Tonalite is Aleutian-type adacite, depleted Nb, P and Ti, but weak enrichment of Sr, which is mainly relate to the forming depth of formation the granites magmas. Furthermore, the tonalite also were formed in active continental margin. Both the trace elements tectonic discrimination diagram and the trace element spider diagram formed in typical tectonic settings support upper conclusion. At the same time, abundant data indicate that the Northeastern China in Early-Cretaceous located in extensive background. A conclusion can be drawn that the granites were generated under extensive active continental margin resulted from the obliquely subduction of Pacific Ocean slab.
     4 Crustal growth
     Hf isotopic characteristics demonstrate that there are great crust accretion working from mantle-source magma between the era of Neoproterozoic Era to Phanerozoic Eon in this area. Compared to the crystal age of 240Ma to 241 Ma, the least TDM1 age of Meso-Trias quartz diorite is 246Ma, which indicates that a great crust growth event took place about 240Ma in this region,even Yanbian area.
引文
[1]芮宗瑶,张洪涛,王龙生等.吉林延边地区斑岩型一浅成热液型金铜矿床[J].矿床地质,1995,14(2):99~113.
    [2]常成,孙景贵.斑岩型多金属矿床成矿规律及成矿条件研究-以吉林省东部小西南岔金铜矿床为例[J].长春工程学院学报(自然科学版),2007,8(03):56~60.
    [3]陈道公,倪涛,谢烈文.大别地体超高压变质岩石错石Lu-Hf同位素研究[J].岩石学报,2007,23(2):331~342.
    [4]程瑞玉.黑龙江省东部饶河地区花岗岩时代及其成因[D].长春:吉林大学地球科学学院,2006a.
    [5]程瑞玉,吴福元,葛文春,等.黑龙江省东部饶河杂岩的就位时代与东北东部中生代构造演化[J].岩石学报,2006b,22(2):353~376.
    [6]曹熹,党增欣,张兴洲,等.佳木斯复合地体[M].长春:吉林科学技术出版社,2002.
    [7]邓晋福,赵海玲,莫宣学,等.中国大陆根柱构造-大陆动力学的钥匙[M].北京:地质出版社,1996,110.
    [8]董申保.近代花岗岩的研究回顾[J].高校地质学报,1995,1(2):1~12.
    [9]方文昌.吉林省花岗岩类及成矿作用[M].长春:吉林科学技术出版社,1992:1~271.
    [10]高妍.松辽盆地东南缘中生代火山岩的年代学和地球化学特征[D].长春:吉林大学地球科学学院,2008.
    [11]葛文春,李献华,林强,等.呼伦湖早白垩世碱性流纹岩的地球化学特征及其意义[J].地质科学,2001,36(2):176-183.
    [12]葛文春,隋振民,吴福元,等.大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位特征及地质义[J].岩石学报,2007,23(2):423~440.
    [13]郭春丽,吴福元,杨进辉,等.中国东部早白垩世岩浆作用的伸展构造性质-以辽东半岛南部饮马湾山岩体为例[J].岩石学报,2004,20(5):1193~1204.
    [14]郭锋,范蔚茗,李超文,等.延吉地区古新世埃达克岩捕获锆石U-Pb年龄、Hf同位素和微量元素地球化学对区域中酸性岩浆演化的指示[J].岩石学报,2007,23(2):413~422.
    [15]姜开君.吉林珲春东北部中生代侵入岩-一个中性-酸性双峰式岩系的演化和形成环境[J].矿物岩石,1992,12(4):6~11.
    [16]姜开君,周永昶.吉林珲春地区大荒沟花岗岩岩基的岩浆演化和构造环境[J].地质评论,1993,39(5):465~475.
    [17]何国琦,邵济安.内蒙古东南部(昭盟)西拉木伦河一带早古生代蛇绿岩建造的确定及其大地构造意义[C].见:中国北方板块构造文集.武汉:中国地质大学出版社,1983,243~250.
    [18]洪大卫,王式光.花岗岩地球动力学[A].见肖庆辉等主编.当前地学研究的前沿领域和发展动向[C].地质矿产部信息研究院,1993,321~326.
    [19]洪大卫.花岗岩研究的最新进展及发展趋势[J].地学前缘(中国地质大学,北京),1994,1(1-2):79~86.
    [20]洪大卫.“花岗岩类型和成矿作用”国际讨论会简介[J].矿床地质,1998,17(4):377~378[J].
    [21]洪大卫,王式光,谢锡林.兴蒙造山带ε(Nd,t)值花岗岩的成因和大陆地壳生长[J].地学前缘,2000,7(2):441~456.
    [22]洪大卫,王涛,童英.中国花岗岩概述[J].地质评论,2007,53(增刊):9~16.
    [23]吉林省地质矿产局.吉林省区域地质志.北京:地质出版社,1988.
    [24]吉林省地质矿产局.区域地质调查报告(1:50000),大西南岔K-52-34-B南半幅,五道沟幅K-52-34-F,马滴达k-52-46-B北半幅,1989.
    [25]林强,葛文春,孙德有.中国东北地区中生代火山岩的大地构造意义[J].地质科学,1998,33:129-139.
    [26]林强,葛文春,曹林等.大兴安岭中生代双峰式火山岩的地球化学特征.地球化学[J].2003,32(3):208-222.
    [27]李超文,郭锋,范蔚茗,等.延吉地区晚中生代火山岩的Ar-Ar年代学格架及其大地构造意义[J].中国科学D辑:地球科学,2007,(37)3:319~330.
    [28]李昌年.火成岩微量元素岩石学[M].武汉:中国地质大学出版社,1992.
    [29]李春昱.中国板块构造的轮廓[J].中国地质科学院院报,1980,2(1):11~22.
    [30]李俊健.华北陆块主要成矿区带成矿规律和找矿方向[M].天津:天津科学技术出版社,2006:3.
    [31]李锦轶.内蒙古东部中朝板块与西伯利亚板块之间古缝合带的初步研究[J].科学通报,1986,31(14):1093~1096
    [32]李锦轶.布列亚—佳木斯古板块的构造与演化[M].见:中国地质科学院地质研究所编.地学研究,28.北京:地质出版社,1995,96~98.
    [33]李锦轶.中国东北及邻区若干地质构造问题的新认识[J].地质评论,1998,44(04):339~347.
    [34]李双林,欧阳自远.兴蒙造山及邻区的构造格局与构造演化[J].海洋地质与第四纪地质,1998,18(3):45~54.
    [35]李向辉,陈福坤,李潮峰,等.苏鲁造山带荣成超高压地体片麻岩锆石年龄和铅同位素组成特征[J].岩石学报,2007,23(2):351~368.
    [36]李永军,刘志武,付国民,等.花岗岩类I型S型分类在造山带实践中存在的问题-以西秦岭地区为例[J].华南地质与矿产,2002,(2):1~07.
    [37]李之彤,朱群.吉黑东部花岗岩类的稳定同位素组成[J].岩石矿物学杂志,2001,20(3):353~358.
    [38]柳小明.华北克拉通中生代壳幔交换作用的地球化学研究[D].西安:西北大学地质系,2004.
    [39]刘昌实,陈小明,陈培荣,等.A型岩套的分类、判别标志和成因[J].高校地质学报,2003,9(4):573~591.
    [40]路风香,桑隆康.岩石学[M].北京:地质出版社,2005,93~94.
    [41]马昌前.花岗岩类岩浆动力学-理论方法及鄂东花岗岩例析[M].武汉:中国地质大学出版社,1994,1~120.
    [42]孟庆丽,周永昶,柴社立.中国延边东部斑岩-热液脉型铜金矿床[M].吉林:吉林科学技术出版社,2001:1-163.
    [43]苗来成,范蔚茗,张福勤,等.小兴安岭西北部新开岭-科洛杂岩锆石SHRIMP年代学研究及其意义科学通报,2003,48(22):2315~2323.
    [44]裴福萍,许文良,靳克.延边地区晚三叠世火山岩的岩石地球化学特征及其构造意义[J].世界地质,2004,23(1):6~12.
    [45]裴福萍.吉南地区中生代火山岩的岩石学和地球化学特征,吉林大学硕士学位论文[D].长春:吉林大学地球科学学院,2005.
    [46]彭向东,张梅生,李晓敏.吉黑造山带古生代构造古地理演化[J].世界地质.1999,18(03):24~28.
    [47]彭玉鲸,赵成弼.古吉黑造山带的演化与陆壳的增生[J].吉林地质,2001,20(2):1~9.
    [48]彭玉鲸,纪春华,辛玉莲.中俄朝毗邻地区古吉黑造山带岩石及年代记录[J].地质与资源,2002,11(2):65~75.
    [49]齐成栋,纪春华,韩江,等.吉林至珲春地区晚二叠世-早三叠世花岗岩成因机制[J].吉林地质,2005,24(2):10~15.
    [50]邱家骧,林景仟.岩石化学[M].北京:地质出版社,1993,205~207.
    [51]邵济安,臧绍先,牟保磊,等.王冰.造山带的伸展与软流圈隆起-以兴蒙造山带为例[J].科学通报,1994,39(6):533-537.
    [52]邵济安,何国琦等.华北北部在古亚洲洋域与太平洋域构造叠加过程中的地质作用[J].中国科学D辑,1997,27:390~394.
    [53]施光海,苗来成,张福勤,等.内蒙古锡林浩特A型花岗岩的时代及区域构造意义[J].科学通报,2004,49(4):384-389.
    [54]时俊峰.小西南岔金铜矿床地质特征及成因机制[J].1998,7(04):274~280.
    [55]隋振民.大兴安岭东北部花岗岩类锆石U-Pb年龄、岩石成因及地壳演化[D].长春:吉林大学地球科学学院,2007a.
    [56]隋振民,葛文春,吴福元,等.大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因[J].岩石学报,2007b,23(2):461~480.
    [57]宋彪,张玉海,万渝生,等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评,2002,48(增刊):6-30.
    [58]孙德有,吴福元,李惠民,等.小兴安岭西北部造山后A型花岗岩的时代与索伦山-贺根山-扎赉特碰撞拼合带东延的关系[J].科学通报,2000,45(20):2217~2222.
    [59]孙德有,吴福元,林强,等.张广才岭燕山早期白石岩体的成语壳幔相互作用[J].岩石学报,2001,17:227~235.
    [60]孙德有,吴福元,张艳斌,等.西拉木伦河-长春-延吉板块缝合带的最后闭合时间-来自吉林大玉山花岗岩体的证据[J].吉林大学学报(地球科学版),2004,34(2):174~181.
    [61]孙德有,吴福元,高山,等.吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约[J].地学前缘,2005a,12(2):263~275.
    [62]孙德有.吉中-辽北地区显生宙花岗岩的时代、地球化学特征与构造背景[D].长春:吉林大学地球科学学院,2005b.
    [63]孙景贵,门兰静,赵俊康,等.延边小西南岔大型富金铜矿床矿区内暗色脉岩的锆石年代学及其地质意义[J].地质学报,2008a,82(04):517~527.
    [64]孙景贵,陈雷,赵俊康,等.延边小西南岔富金铜矿田燕山晚期花岗杂岩的锆石SHRIMP U-Pb年龄及其地质意义[J].矿床地质,2008b,27(03):319~328.
    [65]唐克东.中朝陆台北侧褶皱代构造发展的几个问题.现代地质[J].1989,3(2):195~204.
    [66]唐克东,王莹,何国琦,等.中国东北及邻区大陆边缘构造[J].地质学报,1995,64(01):16~30.
    [67]唐克东,颜竹筠,张允平,等.内蒙古缝合带的地质特征与构造演化[J].中国地质科学院沈阳地质矿产所集刊,1997,5-6:119~166.
    [68]涂绍雄,王桂华.花岗质岩石新地球化学分类介绍及有关问题评述[J].华南地质与矿产,2004(1):55~63.
    [69]王成文,金巍,张兴洲,等.东北及邻区晚古生代大地构造属性新认识[J].地层学杂志,2008,32(2):119~135.
    [70]王德滋,周金城.我国花岗岩研究的回顾与展望[J].岩石学报,1999,15(2):161~169.
    [71]王鸿祯.中国地壳构造发展主要阶段[J].地球科学,1982,7(3):155~177.
    [72]王涛.花岗岩研究与大陆动力学[J].地学前缘(中国地质大学,北京),2007,7(增刊):137~146.
    [73]王晓蕊.辽西早白垩世四合屯组火山岩地球化学研究[D].西安:西北大学地质系,2005.
    [74]王玉净,樊志勇.内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义[J].古生物学报,1997,36:58~69.
    [75]汪雄武,王晓地.花岗岩成矿的几个判别标志[J].岩石矿物学杂志,2002,21(2):119~130.
    [76]吴福元,叶茂,张世红.中国满洲里—绥芬河地学断面域的地球动力模型[J].地球科学-中国地质大学学报,1995,20:535-539.
    [77]吴福元,江博明,林强.中国北方造山带造山后花岗岩的同位素特点与地壳生长意义[J].科学通报,1997,42(20):2188~2192.
    [78]吴福元,孙德有,林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报,1999,15(2):181~189.
    [79]吴福元,Wilde S A,孙德有.佳木斯地块片麻状花岗岩的锆石离子探针U~Pb年龄[J].岩石学报,2001,17:443~452.
    [80]吴福元,葛文春,孙德有,等.中国东部岩石圈减薄研究中的几个问题[J].地学前缘(中国地质大学,北京),2003,10(3):51~60.
    [81]吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题[J].岩石学报,2007,23(6):1217~1238.
    [82]吴尚全.吉林小西南岔斑岩铜金矿床稀土元素地球化学研究[J].黄金,1991,12(11):10~16.
    [83]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589~1604.
    [84]肖庆辉,邓晋福,马大铨,等.花岗岩研究思维与方法[M].北京:地质出版社,2002,9.
    [85]徐嘉炜,崔可锐,刘庆,等.东亚大陆边缘中生代的左行平移断裂作用[J].海洋地质与第四纪地质,1985,5(02):51~64.
    [86]谢鸣谦.拼贴板块构造及其驱动机理[M].北京:科学出版社,2000,1~256.
    [87]杨德彬,许文良,裴福萍,等.辽东-吉南中生代辉长岩-闪长岩的形成时代:锆石SHRIMP和LA-ICPMS U-Pb定年证据[J].矿物岩石地球化学通报,2005,24(增刊):121.
    [88]杨德彬.蚌埠荆山“混合”花岗岩的形成时代和地球化学特征[D].长春:吉林大学地球科学学院,2006.
    [89]于介江,门兰静,陈雷,等.延边地区五道沟群变质英安岩的锆石SHRIMP U-Pb年龄及其地质意义[J].吉林大学学报(地球科学版),2008,38(3):363~367.
    [90]袁洪林,吴福元,高山,等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(14):1511~1520.
    [91]赵成弼,靳克,齐成栋,彭玉鲸.珲春地区早印支期I-A型花岗岩系的特征及其大地构造意义[J].吉林地质,2001,20(1):1~11.
    [92]赵春荆,彭玉鲸,党增欣,等.吉黑东部构造格架及地壳演化[M].沈阳:辽宁大学出版社,1996,1~186.
    [93]赵宏光.延边中生代浅成热液金、金铜矿床的成因与成矿模式研究.吉林大学博士学位论文[D].长春:吉林大学地球科学学院,2007,1~126.
    [94]赵俊康,孙景贵,门兰静,等.小西南岔富金铜矿床流体包裹体中子矿物特征及意义[J].吉林大学学报(地球科学版),2008,38(03):384~388.
    [95]赵全国,许文良,靳克,等.延边地区中生代火山岩的岩浆源区:来自Sr ~Nd同位素和深源捕虏体(晶)的证据[J],吉林大学学报(地球科学版),2005,35(4):416~422.
    [96]张炯飞,祝洪臣.延边地区花岗岩的成因类型及其形成的大地构造环境[J].辽宁地质,2000,17(1):25~33.
    [97]张吉衡,葛文春,吴福元,等.大兴安岭扎兰屯地区中生代双峰式火山岩锆石U-Pb定年、Hf同位素特征及其地质意义[J].地质学报英文版-论文摘要,2006(1):311.
    [98]张梅生,彭向东,孙晓猛.中国东北区古生代构造古地理格局[J].辽宁地质,1998,(2):91~96.
    [99]张旗,王焰,李承东,等.花岗岩的Sr-Yb分类及其地质意义[J].岩石学报,2006,22(9):2249~2269.
    [100]张旗,潘国强,李承东,等.花岗岩混合问题:与玄武岩对比的启示-关于花岗岩研究的思考之一[J].岩石学报,2007a,23(5):1141~1152.
    [101]张旗,潘国强,李承东,等.花岗岩结晶分离作用问题-关于花岗岩研究的思考之二[J].岩石学报,2007b,23(6):1239~1251.
    [102]张旗,潘国强,李承东,等.花岗岩构造环境问题-关于花岗岩研究的思考之三[J].岩石学报,2007c,23(11):2683~2698.
    [103]张旗,王焰,熊小林,等.埃达克岩和花岗岩:挑战与机遇[M].中国大地出版社,2008.
    [104]张兴洲、张元厚.蓝片岩与绿片岩共存-黑龙江岩系构造演化新证据.长春地质学院学报1991.
    [105]张兴洲,Sklyarov E V.中国东北及邻区蓝片岩带的构造意义[A].见:长春地质学院地质研究所文集[C],北京:地震出版社,1992,99~106.
    [106]张兴洲,杨宝俊,吴福元,等.中国兴蒙-吉黑地区岩石圈结构基本特征[J].中国地质,2006,33(04):816~823.
    [107]张艳斌.延边地区花岗质岩浆活动的同位素地质年代学格架[D].长春:吉林大学地球科学学院,2002a.
    [108]张艳斌,吴福元,李惠民,等.吉林黄泥岭花岗岩体的单颗粒锆石U~Pb年龄[J].岩石学报,2002b,18(4):475~481.
    [109]张艳斌,吴福元,孙德有,等.延边“早海西期”棉田花岗岩和仲坪紫苏辉石闪长岩的单颗粒锆石U-Pb定年[J].地质论评,2002c,48(4):424~429.
    [110]张艳斌,吴福元,翟明国,等.和龙地块的构造属性与华北地台北缘东段边界[J].中国科学D辑,2004,34(9):795~806.
    [111]张艳斌.吉黑东部花岗岩的成因与显生宙地壳增生.中国科学院地质与地球物理研究所博士后研究工作报告,2007.
    [112]张贻侠,孙云生,张兴州,等.中国满洲里-绥芬河地学断面[M].北京:地质出版社,1998.
    [113]郑斗范,朴涛允,万玉胜,等.吉林省珲春县小西南岔金铜矿床地质特征及成矿规律[M].1983.
    [114]郑永飞,陈仁旭,张少兵,等.大别山超高压榴辉岩和花岗片麻岩中锆石Lu-Hf同位素研究[J].岩石学报,2007,23(2):317~330.
    [115]周新华,英基丰,张连昌,等.大兴安岭晚中生代火山岩成因与古老地块物质贡献:锆石U-Pb年龄及多元同位素制约[J].地球科学-中国地质大学学报,2009,34(1):1~10.
    [116]周永昶,孟庆丽等.延边地槽区花岗岩成因系列.1989,科研报告.
    [117]邹光华,欧阳宗圻,李惠,等.中国主要类型金矿床找矿模型[M].北京:地质出版社,1996.
    [118]邹祖荣,周永昶,金伯禄,等.吉林省延边地区(槽区)花岗岩成因系列及其成矿应用(科研报告).吉林地质矿产局,长春地质学院,1989.
    [119] Altherr R,Holl A,Hegner E,et al.High-potassium,calc-alka-line I-type plutonism in the European Variscides:northern Vosges (France) and northern Schwarzwald (Germany)[J].Lithos,2000,50(1-3):51~73.
    [120] Amelin Y,Lee DC,Halliday AN,et al.Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons[J].Nature,1999,399:252~255.
    [121] Andersen T.Correction of common lead in U-Pb analyses that do not report 204Pb[J].Chemical Geology,2002,192:59-79.
    [122] Anderson JL.Status of thermobarometry in granitic batholiths[J].Trans.Roy.Soe.Edinb.Earth Sci.,1997,87:125~138.
    [123] Atherton MP,Petford N.Generation of sodium-rich magmas from newly underplated basaltic crust[J].Nature,1993,362:144~146.
    [124] Atsushi Kamei,Masaaki Owada,Takashi Nagao,et al.High-Mg diorites derived from sanukitic HMA magmas,Kyushu Island,southwest Japan arc:evidence from clinopyroxene and whole rock compositions[J].Lithos,2004,75:359~371.
    [125] Belousova EA,Griffin WL,O’Reilly S Y.Zircon crystalmorphology,trace element signatures and Hf Isotope composition as a tool for petrogenetic modelling:Examples from Eastern Australian granitoids[J].J.Petrol.,2006,47:329~353.
    [126] Belousova EA,Griffin W,Suzanne Y et al.Igneous zircon:trace element composition as an indicator of source rock type[J].Contributions to Mineralogy and Petrology,2002,143(5):602~622.
    [127] Bilchert-Toft J,Chauvel C and Albarède F.Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP MS[J].Contrib.Mineral.petrol.,1997,127:248~260.
    [128] Bonin B . A-type granites and related rocks : Evolution of a concept , problems and prospects[J].2007,Lithos,in press.
    [129] Chappell BW,White AJR.I and S type granites in the Lachlan Fold Belt[J].Trans.Royal Soc.Edinburgh:Earth Sci.,1992,83:1~26.
    [130] Chen B,Jahn B M,Wilde S,et al.Two contrasting Paleozoic magmatic belts in northernInner Mongolia,China:petrogenesis and tectonic implications[J].Tectonophysics,2000,328:157~182.
    [131] Calmus T,Aguillon-Robles A,Maury RC,et al.Spatial and temporal evolution of basalts andmagnesian andesites (bajaites) from Baja California,Mexico:the role of slab melts[J].Lithos,2003,66:77~105.
    [132] Coleman DS,Gray W,Glazner AF.Rethinking the emplacement and evolution of zoned plutons:Geochronologic Evidence for incremental assembly of the Tuolumne Intrusive Suite ,California[J].Geology,2004,32:433~436.
    [133] Collins WJ,Beams SD,White AJR,et al.Nature and origin of A~type granites with particular reference to southeastern Australia[J].Contrib.Mineral Petrol,1982,80:189~200.
    [134] Crawford AJ,Fallon TJ,Green DH.Classification,Petrogenesis and tectonic setting of boninites.In:Crawford AJ.(ed.)Boninite,London:Unwin Hyman.1~49.
    [135] Crofu F,Hanchar J M,Hoskin P W O,et al.Atlas of zircon textures[J].Reviews in Mineralogy and Geochemistry,2003,53:469~495.
    [136] Defant MJ and Drummond MS.Derivation of some morden arc magmas by of young subducted lithosphere[J].Nature,1990,347:662~665.
    [137] Dungan MA,Lindstrom MM,McMiland NJ,et al.Open system magmatic evolution of the Taos Plateau vocanic field,northern New Mexico,1,The perology and geochemistry of the Servilleta basalt[J].J.Geophys.Res,1986,91:599~6028.
    [138] Fan WM,Guo F,Wang YJ,et al.Post-orogenic bimodal volcan-ism along the Sulu Orogenic Belt in eastern China[J].Phys ChemEarth,2001,26:733~46.
    [139] Fan WM,Guo F,Wang YJ,et al.Calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains,northeastern China[J].J Volcano Geotherm Res,2003,121:115~135.
    [140] Foster HJ,Tisehendorf G and Trumbull RB.An evaluation of the Rb vs (Y+Nb) discrimination diagram to infer tectonic setting of silicic igneous rocks[J].Lithos,1997,40:261~293.
    [141] Furukawa Y,Tatsumi Y.Melting of a subducting slab andproduction of high-Mg andesite magmas:unusual magmatism in SW Japan[J].Geophys.Res.Lett.,1999,26:2271~2274.
    [142] Gao S,Liu XM,Yuan HL,et al.Günther D,Hu S H.Analysis of forty-twomajor and trace elements of USGS and NIST SRM Glasses by LA-ICPMS[J].GeostandNews,2002,22:181~195.
    [143] Griffin WL,Pearson NJ,Belousova E,et al.The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J].Geochim.Cosmochim.Acta,2000,64:133~147.
    [144] Griffin WL,Wang X,Jackson SE,et al.Zircon geochemistry and magma mixing,SE China:In-si-tu analysis of Hf isotopes,Tonglu and Pingtan igneous complexes[J].Lithos,2002,61:237~269.
    [145] Guo F,Fan WM,Wang YJ,et al.Geochemistry of late Mesozoicmafic rocks in west Shandong Province:characterizing the lostlithospheric mantle beneath North China Block[J].Geochem J,2003,37:63~77.
    [146] Hanchar J M,Miller C F.Zircon zonation patterns as revealed bycathodoluminescence and backscattered electron images : Implica-tions for interpretation of complex crustal histories[J].Chemical geology,1993,110:1~13.
    [147] Hawkesworth CJ,Kemp AIS.Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution[J].Chem.Geol,2006,226:144~162.
    [148] Hickey RL,Frey FA.Geochemical characteristics of boninite series volcanics:implications for their source[J].Geochimica et Cosmochimica Acta,1982,46:2099~2115.
    [149] Hofmann AW.Chemical differentiation of the Earth:the relationship between mantle,continental crust,and oceanic crust[J].Earth and Planetary Science letters,1988,90:297~314.
    [150] Jahn BM,Wu FY and Chen B.Massive granitoid generation in central Asia:Nd isotopic evidence and implication for continental growth in the Phanerozoic[J].Episodes,2000,23:82~92.
    [151] Jenner GA . Geochemistry of high-Mg andesites from Cape Vogel , Papa New Guinea[J].Chem.Geol,1981,33:307~332.
    [152] Jia Dacheng,Hu Ruizhong,Lu Yan,et al.Collision belt between the Khanka block and the North China block in the Yanbian Region,Northeast China[J].Journal of Asian Earth Sciences,2004,23:211~219.
    [153] Kay RW.Aleutian magnesian andesite:melts from subducted Pacific ocean crust[J].Journal of Volcanology and Geothermal Research,1978,4:117~132.
    [154] Liu JL,Gregory AD,Lin ZY,et al.The Liaonan metamorphiccore complex,Southeastern Liaoning Province,North China:Alikely contributor to Cretaceous rotation of Eastern Liaoning,Ko-rea and contiguous areas[J].Tectonophysics,2005,407:65~80.
    [155] Maruyama Shigenori.Pacific-type orogeny revisited:Miyashiro-tupe orogeny proposed[J].The Island Arc,1997,6:91~120.
    [156] Nabelek PL,Bartlett CD.Petrologic and geochemical links between the post-collisional Proterozoic Harney Peak leucogranite,South Dakota,USA,and its source rocks[J].Lithos,1998,45:71~85.
    [157] Parfenov LM,Popeko LI,Tomurtogoo O.Problems of the tectonics of the Mongolia-Okhotsk orogenic belt[J].Tikhookean.Geol,1999,18(5):24~43.
    [158] Pearce JA,Harris B W and Tindle A G.Trace element discrimination diagrams for the tectonic interpretations of granitic rocks[J].J.Petrol,1984,25:956~983.
    [159] Perford N,Atherton M.Na-rich partial melts from newly underplated basaltic crust:the Cordillera Blanca Batholith,Peru[J].Journal of Petrology,1996a,37:1491~1521.
    [160] Petford N,Paterson B,Mccaffrey K,et al.Melt infiltration and advection in microdioritic enclaves[J]. Eur J Mineral,1996,8:405~412.
    [161] Piteher WS . Granite type and tectonic environment . In Hsu K(ed) Mountain Building Processes.Academic Press,London,1983.
    [162] Piteher WS,Atherton MD,Cobbing EJ,et al.Magmatism at a plale edge:The Peruvian Andes.Blaekie,Glasgow,1985.
    [163] Rollison HR.Using geochemical data:evaluation,presentation,in-terpretation[M].Longman Group,UK Ltd,1993:1-275.
    [164] Sengor NMC,Natalin BA,Burtman VS.Evolution of the Altaid tectonic collage and Paleozoic crustal growth inEurasia[J].Nature,1993,364:299~307.
    [165] Shimoda G,Tatsumi Y,Nohda S,et al. Setouchi high-Mg andesites revisited:geochemical evi-dence for melting of subducting sediments[J].Earth Planet.Sci.Lett.,1998,160:479~492.
    [166] Smithies RH,Champion DC.High-Mg diotite from the Archaean Pilbara Craton;anorogenic magmas derived from a subduction-modified mantle.Geological Survey of Western Australia,Annual Review.Perth:Western Australia Geological Survey,West.Australia,1998-99,45~59.
    [167] Smithies RH,Champion DC.Adakite,TTG and Archaean crustal evolution[J].Geophysical Research Abstracts,2003,5,01630,European Geophysical Society.
    [168] Stevenson RK,David J,Parent M.Crustal evolution of the western Minto Block,northern Superior Province[J].Canada Precambrian Research,2005,145:229~242.
    [169] Sun SS,McDonough WF.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[M].In:Saunder AD and Norry MJ(eds) Magnatism in the ocean basins.Geological Society Special Publications,1989,42:313~345.
    [170] Sun Deyou,Kazuhiro SUZUKI,Izumi KAJIZUKA,et al.CHIME dating of monazite from the Dongqing pluton in SE Jilin,China[J].The Journal of Earth and Planetary Sciences Nagoya University,2008,55:23~37.
    [171] Tang KD.Tectonic development of Paleozoic fold belts at thenorth margin of the Sino-Korean craton[J].Tectonics,1990,9:249~260.
    [172] Taylor SR,McLennan S M.The continental crust:its composition and evolution,an examination of the geochemical record preserved in sedimentary rocks[M].Blackwell Science Publisher,Oxford,UK,1985.
    [173] Tayor RP.Strong DF eds.Recent Advances in the Geology og Granite of Granite-Related Mineral Deposits.1988.
    [174] Thiéblemont D,Stein G,Lescuyer JL.Epithermal and porphyry deposits:the adakitic connection[J].Earth and Planetary Sciences,1997,325:103~109.
    [175] Thiéblemont D,Tegyey M.Une discrimination géochimique desroches différenciées témoin de la diversitéd’origine et de situation tectonique des magmas calco-alcalins[J].Comptes Rendusdel’Académiedes Sciences Paris,1994,319:87~94.
    [176] Vervoort JD,Patchett PJ.Behavior of hafnium and neodynium isotopes in the crust:Constraints from Precambrian crustally derived granites[J].Geochim.Cosmochim.Acta,1996,60:3717~3733.
    [177] Wang PJ,Liu WZ,Wang SX,et al.40Ar/39Ar and K/Ar dating on the volcanic rocks in the Songliao basin,NE China:constraints on stratigraphy and basin dynamics[J].Int J Earth Sci.,2002,91:331~340.
    [178] Watson EB and Harrison TM.Zircon thermometer reveals minimurn melting conditions on earliest Earth[J].Seience,2005,308:841~844.
    [179] Watson EB , Wark DA , Thomas JB . Crysrallization thermometers for zircon and rutile[J].Contrib.Mineral.petrol,2006,151:413~433.
    [180] Weaver BL,Tarney J.Empirical approach tio estimating the composition of the continental crust[J].Nature,1984,310:575.
    [181] Wilde SA,Zhang X ZH,Wu FY.Extension of a newly identified 500Ma metamorphic terrane in North East China:furthee U~Pb SHRIMP dating of the Mashan Complex,Heilongjiang Province,China[J].Tectonophysics,2000, 328: 115~130.
    [182] Wu RX,Zheng YF,Wu YB,et al.Reworking of juvenile crust:Element and isotope evidence from Neoproterozoic granodiorite in South China[J].Precambrian Res,2006,146:179~212.
    [183] Wu FY,Jahn BM,Wilde S,et al.Phanerozoic crustal growth:U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China[J].Tectonophysics,2000,328:89~113.
    [184] Wu FY,Sun DY,Li HM,et al.A-type granites in northeastern China:age and geochemical constraints on their petrogenesis[J].Chem.Geol,2002,187:143~173.
    [185] Wu FY,Jahn BM,Wilde S,et al.Highly fractionated I-type granites in NE China(I):Geochronology and petrogenesis[J].Lithos,2003a,66:241~273.
    [186] Wu FY,Jahn BM,Wilde S,et al.Highly fractionated I-type granites in NE China(II):Isotopic geochemistry and implications for crustal growth in the Phanerozoic[J].Lithos,2003b,67:191~204.
    [187] Wu FY,Sun DY,Jahn BM,et al.A Jurassic garnet-bearing granitic pluton from NE China showing tetrad REE patterns [J].Journal of Asian Earth Sciences,2004,23:731~744.
    [188] Xu J,Ma G,Zhu G,et al.Formation and evolution of theTancheng-Lujiang wrench fault system:a major shear system tothe northwest of the Pacific Ocean[J].Tectonophysics,1987,134:273~310.
    [189] Yan,JY,Yang KD,Bai JW,et al.High pressure metamorphic rocks and their tectonic environment in northeastern China[J].J SE Asian Earth Sci.,1989,3:303~313.
    [190] Yang JH,Wu FY,Shao JA,et al.Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt,North China[J].Earth and Planetary Science Letters,2006,246:336~352.
    [191] Yang JH,Wu FY,Wilde SA,et al.Tracing magma mixing in granite genesis:In situ U-Pb dating and Hf isotope analysis of zircons[J].Contrib.Mineral.Petrol.,2007,153:177~190.
    [192] Yogodzinski GM,Volynets ON,Koloskov AV,et al. Magnesian andesites and the subduction component in a strongly calc-alkaline series at PiipVolcano,far western Aleutians[J].J.Petrol,1994,35:163~204.
    [193] Zaek T,Moraes R and Klonz A.Temperature dependence of Zr in rurile:Empirical calibration of a rutile themometer[J].Contrib.Mineral.Petrol.,2004,148:471~488.
    [194] Zhang JH,Ge WC,Wu FY,et al.Mesozoic Bimodal Volcanic suite in Zhalantun of the Da Hinggan Range and its geological significance:Zircon U-Pb Age and Hf isotopic constraints[J].Acta geologica sinica,2006,80(1):58~69.
    [195] Zhang LC,Zhou XH,Ying JF,et al.Geo-chemistry and Sr-Nd-Pb-Hf isotopes of Early Cretaceous basalts from the Great Xinggan range,NE China:Implications for their origin and mantle source characteristics[J].Chemical Geology,2008,256(1-2):12~23.
    [196] Zhang YB,Wu FY,Wilde SA,et al.Zircon U-Pb ages and tectonic implications of‘Early Paleozoic’granitoids at Yanbian,Jilin Province,northeast China[J].Island Arc,2004,13:484~505.
    [197] Zheng YF,Zhao ZF,Wu YB,et al.Zircon U-Pb age,Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen[J].Chem.Geol.,2006,231:135~158.
    [198] Zheng YF,zhang SB,Zhao ZF,et al.Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China:Implications for growth and reworking of continental crust[J].Lithos,2007,96:127~150.
    [199] Zindler A and Hart SR.Chemical geodynamics[J].An.Rev.Earth Planet.Sci.,1986,14:493~571.
    [200] Zonenshain LP , Kuzmin MI , Natapov L M .Geology of the USSR : A plate tectonic synthesis.Washington DC,Amer.Geophys.Union,Geodynamic Monograph,1990,21,242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700