新型含氮杂环荧光分子的设计、合成及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光功能材料就是在外场(如光、电、磁、热等)作用下,利用材料本身光学性质发生变化的原理,实现对入射光信号的探测、调制以及能量或频率转换作用的光学材料。其中,有机发光材料由于种类繁多、性质多样、应用广泛成为近年来的研究热点。从传统的光致发光领域到新兴的电致发光领域的研究及应用中,有机发光材料无不发挥着重要的作用,特别是含氮原子的杂环化合物更是在其中扮演着重要的角色。
     在本论文中设计、合成了一系列新颖的含氮原子的杂环荧光化合物,考察了其光学、热学、电化学性质特点,根据结构特征分别研究开发他们在荧光探针领域(镉离子荧光探针、汞离子荧光探针)及有机电致发光器件领域(电子传输材料、发光材料)的应用。
     设计合成了十三个未见报道的基于1,8-萘啶荧光团的新型1,8-萘啶衍生物。D2分子是首个报道的基于1,8-萘啶荧光团,通过正向协同作用以双核配位形式对镉离子进行识别的分子荧光探针。D2与镉离子结合后荧光强度变化明显,荧光强度增加至初始强度的三倍,波长红移35nm,溶液颜色从蓝色变成绿色,便于可视检测。
     设计合成了一种未见报道的利用双荧光团(1,8-萘啶和1,8-萘酰亚胺)的共振能量转移机理(FRET)及分子内光诱导电子转移(PET)共同作用的分子荧光探针(HA-1)。光谱研究表明,化合物HA-1可以通过抑制PET使荧光增强的方式选择性识别汞离子。当利用供体荧光团(1,8-萘啶)的激发波长对化合物进行激发时,化合物出现供体和受体双荧光峰的现象。结合汞离子之后,受体荧光峰强度增强为初始强度的3.5倍,具有典型的双波长比率荧光探针的光谱特征,使汞离子识别信号的表达方式更加丰富。
     设计合成了六种未见报道的基于氮—氮配体的新型氟—硼配合物(BN1-BN6)。通过对化合物BN1-BN5的晶体中氢键的构成及分子堆积特点分析后,认为硼原子有效的提高了与之相连的氟原子的电子接受能力,使B-F键成为比C-F更强的电子受体基团。化合物BN1和BN2在具有良好溶液荧光性质的同时,与氟硼吡咯相比,固体荧光强度显著增强;LUMO轨道能级低于目前普遍应用的电子传输材料8-羟基喹啉铝(<-3.0eV),具有良好的电子接受能力,可作为新型的电子传输材料应用于有机电致发光器件中。利用物理气相沉积法,制备得到化合物BN3均匀致密的薄膜,为后续其他氟硼化合物薄膜的制备提供了宝贵的经验。研究了化合物BN5在光照条件下发生[2+2]二聚反应,探索反应机理及氟硼基团在该反应进行中的贡献及作用。
     设计合成了七种未见报道的基于氮—氧配体的新型氟—硼配合物(BO1-BO7)。通过乙醚扩散法制备得到五种化合物的晶体,对其中的氢键构成及分子堆积特点进行了分析。化合物BO1-BO5固体和液体荧光强度均较弱,但LUMO能级低于目前广泛应用的8-羟基喹啉铝,普遍具备作为电子传输材料的特点。BO1分子已经成功的作为电子传输材料应用于多层太阳能电池中,并显示了良好的电子传输能力和稳定的光电转化效率。同分异构体BO6和BO7充分利用了BODIPY类化合物的分子优势,结合D-A类化合物的结构特征,通过合理的分子设计使分子内存在双极特征,使化合物同时实现强固体及液体荧光,并导致化合物斯托克斯位移显著增大,其中BO6在乙腈中斯托克斯位移为197nm,BO7在甲醇中斯托克斯位移为93nm。两化合物具有较低的LUMO能级(<-3.0eV)和较高的HOMO能级(>-5.4eV),具有良好的电子接收及传输能力,是多功能的荧光分子,可应用于电致发光领域。
Optical functional materials could sense, detect and transfer the signals of incident radiations (e.g. light, heat, electricity and magnetic fields) through their optical properties changes. Among them, organic optical materials, and more particularly, the nitrogen-containing fluorescent heterocompounds, which are superior to other kinds of compounds and are hence suitable for use in many fields, for example, photolumicescence and electroluminescence, have attracted considerable attentions..
     In present work,a series of new nitrogen-containing fluorescent heterocompounds have been designed and synthesized. The optical, thermology and electrochemistry properties have been studied to explore the applications of these compouds in fluorescent sensing (Cd~(2+) sensors and Hg~(2+) sensors) and Organic Light Emitting Diode (electron-transport materials and luminesent materials).
     Thirteen of new fluorophores derivatived from 1,8-naphthyridine with tuneable optical properties have been developed. D1 was the first 1,8-naphthyridine-based sensor that could exhibit a high selectivity and sensitivity for Cd~(2+) with fluorescent enhancement and red-shift by forming 1:2 complex with Cd~(2+) ions utilizing synergistic action.
     Novel Hg~(2+) fluorescent sensor based on 1,8-naphthyridine (HA-1) has been designed and synthesized. HA-1 are based on the combination of FRET of two fluorephores (1,8-naphthyridine and 1,8-naphthalimide) and PET mechanisms. When HA-1 was excited by the excited wavelength of the donor in FRET (1,8-naphthyridine), two fluorescent peaks of the donor and accepter (for FRET) and ratiometric fluorescent signals were observed.
     Six novel Fluorine-Boron cored fluorescent complexes with N~^ N ligand were designed and efficiently synthesized. According to the study of intermolecular interactions and crystal packing, it suggested that the accepting ablity of F atom has been improv in these B-F complexes, In BN1 and BN2, the features, such as intensive fluorescence in solid/solution, better electron-accepting ability, enhanced their potential charge-transport properties of interest for practical applications in OLED. The photo-dimerization [2+2] of compound BN5 has been studied to explore the mechanism and the contribution of the B-F core in these reactions.
     Seven novel fluorescent Fluorine-Boron complexes with N~^O (BO1-BO7) have been designed and synthesized. Crystals were obtained by direct diffusion of aether into a solution of them in dichloromethane, respectively. H-bonds and crystal packing of these crystals were discussed. The fluorescent intensity of BO1-BO5 were low, but the good thermology stability and electron-accepting features make them more promising in practical applications as charge-transport materials. BO1 has been successfully used in solar cell as charge-transport materials, showing nice electron-accepting abilities and stable conversion efficiency. BO6 and BO7, combining the structural features of BODIPY and Donor-Acceptor (D-A) architecture, have been efficiently synthesized and well characterized. Significant features, such as strong fluorescence in solution and solid state, unusual large Stokes shifts, and lower LUMO and higher HOMO levels, are observed in these two structural isomers. These properties qualify them as multifunctional flurophores that can be employed in light-emitting or sensing applications.
引文
[1]张建成,王夺元.现代光化学.北京:化学工业出版社,2006.
    [2]曹怡,张建成.光化学技术.北京:化学工业出版社,2004.
    [3]樊美公等.光化学基本原理于光子学材料科学.北京:科学出版社,2001.
    [4]黄春辉,李富友,黄若谊,等.光电功能超薄膜.北京:北京大学出版社,2001.
    [5]肖田,林明通,黄浩,等.蓝色无机电致发光薄膜最新研究进展.光电子技术,2006,4:224-229.
    [6]邓朝勇,王永生,杨胜.无机薄膜电致发光研究进展.功能材料,2002,33:133-135.
    [7]孙丽宁,符连社,刘丰祎,等.无机/有机稀土配合物杂化发光材料研究进展.发光学报,2005,26:15-26.
    [8]潘远凤,胡福增,郑安呐,等.高分子发光材料进展研究.材料导报,2003,17:166-169.
    [9]周新木,陈慧勤,谈宏宇.稀土高分子荧光材料研究进展.化学试剂,2007,29:527-531.
    [10]潘远凤,胡福增,郑安呐,等.稀土高分子发光材料研究的新进展.功能高分子学报,2003,4:570-573.
    [11]苏文斌,谷学新,邹洪,等.稀土元素发光特性及其应用.化学研究,2001,12:55-59.
    [12]于凯,关淑霞,张宏伟,等.有机光致发光材料的研究进展.哈尔滨师范大学自然科学学报,2006,22:70-73.
    [13]de Silva A.P.,Gunaratne H.Q.N.,Gunnlaugsson T.Signaling Recognition Events with Fluorescent Sensors and Swithes.Chem.Rev.1997,97:1515-1566.
    [14]McQuade D.T.,Pullen A.E.,Swager T.M.Conjugated Polymer-Based Chemical Sensors.Chem.Rev.2000,100:2537-2574.
    [15]Martinez-Manez R.,Sancenon F.Fluorogenic and Chromogenic Chemosensorsand Reagents for Anions.Chem Rev.2003,103:4419-4476.
    [16]Pu,L.Fluorescence of Organic Molecules in Chiral Recognition.Chem.Rev.2004,104:1687-1716.
    [17]Reichardt C.Solvatochromic Dyes as Solvent Polarity Indicators.Chem.Rev.1994,94:2319-2358.
    [18]Bencic-Nagale S.,Sternfeld T.,Walt D.R.Microbead Chemical Switches:An Approach to Detection of Reactive Organophosphate Chemical Warfare Agent Vapors.J.Am.Chem.Soc.2006.128:5041-5048.
    [19]Maeda H.,Matsuno H.,Ushida M.,et al.2,4-Dinitrobenzenesul-fonyl Fluoresceins as Fluorescent Alternatives to Ellmans Reagent in Thiol-Quantification Enzyme Assays.Angew.Chem.Int.Ed.2005,44:2922-2925.
    [20]Ou B.,nuang D.Fluorescent Approach to Quantitation of Reactive Oxygen Species in Mainstream Cigarette Smoke.Anal.Chem.2006,78:3097-3103.
    [21]He H.,Mortellaro M.A.,Leiner M.J.P.et al.A Fluorescent Sensor with High Selectivity and Sensitivity for Potassium in Water.J.Am.Chew Soc.2003,125:1468-1469.
    [22]Beer P.D.,Bayly S.R.Anion Sensing by Metal-Based Receptors.Top.Curt.Chem.2005,255:125-162.
    [23]Fabbrizzi L.,Licchelli M.,Rabaioli G.et al.The Design of Duminescent Densors for Dnions and Donisable Analytes.Coord.Chem.Rev.2000,205(1):85-108.
    [24]Beer P.D.,Gale P.A.Anion Recognition and Sensing:The State of the Art and Future Perspectives.Angew.Chem.,Int.Ed.2001,40:486-516.
    [25]Rurack K.Flipping the light switch 'ON'-the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions.Spectrochim.Acta A.2001,57:2161-2195.
    [26]郭祥峰.亲水性萘酰亚胺阳离子荧光分子探针的设计、合成及性能:(博士学位论文).大连:大连理工大学,2004.
    [27]崔大为.2-亚胺基-噻唑啉作为受体的荧光探针的设计、合成及光谱研究:(博士学位论文).大连:大连理工大学,2005.
    [28]徐兆超.基于ICT萘酰亚胺阳离子比率荧光探针的研究:(博士学位论文).大连:大连理工大学,2006.
    [29]王娇炳.基于多酰胺受体的汞离子分子荧光探针:(博士学位论文).大连:大连理工大学,2007.
    [30]de Silva A.P.,Gunaratne H.Q.N.,Gunnlaugsson T.Signaling Recognition Events with Fluorescent Sensors and Swithes.Chew Rev.1997,97:1515-1566.
    [31]Valeur B.Molecular fluorescence:Principles andapplications.Wiley-VCH Verlag GmbH,2001.
    [32]de Silva A.P.,Fox D.B.;Moody T.S.et al.The development of molecular fulorescent switches.Trends Biotechnol.2001,19:29-34.
    [33]de Silva A.P.,Gunaratne H.Q.N.,Habib-Jiwan J-L.,et al.New Fluorescent Model Compounds for the Study of Photoinduced Electron Transfer:The Influence of a Moleeular Electric Field in the Excited State,Angew.Chew Int.Ed.,1995,34:1728-1731.
    [34]de Silva A.P.,Riee T.E.A small supramolecular system which emulates the unidirectional,path-selective photoinduced electron transefr(PET)of the bacterial photosynthetie reaction centre(PRC),J.Chem.Soe.,Chem.Common.,1999:163-164.
    [35]Czarnik A.W.Fluorescent Chemosensors of Ion and Molecule Recognition,ACS Symp.Ser,American Chemieal Society:Washington DC,1993
    [36]Czarnik A.W.Chemieal Communication in Water Using Fluorescent Chemosensors,Acc.Chem.Res.1994,27:302-30.
    [37]Fabbrizzi L.,Poggi A.Sensors and switches from supramolecular chemistry,Chem.Soe.Rev.,1995,24:197-202.
    [38] Fabbrizzi L., Lieehelli M., Pallavieini P., et al. Sensing of transition metals through fluorescence quenching or enhancement. A review, Anaylst, 1996, 121: 1763- 1768.
    
    [39] Tsien R. Y. Intracellular signal transduction in four dimensions: from molecular design to physiology, Am. J.Physiol: Cell Physiology, 1992, 263: 723-728.
    
    [40] Guo X., Qian X., Jia L. A Highly Selective and Sensitive Fluorescent Chemosensor for Hg~(2+) in Neutral Buffer Aqueous Solution. J. Am. Chem. Soc. 2004, 126: 2272-2273.
    
    [41] fang J., Xiao Y., Zhang Z., et al. A pH-Resistant Zn(II) Sensor Derived from 4-Aminonaphthalimide: Design, Synthesis and Intracellular Applications. J. Mater. Chem. 2005, 15: 2836-2839.
    
    [42] Wang J., Qian X.Two regioisomeric and exclusively selective Hg(II) sensor molecules composed of a naphthalimide f luorophore and an o-phenylenediamine derived triamide receptor. Chem. Commun. 2006,109-111.
    
    [43] Wang J., Qian X. A Series of Polyamide Receptor Based PET Fluorescent Sensor Molecules : Positively Cooperative Hg2+ Ion Binding with High Sensitivity. Org. Lett. 2006, 8: 3721-3724.
    
    [44] Valeur B., Leray I. Design principles of fluorescent molecular sensors for cation recognition, Coor. Chem. Rev., 2000, 205:3-40.
    
    [45] Cosnard F.,Wintgens V. A new fluoroionophore derived from 4-amino-N-methyl-1, 8-naphthalimide, Tetrahedron Letter, 1998,39: 2751-2754.
    
    [46] Xu Z., Qian X., Cui J. Colorimetric and Ratiometric Fluorescent Chemosensor with a Large Red-Shift in Emission: Cu(II)-Only Sensing by Deprotonation of Secondary Amines as Receptor Conjugated to Naphthalimide Fluorophore. Org. Lett. 2005, 7: 3029-3032.
    
    [47] Xu Z., Xiao Y., Qian X., et al. Ratiometric and Selective Fluorescent Sensor for Cu Based on InternalCharge Transfer (ICT). Org. Lett. 2005, 7: 889-892.
    
    [48] Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca~(2+) indicators with greatly improved fluorescence properties. J. Biol. Chem. 1985, 260: 3440-3450.
    
    [49] Wang J.,Qian X. ,Cui J. Detecting Hg~(2+) Ions with an ICT Fluorescent Sensor Molecule: Remarkable Emission Spectra Shift and Unique Selectivity. J. Org. Chem. 2006, 71:4308-4311.
    
    [50] Wang J., Qian X., Qian J,, et al. Micelle-Induced Versatile Performance of Amphiphilic Intramolecular Charge-Transfer Fluorescent Molecular Sensors. Chem. Eur. J. 2007, 13: 7543-7552.
    
    [51] Speiser S. Photophysics and mechanisms of intramolecular electron energy transfer in bichromophoric molecular systems: solution and supersonic jet studies. Chem. Rev. 1996, 96: 1953-1976.
    [52] Szollosi J., Damjanovich S.,Matyus L. Apllication of fluorescence resonance energy transfer in the clinical laboratory: routine and research. Cytometry. 1998,34:159-179.
    [53]Takakusa H.,Kikuchi K.,Urano Y.,et al.Designand synthesis of an enzyme-cleavable sensor molecule for phosphodiesterase activity based on fluorescence resonace energy transfer.J.Am.Chem.Soc.2002,124:1653-1657.
    [54]Kim H.J.,Park S.Y.,Yoon S.,et al.FRET-derived ratiometric fluorescence sensor for Cu~(2+).Tetrahedron,2008,64:1294-1300.
    [55]Pope M.,Kallmnam H.,Mnagnante P.J.Electroluminesence in organic crystals.J.Chem.Phys.1963,38:2042-2043.
    [56]Tang C.W.,Vanslkyke S.A.Orgnaic electroluminesence diodes.Appl.Phys.Lett.1987,51:913.
    [57]Burroughs J.H.,Bradley D.D.,Brown A.R.,et al.Light-emitting diodes based on conjugated polymers.Nature,1990,347:539-541.
    [58]刘青宜,张志峰.有机电致发光的研究及进展.半导体行业,2006,6:33-36.
    [59]杨定宇,蒋孟衡,杨军.有机电致发光器件的研究进展.材料导报,2007,21:38-41.
    [60]Adachi C.,Tsutsui T.,Saito S.Organic electroluminesence device having a hole conductor as an emitting layer.J.Appl.Phys.Lett.1989,55:1489-1491.
    [61]Adachi C.,Tokito S.,Tsutsui T.,et al.Organic electroluminesence device with three-lyaer structure.Jpn.J.Appl.Phys.1988,27:L713-L715.
    [62]Yu W.L,Pei J.,Cao Y.,et al.Hole-injection enhancement by copper phthalocyanine(CuPc)in blue polymer lihgt-emitting diodes.J.Appl.Phys.2001,89:2343-2350.
    [63]Zhou X.,Blochwitz J.,Pfeiffer M.,et al.Enhanced hole injection into amorphous hole-trnasport layers of organic light-emitting diodes using controlled p-type doping.Adv.Funct.Mater.2001,11:310-314.
    [64]Salbeeck J.,Yu N.,Buaer J.,et al.Low molecular ogranic glasses for blue electroluminescence.Synth.Met.1997,91:209-215.
    [65]赵俊卿,解士杰,韩圣浩,等.真空蒸镀双层有机电致发光器件及其稳定性.半导体学报,2001,22:198-202.
    [66]黄春辉,李富友,黄若谊,等.光电功能超薄膜.北京:北京大学出版社,2001.
    [67]Tokito S.,Tanaka H.,Koda N.,et al.Thermal stability of organic electroluminescent device fabricated using novel charge transporting materials.Macromol.Symp.1997,125:181-188.
    [68]邹应萍,谭松庭,赵斌.有机电致发光材料的研究进展.液晶与显示,2004,19:191-196.
    [69]Domercq B.,Grasso C.,Maldonado J.-L.,et al.Electron-Transport Properties and Use in Organic Light-Emitting Diodes of a Bis(dioxaborine)fluorene Derivative J.Phys.Chem.B 2004,108,8647-8651.
    [70]盛振环,朱玉兰,阚玉和,等.有机小分子电致发光材料及器件的研究进展.化学试剂,2006,28:16-22.
    [71]杨定宇,蒋孟衡,涂小强.有机小分子发光材料的研究.化工新型材料.2007,35:4-7.
    [72]Toguchi S.,Morioka Y.,Ishikawa H.,et al.Novel red organic electroluminescent materials including perylene moiety.Synth.Met.,2000,111-112:57-61.
    [73]Sakakibara Y.,Okutsu S.,Enokida T.Red electroluminescence and photoluminescence properties of a reduced porphyrin compound,tetraphenylchlorin.Thin Solid Films,2000,363:29-32.
    [74]Koga T.,Takase A.,Yasuda S,et al.Fluorescence spectroscopic characterization of 4,7-bis(2-thienyl)-1,2,5-oxadiazolo[3,4-c]pyridine;lead structure of new red-emitting EL material:Chem.Phys.Lett.,2002,354:173-178.
    [75]Chen C.H.,Tang C.W.,Shi J.,et al.Recent developments in the synthesis of red dopants for Alq_3 hosted electroluminescence.Thin Solid Films,2000,363:327-331.
    [76]Tang C.W.,VanSlyke S.A.,Adn C.H.Chen.Electroluminescence of doped organic thin film.J.Appl.Phys.,1989,65:3610-3616.
    [77]Chen C.H.,Tang C.W.,Shi J.,et al.Green organic electroluminescent devices.U S Patent No 6020078,2000.
    [78]Tanaka D.,Sasabe H.,Li Y.J.Ultra high efficiency green organic light-emitting devices.J.Appl.Phys.,2007,46:L10-L12.
    [79]Kim Y.,Im W.B.Effect of hole-blocking layer doped with electron-transport molecules on the performance of blue organic light-emitting device.Phys Stat Sol,2004,201:2148-2153.
    [80]魏筱红,魏泽义.镉的毒性及其危害.公共卫生与预防医学.2007,18:44-46.
    [81]黄秋婵,韦友欢,黎晓峰.镉对人体健康的危害效应及其机理研究进展.安徽农业科学.2007,35:2528-2531.
    [82]Prodi L.,Montalti M.,Zaccheroni N.,et al.Characterization of 5-chloro-8-methoxyquinoline appended diaza-18-crown-6 as a chemosensor for cadmium.Tetrahedron Lett.2001,42,2941-2944.
    [83]Bronson R.T.,Michaelis D.J.,Lamb R.D.,et al.Efficient Immobilization of a Cadmium Chemosensor in a Thin Film:Generation of a Cadmium Sensor Prototype.Org.Lett.2005,7:1105-11058.
    [84]Peng X.,Du J.,Fan J.,et al.A Selective Fluorescent Sensor for Imaging Cd~(2+)in Living Cells.J.Am.Chem Soc.2007,129:1500-1501.
    [85]Lu C.,Xu Z.,Cui J.,et al.Ratiometric and Highly Selective Fluorescent Sensor for Cadmium under Physiological pH Range:A New Strategy to Discriminate Cadmium from Zinc.J.Org.Chem.2007,72:3554-3557.
    [86]Barrios A.M.,Lippard S.J.Amide Hydrolysis Effected by a Hydroxo-Bridged Dinickel(Ⅱ)Complex:Insights into the Mechanism of Urease.J.Am.Chem.Soc.1999,121,11751-11757.
    [87]Suzuki,T.Monodentate,didentate chelating,and bridging 1,8-naphthyridine complexes of pentamethylcyclopentadienyliridium(Ⅲ):Syntheses and structures in the solid states and in solution.Inorg.Chim.Acta.2006,359:2431-2438.
    [88]Basato M.,Biffis A.,Martinati G.,et al.Cationic complexes of dirhodium(Ⅱ)with 1,8-naphthyridine:Catalysis of reactions involving silanes.J.Organ.Chem.2006,691,3464-3471.
    [89]Sun Y.,Liao J.,Fang J.,et al.Fluorescent Organic Sanoparticles of Benzofuran-Naphthyridine Linked Molecules:Formation and Fluorescence Enhancement in Aqueous Media Org.Lett.2006,8:3713-3716.
    [90]nuang J.,Wen W.,Sun Y.,et al.Two-Stage Sensing Property via a Conjugated Donor-Acceptor-Donor Constitution:Application to the Visual Detection of Mercuric Ion.J.Org.Chem.2005,70:5827-5832.
    [91]Xiao,Y.;Qian,X.Novel highly efficient fluoroionophores with a peri-effect andstrong electron-donating receptors:TICT-promoted PET and signaling response to transition metal cations with low background emission.Tetrahedron Lett.2003,44:2087-2091.
    [92]Chandler C.J.,Deady L.W.,Reiss J.A.J.Heterocyclic Chem.1982,19:1017-1022..
    [93]Goswami S.,Dey S.,Jana S.,et al.Side chain bromination of mono and dimethyl heteroaromatic and aromatic compounds by solid phase N-bromosuccinimide reaction without radical initiator under microwave.Chem.Lett.2004,7:916-917.
    [94]Allred R.A.,McAlexander L.H.,Arif A.M.,et al.Chemistry of a Binuclear Cadmium(Ⅱ)Hydroxide Complex:Formation from Water,CO_2 Reactivity,and Comparison to a Zinc Analog.Inorg.Chem.2002,41:6790-6801.
    [95]安建博,张瑞娟.低剂量汞毒性与人体健康.国外医学医学地理分册,2007,28:39-42.
    [96]Rurack K.,Genger U.R.Rigidization,Preorientation and electronic decoupling-the 'magic triangle' for the design of highly efficient fluorescent sensors and switches.Chem.Soc.Rev.2002,31:116-127.
    [97]Rurack K.,Kollmannsberger M.,Resch-Genger U.,Daub J.A Selective and Sensitive Fluoroionophore for Hg~Ⅱ,Ag~Ⅰ,and Cu~Ⅱ with Virtually Decoupled Fluorophore and Receptor Units.J.Am.Chem.Soc.2000,122:968-969.
    [98]Nolan E.M.,Lippard S.J.A "Turn-On" Fluorescent Sensor for the Selective Detection of Mercuric Ion in Aqueous Media.J.Am.Chem.Soc.2003,125:14270-14271.
    [99]Coskun A.,Akkaya E.U.Ion Sensing Coupled to Resonance Energy Transfer:A Highly Selective and Sensitive Ratiometric Fluorescent Chemosensor for Ag(I)by a Modular Approach J.Am.Chem.Soc.2005,127:10464-10465.
    [100]Camerel F.,Bonardi L.,Schmutz M.,et al.Highly Luminescent Gels and Mesogens Based on Elaborated Borondipyrromethenes.J.Am.Chem.Soc.2006,128:4548-4549.
    [101]Yamada K.,Nomura Y.,Citterio D.,et al.Highly Sodium-Selective Fluoroionophore Based on Conformational Restriction of Oligoethyleneglycol-Bridged Biaryl Boron-Dipyrromethene. J. Am. Chem. Soc. 2005, 127:6956-6957.
    
    [102] Gabe Yu., Urano Y., Kikuehi K., et al. Highly Sensitive Fluorescence Probes for Nitric Oxide Based on Boron Dypyrromethene ChromoPhore- Rational Design of Potentially Useful Bioimaging Fluorescence Probe. J. Am. Chem. Soc. 2004, 126:3357-3367.
    
    [103]Baruah M., Qin W., Basaric N., et al. BODIPY-Based Hydroxyaryl Derivatives as Fluorescent pH Probes. J. Org. Chem., 70:4152-4157.
    
    [104]Yilmaz M. D., Bozdemlr O. A. ,Akkaya E. U. Light Harvesting and Efficient Energy Transfer in a Boron-dipyrrin (BODIPY) Functionalized Perylenediimide Derivative. Org. Lett. 2006,8:2871-2873.
    
    [105]Sun Y., Rohde D., Liu Y., et al. A novel air-stable n-type organic semiconductor: 4,49-bis[(6,69-diphenyl)-2,2-difluoro-1,3,2-dioxaborine] and its application in organic ambipolar field-effect transistors. J. Mater. Chem. 2006, 16: 4499-4503.
    
    [106]Xie Z. ,Yang B. ,Li F., et al. Cross Dipole Stacking in the Crystal of Distyrylbenzene Derivative: The Approach toward High Solid-State Luminescence Efficiency. J. Am. Chem. Soc. 2005, 127:14152-14153.
    
    [107]Mas-Torrent M., Hadley P., BromLey S. T.,et al. Correlation between crystal structure and mobility in organic field-effect transistors based on single crystals of tetrathiafulvalene derivatives. J. Am. Chem. Soc. 2004, 126:8546-8553.
    
    [108]Sehmidt G. M. J. Solid State Photochemistry, D. Ginsburg(ed.), Verlag Chemie, Weinheim, 1976.
    
    [109]Steiner T. The whole palette of hydrogen bonds, , Angew. Chem. Int. Ed. Engl., 2002, 41:48-76.
    
    [110]NishioM. CH/π hydrogen bonds in crystals. CrystEngComm, 2004, 6:130-158.
    
    [111]Meyer E. A., Castellano R, K., Diederieh F. Interactions with Aromatic Rings in Chemical Reactions, Angew. Chem. Int. Ed, 2003, 42:1210-1250.
    
    [112]Camerel F. .Bonardi L. .Ulrich G., et al. Self-assembly of fluorescent amphipathic borondipyrromethene scaffoldings in mesophases and organogels. Chem. Mater. 2006, 18:5009-5021.
    
    [113] Yogo T., Urano Y., Ishitsuka Y., et al. Highly Efficient and Photostable Photosensitizer Based on BODIPY Chromophore. J. Am. Chem. Soc. 2005, 127:12162-12163.
    
    [114]Oleynik P., Ishihara Y., Cosa G. Design and Synthesis of a BODIPY-α-Tocopherol Adduct for Use as an Off/On Fluorescent Antioxidant Indicator. J. Am. Chem. Soc. 2007, 129:1842-1843.
    
    [115]Turowska-Tyrk I. ,Grzesniak K., Trzop E., et al. Monitoringstructural transformations in crystals. Part 4. Monitoring structural changes in crystals of pyridine analogs of chalcone during [2 + 2] photodimerization and possibilities of the reaction in hydroxy derivatives. J. Solid State Chem., 2003, 174:459 - 465.
    
    [116]Gnanaguru K., Ramasubbu N., Venkatesan K., et al. A Study on the Photochemical Dimerization of Coumarins in the Solid. J. Org. Chem. 1985,50:2337-2346.
    
    [117]Yamada S. , Uematsu N. .Yamashita K. Role of Cation- π Interactions in the Photodimerization of trans-4-Styrylpyridines. J. Am. Chem. Soc. 2007,129:12100-12101.
    
    [118]Hepp A. ,Ulrich G..Schmechel R., et al. Highly efficient energy transfer to a novel organic dye in OLED devices. Synthetic Metals 2004, 146:11-15.
    
    [119]Ziessel R., Ulricha G., Harrimanb A. The chemistry of Bodipy: A new El Dorado for fluorescence tools. New J. Chem., 2007, 31:496-501.
    
    [120]Loudet A.,Burgess K.BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties. Chem. Rev. 2007, 107:4891-4932.
    
    [121]Ulrich G. .Ziessel R. ,Goze C, et al. Fr.Pat. FR2882055, 2005.
    [122]Hancock J. ,Gifford A. ,Zhu Y. ,et al. n-Type Conjugated Oligoquinoline and Oligoquinoxaline with Triphenylamine Endgroups: Efficient Ambipolar Light Emitters for Device Applications. Chem. Mater. 2006, 18:4924-4932.
    
    [123]Rurack K. .Kollmannsberger M. ,Daub J. Molecular Switching in the Near Infrared (NIR) with a Functionalized Boron -Dipyrromethene Dye. Angew. Chem. Int. Ed. 2001, 40:385-387.
    
    [124]Rohand T. .Baruah M. ,Qin W., et al. Functionalisation of fluorescent BODIPY dyes by nucleophilic substitution. Chem. Commun. 2006, 266-268.
    
    [125]Stadlbauer W. .Fischer M. Organic azides in heterocyclic synthesis, 29. Thermal cyclization of 3-azido-2-phenyl-indan-l-one to 5H-indeno[l,2-b]indol-10-one. J. Heterocyclic Chem. 2002, 39:131-135.
    
    [126]Wolfe J. F. .Portlock D. E. .Feuerbach D. J. Synthetic and mechanistic aspects of the sodium hydride promoted acylation of methylated heteroaromatics. J. Org. Chem. 1974, 39: 2006-2010.
    
    [127]de Silva A. P. .Gunaratne H. Q. N., Habib-Jiwan J. L,et al. New Fluorescence Model Compounds for the Study of Photoinduced Electron Transfer: The Influence of a Molecular Electronic Field in the Excited State. Angew. Chem., Int. Ed. Engl., 1995, 34:1728-1731.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700