新型制备型电色谱装置及其在极性小分子物质分离中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生物工程上游技术的迅猛发展,采用分离技术集成化的研究思路开发新型生物分离技术日渐引起学术界重视。将电泳与色谱分离技术进行集成,即在色谱分离过程中引入电场以提高色谱的分离度或分离速度是近年来国内外液相色谱技术的一个重要发展方向。目前,国内外有关制备型电色谱系统的研究工作只有少数课题组进行,这些研究都以蛋白质和核酸等生物大分子为分离对象,使用的固定相主要是分离大分子常用的排阻凝胶、离子交换凝胶和羟基磷灰石等介质。而在生物活性物质中,除了蛋白质等生物大分子外,越来越多的极性小分子活性物质被发现,例如,多肽、多酚、寡核苷酸和水溶性抗生素等。因为极性强,多为水溶性,作为药品具有良好的生物相容性,但却给分离工程师带来难题。目前较成熟的制备技术,例如萃取技术和RP-HPLC(反相高效液相色谱)技术在非极性或弱极性小分子化合物的分离中有良好表现,并且易于放大,但对强极性小分子物质的分离效果很差(例如头孢菌素C和小分子寡核苷酸)。由于大部分强亲水性物质都具有可解离基团,可以用毛细管电泳或电色谱技术进行高效率的分离,但这些方法难以放大,不能制备微克级以上的样品。因此,开发用来分离极性小分子物质的制备型电色谱技术可以为这类物质的分离纯化提供新的制备手段,具有重要的实际意义。本课题在这样的背景下,首次提出并设计了一套适合分离极性或弱极性小分子物质的制备型电色谱装置,建立了各种适合分离或浓缩小分子物质的制备型电色谱技术,并对各种影响因素和分离机理进行了较全面的研究,揭示了通电对色谱分离过程的各种影响。
     以柱色谱(40 cm×0.6 cm I.D., 40 cm×1.2 cm I.D., 40 cm×2.0 cm I.D.)为基础设计并构建了制备型电色谱装置,基本解决了电色谱技术放大引起的主要问题,即电解气体进柱和焦耳热累积的问题,确定了装置的结构和实验操作流程。与文献报道的装置类似,在色谱柱两端各连接一个电极室以放置电极溶液和电极;但柱与电极室的连接方式及相对位置与文献报道的不同。文献报道的较成熟的装置都在电极室和柱连接处用排阻膜或凝胶条分隔,电极室的缓冲液和色谱柱的缓冲液分开。这样,用膜或凝胶条可以很好地阻挡电解气体进入色谱柱,同时电极缓冲液与外界循环又可以不断带走气体。由于以大分子样品为分离对象,样品不会穿过膜或凝胶条进入电极缓冲液而造成损失。显然,这些报道的装置不适合可以自由出入排阻膜或凝胶条的小分子物质的分离。本课题的电极室均设计为敞口,将制备型色谱柱的出口电极室改成内径约5 mm的T型三通管,放置在色谱柱侧下方,与柱的支管相连。经过改进的装置可以随时排走电解产生的气泡,不再需要膜或凝胶进行分隔。色谱流出液经过T型三通管电极室后全部进入在线检测器,不必担心小分子样品的泄漏。在冷却系统中,除了用文献报道的色谱柱夹套冷却和进柱缓冲液槽冷却外,还对出口T型电极室和连接管道等焦耳热聚集部位进行了全方位的冷却,确保可以施加较高电场(60~120 V/cm)(报道的制备型电色谱多用20~50 V/cm的低电场),分离过程稳定。
     在本论文的主体部分,分别论述了以常用于分离小分子物质的非极性大孔吸附树脂、可以与阴离子物质构成离子排斥色谱的阳离子交换凝胶和具有多孔结构的排阻凝胶为固定相,用设计的制备型电色谱装置分离几种小分子极性物质,包括茶多酚、单核苷酸和水溶性头孢菌素的研究结果。
     在装有聚苯乙烯型非极性DIAION HP20树脂的色谱柱上加反向电场(色谱柱入口加负极,出口加正极),可以从含有咖啡因的茶叶粗提物中部分分离茶多酚单体表没食子儿茶素没食子酸酯(EGCG)和表儿茶素没食子酸酯(ECG)。研究表明,色谱的主要影响因素——固定相颗粒度、色谱流速和缓冲液中乙醇浓度,电泳的主要影响因素——缓冲液pH值等对样品的保留时间都有明显影响,证明该分离系统实现了电泳与非极性吸附色谱的叠加。在分离过程中,电泳、电渗和色谱都对分离有一定作用。在通电过程中,电场的存在还通过影响样品在DIAION HP20树脂颗粒内的传质,影响样品的非极性吸附色谱行为。由于实验中使用的树脂颗粒内孔径较小(<30 nm),不足以引起颗粒内液体的电渗流动,导致带有样品的液体不易进入树脂颗粒内,传质减慢。尤其是EGCG和ECG,因为样品分子内的非极性基团的分布不对称,色谱保留时间受电场影响更明显。通过增大柱内径,保持柱长不变的方式对电色谱柱进行了放大,结果施加相同的电场,可有效减少放大后的焦耳热。放大后电泳仍然可与色谱作用叠加,但由于色谱柱的高径比减小,损失了部分柱效,降低了分离效果。
     在填充弱酸性阳离子交换葡聚糖凝胶的离子排斥色谱柱上加反向电场(色谱柱入口加负极,出口加正极),凝胶上的羧酸基团可以被正极电解产生的氢离子质子化,而且随着通电时间的延长,凝胶的质子化程度提高,结果茶多酚(EGCG和ECG)与咖啡因的分离度增加,直到被完全分离。本课题首次研究了在离子排斥色谱柱上施加电场的分离,结果表明出口电极的电解反应修饰了固定相,减弱了样品与固定相之间的离子排斥力,从而改善了样品的色谱行为,是电场影响分离的主要原因。目前关于制备型电色谱的研究还未见涉及该原理,该法可以为类似的多酚或弱酸物质的分离纯化提供参考。与在吸附色谱柱上通电分离茶多酚的情况相比,此时电场的作用机理截然不同,体现了电场影响样品色谱行为的不同方面。
     用分离生物大分子常用的排阻凝胶为固定相,通电分离亲水性小分子——单核苷酸混合物和头孢菌素混合物的研究,与前两种分离茶多酚的方法不同,这里使用的排阻凝胶不与或微弱地与样品发生吸附作用,所有样品在不加电场时的保留时间相同,丝毫不能被分离。排阻凝胶的主要作用是作为电泳填充介质,防止样品返混,并实现在线检测与收集。通电后,样品可以按照带电量差异被分离,因此该系统也可以看作制备型电泳系统。研究发现,凝胶内孔径越大,电泳分离效果越好。用恒组分缓冲液分离单核苷酸混合物时,根据电泳方向与液体流动方向一致还是相反,可以减小或延长样品的保留,并根据带电量分离样品。在此基础上,结合pH梯度缓冲液建立了等电聚焦电泳法,根据两性头孢菌素的等电点分离并浓缩了4种头孢菌素分子,分离时间比离子交换色谱法短,样品峰集中,缓冲液的轻微变化也不影响分离效果。等电聚焦电泳法用低浓度的乙酸和氨水溶液(0.01 mol/L)制作pH梯度,价格便宜,配制方便,不仅可以用于结构相似的小分子物质的细分和精制,还可以用于极性小分子物质的浓缩。
     综上所述,本课题主要针对极性小分子物质的分离建立了制备型电色谱装置及4种在色谱柱上施加电场的分离方法,主要使用水溶液分离极性或弱极性小分子物质,并且都用水溶解样品上样。4种施加电场的方法的分离机理各不相同,但都体现了电场提高样品分离度和洗脱浓度的优点。建立的各种方法适合分离可溶于水的极性小分子物质,可以与常用的分离亲脂性化合物的制备型反相高效液相色谱和硅胶柱-有机溶剂法互补,有广阔的应用前景和实际价值。
The extensive progress of biotechnology and bioengineering requires the development of novel separation techniques. The combination of the existing techniques is an important way. In order to enhance the separative resolutions and efficiency, coupling liquid chromatography with electrophoresis by introducing an electric field into a column has been attempted at home and abroad recently. But up to now, only several groups are engaged in the research of preparative electrochromatography. In reported literatures, samples are confined to macromolecules, such as proteins and nucleic acids. Accordingly size-exclusion gels, ion-exchange gels and hydroxylapatite, which are commonly used for macromolecules, are chosen as the stationary phase. In the field of bio-active substances, besides macromolecules, a lot of small polar compounds with novel activities have been discovered, such as peptides, polyphenols, oligonucleotides and water-soluble antibiotics. These compounds have good biocompatibility due to their strong polarity and water-solubility, but these features induce some trouble to separation engineers. In the field of separation process, liquid-liquid extraction and RP-HPLC could be easily scaled, which have good performance for the separation of non-polar and weakly polar compounds, but they are not suitable for polar ones due to the poor retention (e. g. cephalosporin C and oligonucleotides). Since most polar compounds are chargeable, they could be well separated by capillary electrophoresis or electrochromatography. However the capillary-based methods could not be scaled, so that it is difficult to provide microgram-scale fractions. If preparative electrochromatography is explored, it may be of significance and novelty for the separation of small polar compounds. Therefore a novel kind of preparative electrochromatography apparatus was developed in this dissertation, which is especially suitble for small polar or weak polar compounds. Accordingly preparative electrochromatography techniques to enhance resolution and concentration of fractionated samples were designed and investigated. Experiments in terms of the influencing factors and the mechanisms were also investigated, which illustrated that the electric field had great effects on chromatographic performance.
     A novel preparative electrochromatography apparatus was constituted on the basis of column chromatography (40 cm×0.6 cm I.D., 40 cm×1.2 cm I.D., 40 cm×2.0 cm I.D.). Common problems of preparative electrochromatography, i. e. electrolytic bubbles and Joule heat, were alleviated. The construction and manipulation of this apparatus were established. Two electrode chambers containing electrode buffer and electrodes were separatedly connected with two column ends, which was similar to the reported apparatus, while the manner of their connection was newly proposed in this dissertation. In literatures, exclusive membranes or gel rods were put between the electrode chambers and the column in order to prevent bubbles from column, meanwhile electrode buffers were circulated with the reservoir to take the bubbles away. Apparently the reported apparatus are not suitable for small molecules, which may travel across the membranes or gel rods and lose in electrode buffer. Diverse from the reported apparatus, electrode chambers in this dissertation were open to free electrolytic bubbles. The outlet electrode chamber in“T”-shape with each branch of 5 mm I.D. was put at the foot of the column and connected with the column branch, so as to free bubbles without the need of membranes or gel rods. The effluent out of column could pass through the outlet chamber and then flew to online detection without loss. Therefore the novel apparatus could accommodate the separation of small compounds. In the cooling system of this apparatus, besides column water jacket and the ice-water bath for the inlet eluent, the“T”-shape outlet chamber and the connecting tubes were also cooled, where the Joule heat was prone to accumulate. Thus higher electric field of 60~120 V/cm could be applied steadily, while most electric field used in literature was only 20~50 V/cm.
     In the main part of the dissertation, macroporous non-polar adsorption resin usually used for the separation of small molecules, cation-exchange gel which could compose anion-exclusion chromatography with anions, and porous size-exclusion gel were chosen as the stationary phase to separate small polar compounds, including tea polyphenols, mononucleotides and water-soluble cephalosporins.
     Tea polyphenol monomer EGCG and ECG could be partially separated from crude tea extract containing caffeine by applying negative electric field (cathode at column inlet, anode at outlet) on the column packed with non-polar adsorptive DIAION HP20 resin. By altering the chromatographic factors, including particle size, flow rate, ethanol concentration, and the electrophoretic factor, buffer pH, solute retention could be dramatically affected. This verified the successful combination of the chromatography and electrophoresis techniques. During the separation course, the mechanisms including electrophoresis, electroosmosis and chromatography could affect separation results. Besides, electric field could affect the chromatographic performance by influencing the mass transfer from mobile phase liquid into resin particles. The electroosmotic flow could not formed in the intraparticle of the resin due to its small pore size (<30 nm), thus mobile phase flow containing sample solutes could merely travel interpartically and mass transfer into intraparticles was hindered to some extent. Especially the retention of EGCG and ECG, whose adsorptive parts are asymmetrically distributed in molecule, was more likely to be affected. The electrochromatography was amplified by column diameter while the column length kept the same. Consequently Joule heat was not apparently increased, and the coupling of electrophoresis and chromatography was observed. However the separative performances were not as good as those obtained from smaller columns, due to the loss of partial column efficiency.
     When applying negative electric field (cathode at column inlet, anode at outlet) on an anion-exclusive chromatographic column packed with weakly acidic gels, the carboxy groups on resin could be protonated via the electrolysis of anode, and the protonation could be enhanced with the increase of electric field applying time. Consequently, tea polyphenols (EGCG and ECG) were completely separated from caffeine by applying electric field. Studies on this novel method revealed that the electrolytic reaction in electrode chambers was the main cause of the chromatographic performance alteration. The gel at the column bottom was protonated due to electrolysis, thus the anion-exclusive interactions with polyphenols were weakened and the resolutions were improved. It is the first time to study this separative method, which is referable for the preparation of polyphenols or other weakly acidic compounds. The separation mechanisms by applying electric field on anion-exclusive chromatography and adsorptive chromatography were different, which illustrated that the electric field could affect the chromatographic performance from different aspects.
     Porous size-exclusion gels, which are commonly used to separate macromolecules, were first attempted to separate small polar mononucleotides and cephalosporins with electric field. Different from the above methods for tea polyphenols, gels here could slightly or not adsorb sample solutes, thus all solutes result in the same retention and could not be separated without electric field. The gels here functioned as electrophoretic media to prevent the convective effects and realize the online detection and fractionation. Solutes could be partially separated on the basis of their charges when applying electric field. Actually, this could be taken as a preparative electrophoresis system. It was discovered that the bigger the pore of the gel, the better the performance of electrophoresis. Electrophoresis with isocratic eluent could apparently diminish or enhance the retention when the direction of electrophoresis was the same or opposite to hydrodynamic flow. On this basis, isoelectric focusing electrophoresis of four zwitterionic cephalosporins was established by using pH gradient eluent. Consequently, the separative time was much shorter and sample peaks were much more concentrated than the results by ion-exchange chromatography. Resolution by isoelectric focusing electrophoresis was less affected when slightly altering the buffer pH. Moreover, the pH gradient buffers were made of dilute acetate and ammonia solution (0.01 M), which is cheap and easy to be composed. The established novel isoelectric focusing electrophoresis could be used to refine and concentrate small polar compounds.
     Conclusively, in this dissertation a preparative electrochromatography apparatus especially for the separation of small polar compounds, and four separation methods with applying electric field were designed and studied. In the experiments, aqueous buffers were used to separate samples in aqueous solution, including small polar and weakly polar compounds. The separative mechanisms of every established method were different, but all the separations revealed that applying electric field on chromatography could enhance resolution and fractionated sample concentration. These methods are suitable for the separation of small polar compounds, and are complemented with RP-HPLC and silica-solvent technique for non-polar compounds. These methods are promising and valuable in the investigation of novel small polar or weakly polar compounds.
引文
[1]熊宗贵.生物技术制药[M].北京:高等教育出版社, 1999: 1-16.
    [2] Lightfoot EN, Moscariello JS. Bioseparations [J]. Biotechnol Bioeng 2004, 87: 259-273.
    [3] Smith C. Striving for purity: advances in protein purification [J]. Nat Meth 2005, 2: 71-77.
    [4] Thiel KA. Biomanufacturing, from bust to boom. . . to bubble? [J]. Nat Biotech 2004, 22: 1365-1372.
    [5] Rito-Palomares M. Bioseparation: The limiting step in bioprocess development [J]. J Chem Technol Biotechnol 2008, 83: 115-116.
    [6]徐进宜.药物化学[M].北京:化学工业出版社, 2006: 1-2.
    [7] Ivory CF. The prospects for large-scale electrophoresis [J]. Sep Sci Technol 1988, 23: 875-912.
    [8] Ivory CF. Preparative free-flow electrofocusing in a vortex-stabilized annulus [J]. Electrophoresis 2004, 25: 360-374.
    [9] Bottenus D, Leatzow D, Ivory CF. Effects of increased voltage on resolution in preparative isoelectric focusing of myoglobin varia. Electrophoresis 2006, 27: 3325-3331.
    [10]李逢雨,孙小梅,李步海.修饰聚合物液-固亲和萃取体系纯化大豆中的组氨酸[J].武汉大学学报(理学版) 2004, 50: 157-160.
    [11]文禹撷,邹少兰,林东强,等.双水相亲和萃取法从豆壳中分离过氧化物酶[J].食品科学2004, 25: 93-96.
    [12]李存芝,李琳,胡松青,等.亲和膜过滤技术及其应用[J].现代化工2004, 24: 46-66.
    [13] Romero J, Zydney AL. Staging of affinity ultrafiltration processes for chiral separations [J]. J Membr Sci 2002, 209(1) : 107-119.
    [14] Horneman DA, Wolbers M, Zomerdijk M, et al. Surfactant-aided size exclusion chromatography [J]. J Chromatogr A 2004, 807: 39-45.
    [15] Wang Z, Zhao F, Hao X, et al. Microbial transformation of hydrophobic compound in cloud point system [J]. J Mol Catal B: Enzyme 2004, 27: 147-153.
    [16] Wang Z, Xu J, Liang R, et al. A downstream process with microemulsion extraction for microbial transformation in cloud point system [J]. Biochem Eng J 2008, 41: 24-29.
    [17] Wang Z. The potential of cloud point system as a novel two-phase partitioning system for biotransformation [J]. Appl Microbiol Biotechnol 2007, 75: 1-10.
    [18]孙彦.生物分离工程[M].北京:化学工业出版社, 1998: 1-7.
    [19] García AA, Bonen MR, Ramírez-Vick J, et al. Bioseparation process science [M].北京:清华大学出版社, 2002: 14.
    [20]顾觉奋.分离纯化工艺原理[M].北京:中国医药科技出版社, 2002: 181-236.
    [21] Bonnerjea I, Oh S, Hoare M, et al. Protein purification: the right step at the right time [J]. Biotechnol 1986, 4: 954-960.
    [22] Shimizu Y, Purification of water-soluble natural products. In Cannell RJP, Natural products isolation [M]. Totowa, NJ, USA: Humana Press, 1998: 329.
    [23] Strege MA. Hydrophilic interaction chromatography?electrospray mass spectrometry analysis of polar compounds for natural product drug discovery [J]. Anal Chem 1998, 70(13): 2439-2445.
    [24] Jiang Z, Smith NW, Ferguson PD, et al. Hydrophilic interaction chromatography using methacrylate-based monolithic capillary column for the separation of polar analytes [J]. Anal Chem 2007, 79: 1243-1250.
    [25] Strege MA, Stevenson S, Lawrence SM. Mixed-mode anion?cation exchange / hydrophilic interaction liquid chromatography?electrospray mass spectrometry as an alternative to reversed phase for small molecule drug discovery [J]. Anal Chem 2000, 72: 4629-4633
    [26] Zhang H, Guo Z, Zhang F, et al. HILIC for separation of co-eluted flavonoids under RP-HPLC mode [J]. J Sep Sci 2008, 31: 1623-1627.
    [27]钱永,戴军,彭奇均.离子交换树脂层析法分离木糖醇结晶母液[J].离子交换与吸附, 2005, 21(2): 112-120.
    [28]喇文军,刘冬,张丽君,等.离子交换层析法分离纯化玉米降血压肽的研究[J].食品工程2007, 3: 57-60.
    [29]刘菊湘,刘国栋,阎虎生,等.用低交换容量聚苯乙烯型强酸性阳离子交换树脂柱色谱分离中性氨基酸[J].高等学校化学学报2001, 22: 2100-2103.
    [30] Jones IL, Carta G. Ion exchange of amino acids and dipeptides on cation resins with varying degree of crosslinking. 1. Equilibrium [J]. Ind Eng Chem Res 1993, 32: 107-117.
    [31] Tolstikov VV, Fiehn O. Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry [J]. Anal Biochem 2002, 301: 298-307.
    [32] Schlichtherle-Cerny H, Affolter M, Cerny C. Hydrophilic interaction liquid chromatography coupled to electrospray mass spectrometry of small polar compounds in food analysis [J]. Anal Chem 2003, 75: 2349-2354.
    [33] Yoshida T. Peptide separation by hydrophilic-interaction chromatography: a review [J]. J Biochem Biophys Methods 2004, 60: 265-280.
    [34] Guo Y, Gaiki S. Retention behavior of small polar compounds on polar stationary phases in hydrophilic interaction chromatography[J]. J Chromatogr A 2005, 1074: 71-80.
    [35] Appelblad P, Jonsson T, Jiang W, et al. Fast hydrophilic interaction liquidchromatographic separations on bonded zwitterionic stationary phase [J]. J Sep Sci 2008, 31: 1529-1536.
    [36] Ikegami T, Tomomatsu K, Takubo H, et al. Separation efficiencies in hydrophilic interaction chromatography [J]. J Chromatogr A 2008, 1184: 474-503.
    [37] Linden JC, Lawhead CL. Liquid chromatography of saccharides [J]. J Chromatogr 1975, 105: 125-133.
    [38] Sengel?v H, Borregaard N. Free-flow electrophoresis in subcellular fractionation of human neutrophils [J]. J Immunol Methods 1999, 232: 145-152.
    [39] Kushimoto T, Basrur V, Valencia J, et al. A model for melanosome biogenesis based on the purification and analysis of early melanosomes [J]. Proc Natl Acad Sci USA 2001, 98: 10698-10703.
    [40] Klyushnichenko VE, Tikhonov RV, Pechenov SE, et al. Methods of preparation of recombinant cytokine proteins III. Free-flow electrophoresis and chromatography in the production of mutant human recombinant tumor necrosis factor-α[J]. Protein Expression Purif 1998, 14: 261-266.
    [41] Rathore AS, Horv?th C. Capillary electrochromatography: Theories on electroosmotic flow in porous media [J]. J Chromatogr 1997, 781: 185-195.
    [42] Overbeek JTG. Colloid science [M]. New York: Elsevier, 1952: 194-203.
    [43] Knox JH, Grant IH. Electrochromatography in packed tubes using 1.5 to 50μm silica gels and ODS bonded silica gels [J]. Chromatographia 1991, 32: 314-328.
    [44] Dukhin SS, Mishchuk NA. Intensification of electrodialysis based on electroosmosis of the second kind [J]. J Membr Sci 1993, 79: 199-210.
    [45] Suo Y, Wang H, Li Y, et al. Analysis of five pharmacologically active compounds from rhodiola for natural product drug discovery with capillary electrophoresis [J]. Chromatographia 2004, 60: 589-595.
    [46] Xiong B, Zhang L, Zhang Y, et al. Capillary electrochromatography with monolithic poly (styrene-co-divinylbenzene-co-methacrylic acid) as the stationary phase [J]. J High Resol Chromatogr 2000, 23: 67-72.
    [47] Karenga S, Rassi ZE. Neutral octadecyl monolith for reversed phase capillary electrochromatography of a wide range of solutes [J]. J Sep Sci 2008, 31: 2677-2685.
    [48] Gas B, Kenndler E. System zones in capillary zone electrophoresis [J]. Electrophoresis 2004, 25: 3901-3912.
    [49] Bruin GJM, Tock PPH, Kraak JC, et al. Electrically driven open-tubular liquid chromatography [J]. J Chromatogr A 1990, 517: 557-572.
    [50] Rudge SR, Ladisch MR. Electrochromatography [J]. Biotechnol Prog 1988, 4(3): 123-132.
    [51] Cole KD, Cabezas Jr H. Recent progress in the electrochromatography of proteins [J]. Appl Biochem Biotechnol 1995, 54: 159-172.
    [52] Cole KD. Preparative concentration and size fractionation of DNA by porous media using a combination of flow and low electric field strength [J]. Biotechnol Prog 1997, 13: 289-295.
    [53] Nurok D. Planar electrochromatography [J]. J Chromatogr A 2004, 1044: 83-96.
    [54] Nurok D, Koers JM, Carmichael MA. Role of buffer concentration and applied voltage in obtaining a good separation in planar electrochromatography [J]. J Chromatogr A 2003, 983: 247-253.
    [55] Howard AG, Shafik T, Moffatt F, et al. Electroosmotically driven thin-layer electrochromatography on silica media [J]. J Chromatogr A 1999, 844: 333-340.
    [56] Nurok D, Koers JM, Novotny AL, et al. Apparatus and initial results for pressurized planar electrochromatography [J]. Anal Chem 2004, 76: 1690-1695.
    [57] Tate PA, Dorsey JG. Characterization of flow and voltage profiles in planar electrochromatography [J]. J Chromatogr A 2005, 1079: 317-327.
    [58] Knox JH, Kriz J, Adamcova E. Retention relationships for aromatic-hydrocarbons eluted from capped and uncapped octadecyl silica-gels [J]. J Chromatogr 1988, 447(1): 13-27.
    [59]魏伟,王义明,罗国安,等.毛细管电色谱研究进展[J].分析化学1997, 3: 361-365.
    [60] Yamamoto H, Baumann J, Erni F. Electrokinetic reversed-phase chromatography with packed capillaries [J]. J Chromatogr 1992, 593: 313-319.
    [61] Yan C, Schaufelberger D, Erini F. Electrochromatographyand micro high performance liquid chromatography with 320μm I. D. packed columns [J]. J Chromatogr A 1994, 670: 15-23.
    [62] Boughtfolwer RJ, Underwood T, Patersou CJ. Capillary electrochromatography some important considerations in the preparation of packed capillaries and the choice of mobile phase buffers [J]. Chromatographia 1995, 40: 329-334.
    [63] Yan C. Electrokinetic packing of capillary columns [P]. US Pat 5453163, 1995-09-26.
    [64] Yan C. Dadoo R, Zhao H, et al. Capillary electrochromatography analysis of polycyclic aromatic-hydrocarbons [J]. Anal Chem 1995, 67: 2026-2029.
    [65] Mayer S, Schurig V. Enantiomer separation by electrochromatography in open tubular columns coated with chirasil-dex [J]. J Liq Chromatogr 1993, 16: 915-931.
    [66] Eimer T, Unger KK, Tsuda T, et al. Pressurized flow electrochromatography with reversed-phase capillary columns [J]. Anal Chem 1995, 352: 649-653.
    [67]主沉浮,林秀丽,魏云鹤.毛细管电色谱及其在手性药物分离中的应用[J].中国生化药物杂志2003, 24(4): 204-208.
    [68] Lelievre F, Yan C, Zare RN. Capillary electrochromatography: Operating characteristics and enantiomer separations [J]. J Chromatogr A 1996, 723: 145-156.
    [69]康蕾,高如瑜.毛细管电色谱分离手性药物的研究进展[J].药学学报2001, 36(12): 951-954.
    [70] Li S, Lloyd DK. Packed capillary electrochromatographic separation of the enantiomers of neutral andanionic compounds usingβ-cyclodxtrin as a chiral selector [J]. J Chromatogr A 1994, 666: 321-335.
    [71] Wistuba D, Czasla H. Enantiomer separation of pressure supported electrochromatography using capillaries packed with a permethyl-β-cyclodextrin stationary phase [J]. J Chromatogr A 1998, 815: 183-188.
    [72] Wistuba D, Schurig V. Enantiomer separation by pressure-supported electro- chromatography using capillaries packed with Chirasil-Dex polymer-coated silica [J]. Electrophoresis 1999, 20: 2779-2785.
    [73] Meyring M, Chankvetadaze B. Simultaneous separation and enantioseparation of thalidomide and its hydroxylated metabolites using high-performance liquid chromatography in common size columns, capillary liquid chromatography and nonaqueous capillary electrochromatography [J]. J Chromatogr A 2000, 876: 157-167.
    [74] Annablle S, Finch C. Enantiomeric separations by capillary electrochromatography using a macrocyclic antibiotic chiral stationary phase [J]. J Chromatogr A 1999, 848: 375-385.
    [75] Dermaux A., Lynen F. Chiral capillary electrochromatography on a vancomycin stationary phase [J]. J High Resol Chromatogr 1998, 21(10): 575-576.
    [76] Wikstrom H, Svensson LA. Immobilisation and evaluation of vancomycin chiral stationary phase for capillary electrochromatography [J]. J Chromatogr A 2000, 869: 395-409.
    [77] Karlsson C, Wikstrom H. Enantioselective reversed-phase and non-aqueous capillary electrochromatography using a teicoplanin chiral stationary phase [J]. J Chromatogr A 2000, 897: 349-363.
    [78] Schweitz L, Anderson IL. Molecular imprint-based stationary phase for capillary electrochromatography [J]. J Chromatogr A 1998, 817: 5-13.
    [79] Lin JM, Uchiyama K. Enantiomeric resolution of dansyl amino acids by capillary electrochromatography based on molecular imprinting method [J]. Chromatographia 1998, 47: 625-629.
    [80] Zaidi SA, Cheong WJ. Preparation of an open-tubular capillary column with a monolithic layer of S-ketoprofen imprinted and 4-styrenesulfonic acid incorporated polymer and its enhanced chiral separation performance in capillary electrochromatography [J]. J Chromatogr A 2009, 1216: 2947-2952.
    [81] Li S, Lloyd DK. Direct chiral separation by capillary electrophoresis using capillaries packed with aα-acid glycoprotein chiral stationary phase [J]. Anal Chem 1993, 65: 3684-3690.
    [82] Lloyd DK, Li S. Protein chiral selectors in free-solution capillary electrophoresis and packed-capillary electrochromatography [J]. J Chromatogr A 1995, 694: 285-296.
    [83] Wolf C, Pirkle WH. Enantioseparation by electrochromatography with packed capillaries [J]. J Chromatogr A 1997, 782: 175-179.
    [84] Zheng J, Bragg W, Hou J, et al. Sulfated and sulfonated polysaccharide as chiral stationary phases for capillary electrochromatography and capillary electrochromatography–mass spectrometry [J]. J Chromatogr A 2009, 1216: 857-872.
    [85] Wright PB, Lister AS, Dorsey JG. Behavior and use of nonaqueous media without supporting electrolyte in capillary electrophoresis and capillary electrochromatography [J]. Anal Chem 1997, 69: 3251-3259.
    [86] Schmeer K, Behnke B, Bayer E. Capillary electrochromatography-electrospray mass spectrometry: A microanalysis technique [J]. Anal Chem 1995, 67: 3656-3658.
    [87] Shihabi ZK. Transient pseudo-isotachophoresis for sample concentration in capillary electrophoresis [J]. Electrophoresis 2002, 23: 1612-1617.
    [88] Qin W, Cao C, Li S, et al. Quantitative study on selective stacking of zwitterions in large-volume sample matrix by moving reaction boundary in capillary electrophoresis [J]. Electrophoresis 2005, 26: 3113-3124.
    [89] Cao C, Zhang W, Qin W, et al. Quantitative predictions to conditions of Zwitterionic stacking by transient moving chemical reaction boundary created with weak electrolyte buffers in capillary electrophoresis [J]. Anal Chem 2005, 77: 955-963.
    [90] Tsuda T. Electrochromatography using high applied voltage [J]. Anal Chem 1987, 59: 521-523.
    [91] Tsuda T. Chromatographic behavior in electrochromatography [J]. Anal Chem 1988, 60: 1677-1680.
    [92] Tellez CM, Cole KD. Preparative electrochromatography of proteins in various types of porous media [J]. Electrophoresis 2000, 21: 1001-1009.
    [93] Nerenberg ST. Adapter for a macromolecule separation device [P]. US Patent, No. 3640813, 1972.
    [94] Salak J, Roch P. Isolation of immunoglobin M from human serum by gel chromatography and electrochromatography on a column of Sephadex G-200 [J]. J Chromatogr 1972, 71: 459-463.
    [95] Whitehead JS, Kay E, Lew JY. A preparative column eletrophoresis apparatus using Sephadex G-25 [J]. Anal Biochem 1971, 40: 287-291.
    [96] Otsuka S, Listowsky I. High-resolution preparative electrochromatography for purification of two subunit types of ferritin [J]. Anal Biochem 1980, 102: 419-422.
    [97] Rudge SR, Basak SK, Ladisch MR. Solute retention electrochromatography by electrically induced sorption [J]. AIChE J 1993, 39: 797-808.
    [98] Basak SK, Ladisch MR. Mechanistic description and experimental studies of electrochromatography of proteins [J]. AIChE J 1995, 41: 2499-2507.
    [99] Cole KD, Todd P, Srinivasan K, et al. Free-solution electrophoresis of proteins in an improved density gradient column and by capillary electrophoresis [J]. J Chromatogr A 1995, 707: 77-85.
    [100] Cole KD, Cabezas H. Improved preparative electrochromatography column design [J]. J Chromatogr A 1997, 760: 259-263.
    [101] Keim C, Ladisch M. New system for preparative electrochromatography of proteins [J]. Biotechnol Bioeng 2000, 70: 72-81.
    [102] Keim C, Ladisch M. Model for temperature profiles in large diameter electrochromatography columns [J]. AIChE J 2003, 49: 402-410.
    [103] Liu Z, Feng S, Yin J, et al. Experimental studies on affinity chromatography in an electric field [J]. J Chromatogr A 1999, 852: 319-324.
    [104]酆韶骅,刘铮,丁富新,等.制备型电动亲和色谱吸附过程传质动力学[J].化工学报2001, 52: 782-787.
    [105]王东海,刘铮.交变电场下离子交换色谱分离过程[J].化工学报2001, 52: 311-315.
    [106] Liu Z, Yin G, Feng S, et al. Oscillatory electroosmosis-enhanced intra / inter-particle liquid transport and its primary applications in the preparative electrochromatography of proteins [J]. J Chromatogr A 2001, 921: 93-98.
    [107]殷钢,李琛,詹劲,等.羟基磷灰石电色谱中电渗流动与分离过程特性[J].化工学报2001, 52: 666-672.
    [108]李琛,刘铮,袁乃驹.电渗强化多孔介质孔内流动及传质[J].化工学报2002, 53: 331-337.
    [109] Tan G, Shi Q, Sun Y. Retention behavior of protein in size-exclusion electrochromatography with a low-voltage electric field perpendicular to the liquid phase steamline [J]. Electrophoresis 2005, 26: 3084-3093.
    [110] Tan G, Shi Q, Sun Y. Oscillatory transverse electric field enhances mass transfer and protein capacity in ion-exchange electrochromatography [J]. J Chromatogr A 2005, 1098: 131-137.
    [111] Tan G, Dong X, Sun Y. Oscillatory transverse electric field enhances protein resolution and capacity of size-exclusion chromatography [J]. J Sep Sci 2006, 29: 684-690.
    [112] Yuan W, Zhao G, Dong X, et al. High-capacity purification of hen egg-white proteins by ion-exchange electrochromatography with an oscillatory transverse electric field [J]. J Sep Sci 2006, 29: 2383-2389.
    [113] Jia G, Dong X, Sun Y. Dye-ligand affinity electrochromatography with transverse and/or longitudinal electric field [J]. Sep Purif Technol 2008, 59: 277-285.
    [114] O’Farrell PH. Separation techniques based on the opposition of two counteracting forces to produce a dynamic equilibrium [J]. Science 1984, 227: 1586-1589.
    [115] Ivory CF, Gobie WA. Continuous counteracting chromatographic electrophoresis [J].Biotechnol Prog 1990, 6: 21-32.
    [116] Basak SK, Velayudhan A, Kohlmann K, et al. Electrochromatographic separation of proteins [J]. J Chromatogr A 1995, 707: 69-76.
    [117] Cole KD, Tellez CM, Blakesley RW. Separation of different physical forms of plasmid DNA using a combination of low electric field strength and flow in porous media: Effect of different field gradients and porosity of the media [J]. Electrophoresis 2000, 21: 1010-1017.
    [118] Zhao Y, Chen B, Yao SZ. Separation of 20(S)- protopanaxdiol type ginsenosides and 20(S)-protopanaxtriol type ginsenosides with the help of macroporous resin adsorption and microwave assisted desorption [J]. Sep Purif Technol 2007, 52: 533-538.
    [119] Schieber A, Hilt P, Endress HU. A new process for the combined recovery of pectin and phenolic compounds from apple pomace [J]. Innovat Food Sci Emerg Technol 2003, 4: 99-107.
    [120] Lv L, Tang J, Ho CT. Selection and optimisation of macroporous resin for separation of stilbene glycoside from polygonum multiflorum thunb [J]. J Chem Technol Biotechnol 2008, 83: 1422-1427.
    [121] Liu XM, Xiao GS, Chen WD. Quantification purification of mulberry anthocyanins with macroporous resins [J]. J Biomed Biotechnol 2004, 5: 326-331.
    [122] Kammerer D, Kljusuric JG, Carle R, et al. Recovery of anthocyanins from grape pomace extracts (Vitis vinifera L. cv. Cabernet Mitos) using a polymeric adsorber resin [J]. Eur Food Res Technol 2005, 220: 431-437.
    [123] Fu BQ, Liu J, Li H, et al. The application of macroporous resins in the separation of licorice flavonoids and glycyrrhizic acid [J]. J Chromatogr A 2005, 1089: 18-24.
    [124] Fu YJ, Zu YG, Liu W, et al. Optimization of luteolin separation from pigeon pea [Cajanuscajan (L.) Millsp.] leaves bymacroporous resins [J]. J Chromatogr A 2006, 1137: 145-152.
    [125] Arce L, Rios A, Valcarcel M. Determination of anti-carcinogenic polyphenols present in green tea using capillary electrophoresis coupled to a flow injection system [J]. J Chromatogr A 1998, 827: 113-120.
    [126] Stratton SP, Dorr RT, Alberts DS. The state-of-the-art in chemoprevention of skin cancer [J]. Eur J Cancer 2000, 36: 1292-1297.
    [127] Amarowicz R, Shahidi F. A rapid chromatographic method for separation of individual catechins from green tea [J]. Food Res Int 1996, 29: 71-76.
    [128] Kim JI, Hong SB, Row KH. Effect of particle size in preparative reversed-phase high-performance liquid chromatography on the isolation of epigallocatechin gallate from Korean green tea [J]. J Chromatogr A 2002, 949: 275-280.
    [129] Du Q, Ito Y. Slow rotary countercurrent chromatography [J]. J Liq Chromatogr Related Technol 2003, 26: 1827-1838.
    [130] Carregaro AB, Mataqueiro MI, Soares OA, et al. Study of caffeine in urine and saliva of horses subjected to urinary acidification [J]. J Appl Toxicol 2004, 24: 513-518.
    [131] Kumamoto M, Sonda T, Nagayama K, et al. Effects of ph and metal ions on antioxidative activities of catechins [J]. Biosci Biotechnol Biochem 2001, 65: 126-132.
    [132] De Bellaistre MC, Randon J, Rocca J. Hydrodynamic flow and electroosmotic flow in zirconia-packed capillaries [J]. Electrophoresis 2006, 27: 736-741.
    [133] Nischang I, Tallarek U. Nonlinear electroosmosis in hierarchical monolithic structures [J]. Electrophoresis 2004, 25: 2935-2945.
    [134] Rathore AS. Theory of electroosmotic flow, retention and separation efficiency in capillary electrochromatography [J]. Electrophoresis 2002, 23: 3827-3846.
    [135] Horie H, Mukai T, Kohata K. Simultaneous determination of quanlitatively important compounds in green tea infusions using capillary electrophoresis [J]. J Chromatogr A 1997, 758: 332-335.
    [136] Sato M, Kitagawa S, Tashita H, et al. Voltage-induced variation of capacity factors for neutral solutes by using hexa-6-bromo-hexa-6-deoxy-B-cyclodextrin modified column in electrochromatography [J]. Chromatogr 2001, 22: 195-199.
    [137] Vallano PT, Remcho VT. Assessment of electroosmotic perfusion in capillary chromatographic columns using electrical conductivity [J]. J Phys Chem B 2001, 105: 3223-3228.
    [138] Rifai RA, Demesmay C, Crétier G, et al. Chromatographic behavior of macroporous particles in electroendoosmotically and pressure driven liquid chromatography [J]. Chromatographia 2001, 53: 691-696.
    [139] Cikalo MG, Bartle KD, Myers P. Influence of the electrical double-layer on electroosmotic flow in capillary electrochromatography [J]. J Chromatogr A 1999, 836 (1): 35-51.
    [140] Ku?erováZ, Szumski M, Buszewski B, et al. Alkylated poly (styrene-divinylbenzene) monolithic columns for l-HPLC and CEC separation of phenolic acids [J]. J Sep Sci 2007, 30: 3018-3026.
    [141] Zheng X, Chen A, Hoshi T, et al. Electrochemical studies of (-)-epigallocatechin gallate and its interaction with DNA [J]. Anal Bioanal Chem 2006, 386: 1913-1919.
    [142] Wang R, Zhou W, Jiang X. Reaction kinetics of degradation and epimerization of epigallocatechin gallate (EGCG) in aqueous system over a wide temperature range [J]. J Agric Food Chem 2008, 56: 2694-2701.
    [143] Xu J, Tan T, Janson J-C. Mixed-mode retention mechanism for (-)-epigallocatechin gallate on a 12% cross-linked agarose gel media [J]. J Chromatogr A 2006, 1137: 49-55.
    [144] Xu J, Tan T, Janson J-C. One-step purification of epigallocatechin gallate from crude green tea extracts by mixed-mode adsorption chromatography on highly cross-linked agarose media [J]. J Chromatogr A 2007, 1169: 235-238.
    [145] O’Reilly J, Doble P, Tanaka K, et al. Retention behaviour of strong acid anions in ion-exclusion chromatography on sulfonate and carboxylate stationary phase [J]. J Chromatogr A 2000, 884: 61-74.
    [146] Tanaka K, Mori M, Xu Q, et al. Ion-exclusion chromatography with conductimetric detection of liphatic carboxylic acids on a weakly acidic cation-exchange resin by elution with benzoic acid–β-cyclodextrin [J]. J Chromatogr A 2003, 997: 127-132.
    [147] Ito K, Takayama Y, Ikedo M, et al. Determination of some aliphatic carboxylic acids in anaerobic digestion process waters by ion-exclusion chromatography with conductimetric detection on a weakly acidic cation-exchange resin column [J]. J Chromatogr A 2004, 1039: 141-145.
    [148] Ikedo M, Mori M, Kurachi K, et al. Selective and simultaneous determination of phosphate and silicate ions in leaching process waters for ceramics glaze raw materials of narutal origin by ion-exclusion chromatography coupled with UV-detection after postcolumn derivatization [J]. Anal Sci 2006, 22: 117-121.
    [149] Nakatani N, Kozaki D, Masuda W, et al. Simultaneous spectrophotometric determination of phosphate and silicate ions in river water by using ion-exclusion chromatographic separation and post-column derivatization [J]. Anal Chim Acta 2008, 619: 110-114.
    [150] Abe T, Baba H, Itoh E, et al. Separation of perfluoroalkylsulfinic acids and perfluoroalkylsulfonic acids by ion-exclusion chromatography [J]. J Chromatogr A 2001, 920: 73-80.
    [151] Mori M, Tanaka K, Helaleh MIH, et al. High-speed simultaneous ion-exclusion/ cation-exchange chromatography of anions and cations on a weakly acidic cation-exchange resin column [J]. J Chromatogr A 2003, 997: 219-224.
    [152] Mori M, Tanaka K, Satori T, et al. Influence of acidic eluent for retention behaviors of common anions and cations by ion-exclusion/cation-exchange chromatography on a weakly acidic cation-exchange resin in the H+-form [J]. J Chromatogr A 2006, 1118: 51-55.
    [153] Chinnici F, Masino F, Antonelli A. Determination of furanic compounds in traditional balsamic vinegars by ion-exclusion liquid chromatography and diode-array detection [J]. J Chromatogr Sci 2003, 41(6): 305-310.
    [154] Jenke DR. Development and validation of an ion-exclusion chromatographic method for the quantitation of organic acids in complex pharmaceutical products [J]. J Chromatogr Sci 1998, 36(4): 179-186.
    [155] Fischer K. Environmental analysis of aliphatic carboxylic acids by ion-exclusion chromatography [J]. Anal Chim Acta 2002, 465: 157-173.
    [156] Liu Y, Srinivasan K, Pohl C, et al. Recent developments in electrolytic devices for ionchromatography [J]. J Biochem Biophys Methods 2004, 60: 205-232.
    [157] Small H, Riviello J. Electrically polarized ion-exchange beds in ion chromatography: Ion reflux [J]. Anal Chem 1998, 70: 2205-2212.
    [158] Gryaznov SM. Oligonucleotide N3’-P5’phosphoramidates as potential therapeutic agents [J]. Biochimica et Biophysica Acta 1999, 1489: 131-140.
    [159] Ros TD, Spalluto G, Prato M, et al. Oligonucleotides and oligonucleotide conjugates: A new approach for cancer treatment [J]. Current Medicinal Chemistry 2005, 12: 71-88.
    [160] Shakeel S, Karim S, Ali A. Peptide nucleic acid (PNA)– a review [J]. J Chem Technol Biotechnol 2006, 81: 892-899.
    [161] Goossens JF, Foulon C, Villard AL. Column selection and method development for the separation of nucleoside phosphotriester diastereoisomers, new potential anti-viral drugs. Application to cellular extract analysis [J]. Biomed Chromatogr 2005, 19: 415-425.
    [162] Shi L, Ying G, Tang Z, et al. Separation of cytidine 5’-triphosphate biosynthesized from cytidine 5’-monophosphate on ion-exchange resin and HPLC analysis of cytidine compounds [J]. Appl Biochem Biotechnol 2008, 144: 1-14.
    [163] Brown PR, Robb CS, Geldart SE. Perspectives on analyses of nucleic acid constituents: The basis of genomics [J]. J Chromatogr A 2002, 965: 163-173.
    [164] Feng H, Wong N, Wee S, et al. Simultaneous determination of 19 intracellular nucleotides and nucleotide sugars in Chinese Hamster ovary cells by capillary electrophoresis [J]. J Chromatogr B 2008, 870: 131-134.
    [165]张龙翔,张庭芳,李令媛,等.生化实验方法和技术[M].北京:人民教育出版社, 1981: 385.
    [166] Yun J, Shen S, Chen F, et al. One-step isolation of adenosine triphosphate from crude fermentation broth of Saccharomyces cerevisiae by anion-exchange chromatography using supermacroporous cryogel [J]. J Chromatogr B 2007, 860: 57-62.
    [167] Lin C, Chen H, Lin EC, et al. Optimization of separation and migration behavior of cephalosporins in capillary zone electrophoresis [J]. J Chromatogr A 2000, 879: 197-210.
    [168] Aleksi? M, Savi? V, Popovi? G, et al. Acidity constants of cefetamet, cefotaxime and ceftriaxone: The effect of the substituent at C3 position[J]. J Pharm Biomed Anal 2005, 39: 752-756.
    [169] Pistos CM, Tsantili-Kakoulidou A, Koupparis M. The effect of ion pairing reagents in the retention profile of zwitterionic cephalosporins [J]. J Liq Chromatogr Related Technol 2003, 26(6): 937-952.
    [170]程宗柔,张四维,阎汝恒,等.头孢菌素C生产工艺改进的研究——头孢菌素C高产菌种发酵液离子交换提取工艺[J].中国医药工业杂志1987, 18(8): 337-339.
    [171] Chambers TK, Fritz JS. Effect of polystyrene–divinylbenzene resin sulfonation on solute retention in high-performance liquid chromatography [J]. J Chromatogr A 1998, 797: 139-147.
    [172] Seubert A, Klingenberg A. Sulfoacylated macroporous polystyrene-divinylbenzene: A new type of cation exchanger for the analysis of multivalent metal cations [J]. J Chromatogr A 1997, 782: 149-151.
    [173] Yokoyama Y, Wakabayashi N, Furugaki Y, et al. Low-capacity cation-exchange chromatography of amino acids using a novel sulfoacylated macroreticular polystyrene-divinylbenzene column with binary gradient elution [J]. Anal Sci 2004, 20: 1189-1192.
    [174] Yokoyama Y, Tsuji S, Sato H. Simultaneous determination of creatinine, creatine, and UV-absorbing amino acids using dual-mode gradient low-capacity cation-exchange chromatography [J]. J Chromatogr A 2005, 1085: 110-116.
    [175] Klingenberg A, Seubert A. Sulfoacylated polystyrene–divinylbenzene copolymers as resins for cation chromatography: Influence of capacity on resin selectivity [J]. J Chromatogr A 1998, 804: 63-68.
    [176] Yokoyama Y, Watanabe M, Horikoshi S, et al. Sulfoacylated macro-porous polystyrene-divinylbenzene low-capacity cation exchanger selective for amino acids [J]. Anal Sci 2002, 18: 59-63.
    [177] Kunin R著,朱秀昌译.离子交换树脂[M].北京:科学出版社, 1961: 317-325.
    [178] Cheng S, Yan H, Zhao C. The synergistic effect between hydrophobic and electrostatic interactions in the uptake of amino acids by strongly acidic cation-exchange resins [J]. J Chromatogr A 2006, 1108: 43-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700