新型亲水作用色谱固定相的制备及色谱性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着生物医药技术,食品安全和环境监测等研究领域的发展以及各种组学研究的深入,强极性和亲水性物质的分析迅速成为分析化学和生物化学领域的重要研究对象。由于对强极性物质的良好保留,亲水相互作用色谱(HILIC)越来越受到人们的重视。在HILIC中,针对溶质与固定相表面功能团之间的选择性作用力是决定溶质保留的事实,作者认为在HILIC固定相中引入结构新颖的功能基以及控制功能基密度是制备选择性固定相的关键。围绕这一问题,作者采用不同类型表面修饰方法,将功能基团键合在有机聚合物和硅胶表面,制备了五种固定相并研究了其色谱性能。
     全文包括六个部分:
     1.绪论
     介绍了HILIC的发展历史,溶质的保留特点和分离机理。综述了HILIC固定相及应用研究进展,对今后HILIC的发展趋势进行了展望。
     2.四唑键合硅胶固定相的制备及色谱性能
     使用“点击”化学的方法,制备了以四唑为功能基的新型HILIC固定相,并用小分子碱性化合物和苯甲酸类样品对其色谱性能进行了评价。发现碱基和核苷样品的保留随流动相中强洗脱剂水含量的增加而减少,符合亲水作用色谱模式。但是,将该固定相用于对苯甲酸类化合物的分离,却发现溶质保留由强氢键作用控制,阐述了这两类溶质保留行为差异的原因。
     3.磷酰胆碱改性聚合物色谱固定相的制备及色谱性能
     采用PGMA/EDMA微球与氯化胆碱和三氯氧磷反应,产物经水解后,制备了磷酰胆碱为功能基的新型HILIC固定相,并使用小分子极性溶质对其色谱性能进行了评价。发现所有溶质保留符合HILIC特征。用极性和碱性溶质验证了磷酰胆碱改性PGMA/EDMA微球表面带负电荷的结论。该结论对于不同溶质分离条件的建立具有指导意义。
     4.超支化聚缩水甘油醚亲水作用色谱固定相的制备及色谱性能
     以缩水甘油醚为单体,在硅胶表面阴离子引发聚合制备了超支化聚缩水甘油醚包覆的HILIC固定相,并研究了其色谱性能。发现溶质以何种机理与固定相作用还与溶质的结构有关。依据Hofmeister效应,分析了流动相中缓冲盐种类和浓度对溶质选择性的影响,发现正离子和中性化合物,在含kosmotrope盐的流动相中的保留强于使用chaotropic盐的情况。
     5.表面引发原子转移自由基聚合(SI-ATRP)法制备聚合物接枝型HILIC固定相及其分离性能
     依据溶质在HILIC上的保留机理,设计合成了新型单体甲基丙烯酸-2-羟基3-(4羟甲氧基-1,2,3-三唑)酯(HTMA)。利用SI-ATRP技术,将此单体聚合在PCMS/DVB微球表面,实现了聚苯乙烯微球的亲水性改性。用碱基、核苷样品以及酚酸、糖苷样品研究3种不同接枝量的HILIC固定相的分离性能。结果表明,固定相的极性和选择性与聚合物接枝链长有关,聚合物链越长,固定相的极性和选择性越好。这一结论对制备极性和选择性不同的固定相具有理论指导意义。所有溶质在固定相上的保留受静电作用和氢键作用控制。但对酚酸类溶质而言,静电吸附作用更为强烈,导致其洗脱需采用含三氟乙酸的乙腈-水流动相,说明该固定相可应用于中草药中酚酸类物质的选择性分离研究。
     6. SI-ATRP法制备的聚乙烯四唑接枝型色谱固定相及其色谱性能
     通过SI-ATRP法,在硅胶基质表面聚合丙烯腈,然后通过“点击”化学方法,制备表面修饰聚乙烯四唑的硅胶固定相。与普通方法合成的四唑硅胶相比,在新方法合成的固定相上,四唑基团含量提高数十倍。碱基和核苷样品,酚酸和糖苷类样品在此固定相上的保留均符合HILIC特征。在5-95%(v/V)之间改变流动相体系中水的比例,酚酸和糖苷类样品的保留值与流动相中水浓度存在“U”型曲线关系,体现出HILIC和RPLC对保留共同起作用的双机理。
Because hydrophilic interaction chromatography (HILIC) has sufficient retention of strongly polar compounds, the interest in the technique in the last years has been promoted by growing demands for the analysis of polar drugs, metabolites and biologically important compounds in proteomics, glycomics and clinical analysis. Although the number of commercially available columns designed specially for HILIC is growing, there is still not a versatile stationary phase like C18 in RPLC. These special separation materials for HILIC demonstrate good selectivity and reproducibility for separation of polar compounds but still cannot meet the requirements of separating various types polar sample. Even though the reports about HILIC are increasing rapidly, the retention mechanism is short of systematic research because different types of separation materials for HILIC have different retention characteristics and separation selectivity. In our opinion, preparation of new HILIC stationary phase with novel functional groups is one of the ways to solve these problems, and also, try some new preparation methods to improve bonding density of the functional groups is another way to solve these problems.
     The dissertation includes the following six chapters:
     1. Introduction
     This chapter presents the history and retention mechanism of HILIC and provides a comprehensive review on the trends of the stationary phases, mobile phase and applications in HILIC. From the viewpoint of the author, the development tendency for HILIC is also presented.
     2. Tetrazole-functionalized silica for HILIC of polar solutes
     In this chapter, tetrazole-functionalized stationary phase was prepared with nitrile-modified silica by an ammonium-catalyzed (3+2) azide-nitrile cycloaddition reaction. The prepared column showed high efficiency for the tested nucleobases/nucleosides and aromatic carboxylic acids but with a quiet different selectivity. The separation for nucleobases/nucleosides might be carried out in acetonitrile-water mobile phase while for the tested carboxylic acids only methanol/water mobile phase could give the good separation in a reasonable separation time (less than 40 min). The retention mechanism of the column was investigated by the models used for describing partitioning and surface adsorption through adjustment ratio of water in the mobile phase, and by the influence of salt concentration, buffer pH, and temperature on the retention of solutes. The results illustrated that the surface adsorption through hydrogen bonding dominated the retention behavior of nucleobases/nucleosides and carboxylic acids. From the separation ability, the tetrazole-functionalized stationary phase could become a valuable alternative for the separation of the compounds concerned.
     3. Preparation of phosphorylcholine modified polymer beads and their use in HILIC
     In this charpter, phosphorylcholine-functionalized monodisperse hydrophilic poly (glycidylmethacrylate-co-ethylenedimethacrylate) beads was prepared via reacting with phosphoryl chloride and cholinehydrochloride. The prepared stationary phase was used for HILIC mode in the separation of polar compounds. A typical HILIC mechanism was observed at higher organic solvent content (>65%). The effects of chromatographic parameters such as organic solvent concentration, buffer pH, buffer ionic strength were investigated. The results revealed that the content of organic solvent had the most influence on the retention of the analytes. The effect of buffer pH and salt concentration indicated that both hydrophilic interactions and electrostatic interactions contributed to the retention of the charged analytes, and the surface charge (zeta-potential) of the phosphorylcholine modified polymer beads is negative.
     4. Hyperbranched polyglycidol-functionalized silica for HILIC of polar solutes
     A surface-initiated polymerization was used to synthesize covalently linked hyperbranched polyglycidol brushes on the surfaces of silica gel via anionic polymerization of glycidol. The prepared stationary phase was used for HILIC mode in the separation of polar compounds. A typical HILIC mechanism was observed at higher organic solvent content, the retention mechanism is closely related to the structure of solutes in the same mobile phase. The specific ion effects on the retention was investigated by using different buffer salts in Hofmeister series, the results illustrated that the retention time of base and neutral compounds in the buffer containing kosmotropic anions is grater than that in chaotropic anions.
     5. Hydrophilic modification of polystyrene-based beads via surface-initiated atom transfer radical polymerization for the use in hydrophilic interaction chromatography
     A one-step procedure to hydrophilize monodisperse poly (chloromethyl-styrene-co- divinylbenzene) beads has been presented with 2-hydroxy-3-[4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl] propyl 2-methylacrylate (HTMA) as monomer by surface initiated atom transfer radical polymerization (SI-ATRP). The length of the grafted poly (HTMA) chain was varied via controlling the ratio of HTMA to initiator on the surface of the beads. Using these grafted beads as the stationary phase in hydrophilic interaction chromatography, good separation was obtained for nucleobases/sides in the mobile phase of acetonitrile-water and for phenolic acids and glycosides with addition of trifluoroacetic acid (TFA) into acetonitrile-water. The retention time and selectivity of solutes showed a positive relationship with the length of the grafted poly (HTMA) chain. The strong retardation of phenolic acids and glycosides was attributed to the electrostatic attractive and hydrogen bonding between solutes and triazole group in the grafted poly (HTMA) chain. The retention of the tested solutes was also depended on the concentrations of the organic modifier and salt in the mobile phase. Because of the simplicity of the modification of polystyrene microspheres through ATRP, the new beads is expected to not only increased its hydrophilic and can be used as stationary phase in HILIC, but also can act as a useful building block to develop new stationary phases for other chromatographic mode.
     6. SI-ATRP prepared 5-vinyltetrazole functionalized silica gel for HILIC of polar solutes
     A well-defined polymer of acrylonitrile on the surface of silica gel were prepared by SI-ATRP, followed by a "click chemistry" reaction with sodium azide and ammonium chloride to yield polymeric materials with 5-vinyltetrazole units. Compared with the traditional methods in chapter 2, the SI-ATRP technique could improve the bonding dentisty of tetrazole group on scores of times. A typical HILIC mechanism of nucleobases/nucleosides, phenolic acids and glucosides was observed at higher content of acetonitrile (>85%, v/v) in the mobile phase. The retention of phenolic acids and glucosides was investigated on the column in buffered aqueous acetonitrile mobile phases (5-95%, acetonitrile). The column show mixed retention mechanism:reversed phases in highly aqueous mobile phases and normal phases (HILIC) in mobile phases with high concentration of acetonitrile, showing characteristic U-shape retention versus mobile phase composition plots.
引文
[1]Vailaya A., Fundamentals of reversed phase chromatography:thermodynamic and exothermodynamic treatment [J]. Journal of Liquid Chromatography & Related Technologies, 2005,28:965-1054
    [2]Okada T., Nonaqueous ion-exchange chromatography and electrophoresis Approaches to nonaqueous solution chemistry and design of novel separation [J]. Journal of Chromatography A,1998,804:17-28
    [3]Bianchi F., Careri M., Corradini C., et al. Investigation of the separation of heterocyclic aromatic amines by reversed phase ion-pair liquid chromatography coupled with tandem mass spectrometry:The role of ion pair reagents on LC-MS/MS sensitivity [J]. Journal of Chromatography B,2005,825:193-200
    [4]Kazoka H., Analysis of purines and pyrimidines by mixed partition-adsorption normal-phase high-performance liquid chromatography, [J]. Journal of Chromatography A, 2002,942:1-10
    [5]Jandera P., Encyclopedia of Analytical Science, Liquid Chormatogrphy [M]. Second edition, Carolina, Academic Press,2005,142-152
    [6]Alpert A. J., Hydrophilic Interaction Chromatography for the Separation of Peptides, Nucleic Acids and Other Polar Compounds [J]. Journal of Chromatography,1990,499: 177-196
    [7]Wang C., Jiang C., Armstrong D. W., Considerations on HILIC and polar organic solvent-based separations:Use of cyclodextrin and macrocyclic glycopetide stationary phases [J]. Journal of Separation Science,2008,31:1980-1990
    [8]Linden J. C., Lawhead C. L., Liquid chromatography of saccharides [J]. Journal of Chromatography,1975,105:125-133
    [9]Schwarzenbach R., A chemically bonded stationary phase for carbohydrate analysis in liquid chromatography [J]. Journal of Chromatography,1976,117:206-210
    [10]Brons C., Olieman C., Study of the high-performance liquid chromatographic separation of reducing sugars, applied to the determination of lactose in milk [J]. Journal of Chromatography,1983,259:79-86
    [11]Verzele M., Van Damme F., Polyol bonded to silica gel as stationary phase for high-performance liquid chromatography [J]. Journal of Chromatography,1986,362:23-31
    [12]Armstrong D. W., Jin H. L., Evaluation of the liquid chromatographic separation of monosaccharides, disaccharides, trisaccharides, tetrasaccharides, deoxysaccharides and sugar alcohols with stable cyclodextrin bonded phase columns [J]. Journal of Chromatography, 1989,462:219-232
    [13]Yoshida T., Peptide separation by Hydrophilic-Interaction Chromatography:A review [J]. Journal of Biochemical and Biophysical Methods,2004,60:265-280
    [14]Jian W., Edom R. W., Xu Y., et al. Recent advances in application of hydrophilic interaction chromatography for quantitative bioanalysis [J]. Journal of Separation Science, 2010,33:681-697
    [15]Dejaegher B., Vander Heyden Y, HILIC methods in pharmaceutical analysis [J]. Journal of Separation Science,2010,33:698-715
    [16]Spagou K., Tsoukali H., Raikos N., et al. Hydrophilic interaction chromatography coupled to MS for metabonomic/metabolomic studies [J]. Journal of Separation Science,2010, 33:716-727
    [17]McCalley D. V., Is hydrophilic interaction chromatography with silica columns a viable alternative to reversed-phase liquid chromatography for the analysis of ionisable compounds? [J]. Journal of Chromatography A,2007,1171:46-55
    [18]Nguyen H. P., Schug K. A., The advantages of ESI-MS detection in conjunction with HILIC mode separations:Fundamentals and applications [J]. Journal of Separation Science, 2008,31:1465-1480
    [19]王媛,顾惠新,路鑫,等.以亲水作用色谱为核心的液相色谱联用技术及其应用研究[J].色谱,2008,26(6):649-657
    [20]Pereira A. S., Giron A. J., Admasu E., et al. Green hydrophilic interaction chromatography using ethanol-water-carbon dioxide mixtures [J]. Journal of Separation Science,2010,33:834-837
    [21]Molnar I., Role of chromatography in the analysis of sugars, carboxylic acids and amino acids in food [J]. Journal of Chromatography A,2000,891:1-32
    [22]Guo. Y., Gaiki S., Retention behavior of small polar compounds on polar stationary phases in hydrophilic interaction chromatography [J]. Journal of Chromatography A,2005, 1074:71-80
    [23]Yanagida A., Murao H., Ohnishi-Kameyama M., Retention behavior of oligomeric proanthocyanidins in hydrophilic interaction chromatography [J]. Journal of Chromatography A,2007,1143:153-161
    [24]Nguyen H. P., Yang S. H., Wigginton J. G., Retention behavior of estrogen metabolites on hydrophilic interaction chromatography stationary phases [J]. Journal of Separation Science,2010,33:793-802
    [25]Guo Y., Srinivasan S., Gaiki S., Investigating the effect of chromatographic conditions on retention of organic acids in hydrophilic interaction chromatography using a design of experiment [J]. Chromatographia,2007,66:223-229
    [26]Armstrong D. W., Jin H. L., Evaluation of the liquid chromatographic separation of monosaccharides, disaccharides, trisaccharides, tetrasaccharides, deoxysaccharides and sugar alcohols with stable cyclodextrin bonded phase columns [J]. Journal of Chromatography, 1989,462:219-232
    [27]Hemstrom P., Irgum K., Hydrophilic interaction chromatography [J]. Journal of Separation Science,2006,29:1784-1821
    [28]McCalley D. V., Evaluation of the properties of a superficially porous silica stationary phase in hydrophilic interaction chromatography [J]. Journal of Chromatography A,2008, 1193:85-91
    [29]Lin X., Wang J., Li, L., et al. Separation and determination of five major opium alkaloids with mixed mode of hydrophilic/cation-exchange monolith by pressurized capillary electrochromatography [J]. Journal of Separation Science,2007,30:3011-3017
    [30]Mant C. T., Hodges R. S., Mixed-mode hydrophilic interaction/cation-exchange chromatography:Separation of complex mixtures of peptides of varying charge and hydrophobicity [J]. Journal of Separation Science,2008,31:1573-1584
    [31]Huang G. H., Zeng W. C., Lian Q. Y., et al. Pressurized CEC of neutral and charged solutes using silica monolithic stationary phases functionalized with 3-(2-aminoethylamino) propyl ligands [J]. Journal of Separation Science,2008,31:2244-2251
    [32]Bui N. T. H., Verhage J. J., Irgum K., Tris(hydroxymethyl)aminomethane-functionalized silica particles and their application for hydrophilic interaction chromatography [J]. Journal of Separation Science,2010,33:2965-2976
    [33]Marlin N. D., Smith N. W., Separation of biomolecules by μ-high-performance anion-exchange chromatography using a tentacle-like stationary phase [J]. Analytical and Bioanalytical Chemistry,2005,382:493-497
    [34]Appelblad P., Jonsson T., Jiang W., Fast hydrophilic interaction liquid chromatographic separations on bonded zwitterionic stationary phase [J]. Journal of Separation Science,2008, 31:1529-1536
    [35]Heller D. N., Nochetto C. B., Simultaneous determination and confirmation of melamine and cyanuric acid in animal feed by zwitterionic hydrophilic interaction chromatography and tandem mass spectrometry [J]. Rapid Communications in Mass Spectrometry,2008.22: 3624-3632
    [36]Jiang Z., Smith N. W., Ferguson P. D., et al. Novel highly hydrophilic zwitterionic monolithic column for hydrophilic interaction chromatography [J]. Journal of Separation Science,2009,31:2544-2555
    [37]Wang X., Lin X., Xie Z., Preparation and evaluation of a sulfoalkylbetaine-based zwitterionic monolithic column for CEC of polar analytes [J]. Electrophoresis,2009,30: 2702-2710
    [38]Xie D., Mattusch J., Wennrich R., Retention of arsenic species on zwitterionic stationary phase in hydrophilic interaction chromatography [J]. Journal of Separation Science,2010,33: 817-825
    [39]Alpert A. J., Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides [J]. Analytical Chemistry,2008,80:62-76
    [40]Alpert A. J., Petritis K., Kangas L., et al. Peptide Orientation Affects Selectivity in Ion-Exchange Chromatography [J]. Analytical Chemistry,2010,82:5253-5259
    [41]Ikegami T., Tomomatsu K., Takubo H., et al. Separation efficiencies in hydrophilic interaction chromatography [J]. Journal of Chromatography A,2008,1184:474-503
    [42]Naidong W., Bioanalytical liquid chromatography tandem mass spectrometry methods on underivatized silica columns with aqueous/organic mobile phases [J]. Journal of Chromatography B,2003,796:209-224
    [43]Sandoval J. E., Pesek J. J., Synthesis and characterization of a hydride modified porous silica material as an intermediate in the preparation of chemically bonded chromatographic stationary phases [J]. Analytical Chemistry,1989,61:2067-2075
    [44]Chauve B., Guillarme D., Cleon P., et al. Evaluation of various HILIC materials for the fast separation of polar compounds [J]. Journal of Separation Science,2010,33:752-764
    [45]Pack B. W., Risley D. S., Evaluation of a monolithic silica column operated in the hydrophilic interaction chromatography mode with evaporative light scattering detection for the separation and detection of counter-ions [J]. Journal of Chromatography A,2005,1073: 269-275
    [46]Li R. P., Huang J. X., Chromatographic behavior of epirubicin and its analogues on high-purity silica in hydrophilic interaction chromatography [J]. Journal of Chromatography A,2004,1041:163-169
    [47]Hsieh Y., Galviz G, Long B. J., Ultra-performance hydrophilic interaction liquid chromatography/tandem mass spectrometry for the determination of everolimus in mouse plasma [J]. Rapid Communications in Mass Spectrometry,2009,23:1461-1466
    [48]Grumbach E. S., Diehl D. M., Neue U. D., The application of novel 1.7 μm ethylene bridged hybrid particles for hydrophilic interaction chromatography [J]. Journal of Separation Science,2008,31:1511-1518
    [49]Gika H. G., Theodoridis G. A., Wilson I. D., Hydrophilic interaction and reversed-phase ultra-performance liquid chromatography TOF-MS for metabonomic analysis of Zucker rat urine [J]. Journal of Separation Science,2008,31:1598-1608
    [50]Siouffi A. M., Silica gel-based monoliths prepared by the sol-gel method:facts and figures [J]. Journal of Chromatography A,2003,1000:801-818
    [51]Puy G., Demesmay C., Rocca J. L., et al. Electrochromatographic behavior of silica monolithic capillaries of different skeleton sizes synthesized with a simplified and shortened sol-gel procedure [J]. Electrophoresis,2006,27:3971-3980
    [52]Valette J. C., Demesmay C., Rocca J. L., et al. Separation of Tetracycline Antibiotics by Hydrophilic Interaction Chromatography Using an Aminopropyl stationary phase [J]. Chromatographia.2004,59:55-60
    [53]Huang G. H., Zeng W. C, Lian Q. Y., et al. Pressurized CEC of neutral and charged solutes using silica monolithic stationary phases functionalized with 3-(2-aminoethylamino) propyl ligands [J]. Journal of Separation Science,2008,31:2244-2251
    [54]Yoshida T., Peptide Separation in Normal Phase Liquid Chromatography [J]. Analytical Chemistry,1997,69:3038-3043
    [55]Novakova L., Kaufmannova I., Janska R., Evaluation of hybrid hydrophilic interaction chromatography stationary phases for ultra-HPLC in analysis of polar pteridines [J]. Journal of Separation Science,2010,33:765-772
    [56]Ikegami T., Horie K., Saad N., et al. Highly efficient analysis of underivatized carbohydrates using monolithic-silica-based capillary hydrophilic interaction (HILIC) HPLC [J].Analytical and Bioanalytical Chemistry,2008,391:2533-2542
    [57]Alpert A. J., Cation-exchange high-performance liquid chromatography of proteins on poly(aspartic acid)-silica [J]. Journal of Chromatography,1983,266:23-37
    [58]Alpert A. J., Shukla M., Shukla A. K., Hydrophilic-interaction chromatography of complex carbohydrates [J]. Journal of Chromatography A,1994,676:191-202
    [59]Zhu B. Y., Colin C.T., Hodges R. S., Hydrophilic-interaction chromatography of peptides on hydrophilic and strong cation-exchange columns [J]. Journal of Chromatography, 1991,548:13-24
    [60]Tolstikov V. V., Fiehn O., Analysis of highly polar compounds of plant origin: Combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry [J]. Analytical Biochemistry,2002,301:298-307
    [61]Oyler A. R., Armstrong B. L., Cha J. Y., et al. Hydrophilic interaction chromatography on amino-silica phases complements reversed-phase high-performance liquid chromatography and capillary electrophoresis for peptide analysis [J]. Journal of Chromatography A,1996, 724:378-383
    [62]Curren M. S., King J. W., New sample preparation technique for the determination of avoparcin in pressurized hot water extracts from kidney samples [J]. Journal of Chromatography A,2002,954:41-49
    [63]Tolstikov V. V., Fiehn O., Tanaka N., Application of liquid chromatography- mass spectrometry analysis in metabolomics:reversed-phase monolithic capillary chromatography and hydrophilic chromatography coupled to electrospray ionization-mass spectrometry [J]. Methods in Molecular Biology,2007,358:141-155
    [64]Hartmann E., Chen Y., Mant C. T., et al. Comparison of reversed-phase liquid chromatography and hydrophilic interaction/cation-exchange chromatography for the separation of amphipathic α-helical peptides with L- and D-amino acid substitutions in the hydrophilic face [J]. Journal of Chromatography A,2003,1009:61-71
    [65]West C., Lesellier E., Characterization of stationary phases in subcritical fluid chromatography with the solvation parameter model [J]. Journal of Chromatography A.2006, 1110:200-213
    [66]Herbreteau B., Lafosse M, Morinallory L., et al. High performance liquid chromatography of raw sugars and polyols using bonded silica gels[J]. Chromatographia, 1992,33:325-330
    [67]Jandera P., Hajek T., Utilization of dual retention mechanism on columns with bonded PEG and diol stationary phases for adjusting the separation selectivity of phenolic and flavone natural antioxidants [J]. Journal of Separation Science,2009,32:3603-3619
    [68]Liu X., Pohl C, New hydrophilic interaction/reversed-phase mixed-mode stationary phase and its application for analysis of nonionic ethoxylated surfactants [J]. Journal of Chromatography A,2008,1191:83-89
    [69]Jandera P., Hajek T., Skerikova V., Dual hydrophilic interaction-RP retention mechanism on polar columns:Structural correlations and implementation for 2-D separations on a single column [J]. Journal of Separation Science,2010,33:841-852
    [70]Jandera P., Vynuchalova K., Hajek T., et al. Characterization of HPLC columns for two-dimensional LC×LC separations of phenolic acids and flavonoids [J]. Journal of Chemometrics,2008,22:203-217
    [71]Huang G. H., Lian Q. Y., Zeng W. C., et al. Preparation and evaluation of a lysine-bonded silica monolith as polar stationary phase for hydrophilic interaction pressurized capillary electrochromatography [J]. Electrophoresis,2008,29:3896-3904
    [72]Yoshida T., Okada T., Peptide separation in normal-phase liquid chromatography:Study of selectivity and mobile phase effects on various columns [J]. Journal of Chromatography A, 1999,840:1-9
    [73]Daunoravicius Z., Juknaite I., Naujalis E., et al. Simple and Rapid Determination of Denaturants in Alcohol Formulations by Hydrophilic Interaction Chromatography [J]. Chromatographia,2006,63:373-377
    [74]Salvador A., Herbreteau B., Dreux M., et al. Chiral supercritical fluid chromatography on porous graphitic carbon using commercial dimethyl beta-cyclodextrins as mobile phase additive [J]. Journal of Chromatography A,2001,929:101-112
    [75]Pesek J. J., Matyska M. T., Menezes S., Chiral separations by open tubular capillary electrokinetic chromatography [J]. Journal of Chromatography A,1999,853:151-158
    [76]Berthod A., Chang S. S. C., Kullman, J. P. S., Practice and mechanism of HPLC oligosaccharide separation with a cyclodextrin bonded phase [J]. Talanta,1998,47: 1001-1012
    [77]Risley D. S., Strege M. A., Chiral separations of polar compounds by hydrophilic interaction chromatography with evaporative light scattering detection [J]. Analytical Chemistry,2000,72:1736-1739
    [78]Liu Y., Xue X., Guo Z., et al. Novel two-dimensional reversed-phase liquid chromatography/hydrophilic interaction chromatography, an excellent orthogonal system for practical analysis [J]. Journal of Chromatography A,2008,1208:133-140
    [79]Zhang H., Guo Z., Zhang F., et al. HILIC for separation of co-eluted flavonoids under RP-HPLC mode [J]. Journal of Separation Science,2008,31:1623-1627
    [80]Jiang W., Irgum K., Covalently Bonded Polymeric Zwitterionic Stationary Phase for Simultaneous Separation of Inorganic Cations and Anions [J]. Analytical Chemistry,1999,71: 333-344
    [81]Viklund C., Irgum K., Synthesis of Porous Zwitterionic Sulfobetaine Monoliths and Characterization of Their Interaction with Proteins [J]. Macromolecules,2000,33:2539-2544
    [82]Jiang W., Irgum K., Synthesis and Evaluation of Polymer-Based Zwitterionic Stationary Phases for Separation of Ionic Species [J]. Analytical Chemistry,2001,73:1993-2003
    [83]Wikberg E., Verhage J. J., Viklund C., et al. Grafting of silica with sulfobetaine polymers via aqueous reversible addition fragmentation chain transfer polymerization and its use as a stationary phase in HILIC [J]. Journal of Separation Science,2009,32:2008-2016
    [84]Appelblad P., Abrahamsson P., MS detection of homocysteine, methylmalonic acid, and succinic acid using HILIC liquid chromatographic separation on a covalently bonded zwitterionic stationary phase [J]. LC GC North America,2005, Suppl. S.,24-25
    [85]Idborg H., Zamani L., Edlund P. O., et al. Metabolic fingerprinting of rat urine by LC/MS:Part 1. Analysis by hydrophilic interaction liquid chromatography electrospray ionization mass spectrometry [J]. Journal of Chromatography B,2005,828:9-13
    [86]Wade K. L., Garard I. J., Fahey J. W., Improved hydrophilic interaction chromatography method for the identification and quantification of glucosinolates [J]. Journal of Chromatography A,2007,1154:469-472
    [87]Oertel R., Renner U., Kirch W., Hydrophilic interaction chromatography combined with tandem-mass spectrometry to determine six aminoglycosides in serum [J]. Journal of Chromatography A,2004,1058:197-201
    [88]Boersma P. J., Divecha N., Heck A. J. R., et al. Evaluation and optimization of ZIC-HILIC-RP as an alternative MudPIT strategy [J]. Journal of Proteome Research,2007,6: 937-946
    [89]Takegawa Y., Deguchi K., Keira T., et al. Separation of isomeric 2-aminopyridine derivatized N-glycans and N-glycopeptides of human serum immunoglobulin G by using a zwitterionic type of hydrophilic-interaction chromatography [J]. Journal of Chromatography A,2006,1113:177-181
    [90]Takegawa Y., Ito H., Keira T., et al. Profiling of N-and O-glycopeptides of erythropoietin by capillary zwitterionic type of hydrophilic interaction chromatography/ electrospray ionization mass spectrometry [J]. Journal of Separation Science,2008,31: 1585-1593
    [91]Marrubini G., Castillo-Mendoza B. E., Massolini G., Separation of purine and pyrimidine bases and nucleosides by hydrophilic interaction chromatography [J]. Journal of Separation Science,2010,33:803-816
    [92]Jiang W., Fischer G., Girmay Y., et al. Zwitterionic stationary phase with covalently bonded phosphorylcholine type polymer grafts and its applicability to separation of peptides in the hydrophilic interaction liquid chromatography mode [J]. Journal of Chromatography A, 2006,1127:82-91
    [93]Weber G., von Wiren N., Hayen H., Hydrophilic interaction chromatography of small metal species in plants using sulfobetaine-and phosphorylcholine-type zwitterionic stationary phases [J]. Journal of Separation Science,2008,31:1615-1622
    [94]Wu J. Y., Bicker W., Lindner W., Separation properties of novel and commercial polar stationary phases in hydrophilic interaction and reversed-phase liquid chromatography mode [J]. Journal of Separation Science,2008,31:1492-1503
    [95]Bicker W., Wu J. Y., Lammerhofer M., Hydrophilic interaction chromatography in nonaqueous elution mode for separation of hydrophilic analytes on silica-based packings with noncharged polar bondings [J]. Journal of Separation Science,2008,31:2971-2987
    [96]Yu L., Li X., Guo Z., et al. Hydrophilic interaction chromatography based enrichment of glycopeptides by using click maltose:a matrix with high selectivity and glycosylation heterogeneity coverage [J]. Chemistry-A European Journal,2009,15:12618-12626
    [97]Santoyo-Gonzalez F., Hernandez-Mateo F., Silica-based clicked hybrid glyco materials [J]. Chemical Society Reviews,2009,38:3449-3462
    [98]Moni L., Ciogli A., D'Acquarica Ⅰ., Synthesis of sugar-based silica gels by copper-catalysed azide-alkyne cycloaddition via a single-step azido-activated silica intermediate and the use of the gels in hydrophilic interaction chromatography [J]. Chemistry-A European Journal,2010,16:5712-5722
    [99]Persson J., Hemstrom P., Irgum K., Preparation of a sorbitol methacrylate grafted silica as stationary phase for hydrophilic interaction chromatography [J]. Journal of Separation Science,2008,31:1504-1510
    [100]Honetschlagerova-Vadinska M., Srkalova S., Bosakova Z., et al. Comparison of enantioselective HPLC separation of structurally diverse compounds on chiral stationary phases with different teicoplanin coverage and distinct linkage chemistry [J]. Journal of Separation Science,2009,32:1704-1711
    [101]Jandera P., Churacek J., Ion-exchange chromatography of aldehydes, ketones, ethers, alcohols, polyols and saccharides [J]. Journal of Chromatography,1974,98:55-104
    [102]Chambers T. K., Fritz J. S., Effect of polystyrene-divinylbenzene resin sulfonation on solute retention in HPLC [J]. Journal of Chromatography A,1998,797:139-147
    [103]Makino Y., Omichi K., Hase S., Analysis of oligosaccharide structures from the reducing end terminal by combining partial acid hydrolysis and a two-dimensional sugar map, Analytical Biochemistry [J].1998,264:172-179
    [104]de Person M., Hazotte A., Elfakir C., et al. Development and validation of a hydrophilic interaction chromatography-mass spectrometry assay for taurine and methionine in matrices rich in carbohydrates [J]. Journal of Chromatography A,2005,1081:174-181
    [105]Pisano R., Breda M., Grassi S., et al. Hydrophilic interaction liquid chromatography-APCI-mass spectrometry determination of 5-fluorouracil in plasma and tissues [J]. Journal of Pharmaceutical and Biomedical Analysis,2005,38:738-745
    [106]Nischang I., Bruggemann O., On the separation of small molecules by means of nano-liquid chromatography with methacrylate-based macroporous polymer monoliths [J]. Journal of Chromatography A,2010,1217:5389-5397
    [107]Courtois J., Bystrom E., Irgum K., Novel monolithic materials using poly(ethylene glycol) as porogen for protein separation [J]. Polymer,2006,47:2603-2611
    [108]Vicklund C., Sjorgen A., Irgum K., et al. Chromatographic interactions between proteins and sulfoalkylbetaine-based zwitterionic copolymers in fully aqueous low-salt buffers [J]. Analytical Chemistry,2001,73:444-452
    [109]Jiang Z., Smith N. W., Ferguson P. D., et al. Hydrophilic interaction chromatography using methacrylate-based monolithic capillary column for the separation of polar analytes [J]. Analytical Chemistry,2007,79:1243-1250
    [110]Palmer, J. K., A versatile aystem for sugar analysis via liquid chromatography [J]. Analytical Letters,1975,8:215-224
    [111]Quiming N. S., Denola N. L., Soliev A. B., et al. Retention behavior of ginsenosides on a poly(vinyl alcohol)-bonded stationary phase in hydrophilic interaction chromatography [J]. Analytical and Bioanalytical Chemistry,2007,389:1477-1488
    [112]Fountain K. J., Xu J., Diehl D. M., et al. Influence of stationary phase chemistry and mobile-phase composition on retention, selectivity, and MS response in hydrophilic interaction chromatography [J]. Journal of Separation Science,2010,33:740-751
    [113]Saad B., Bari M. F., Saleh M. I., et al. Simultaneous determination of preservatives (benzoic acid, sorbic acid, methylparaben and propylparaben) in foodstuffs using high-performance liquid chromatography [J]. Journal of Chromatography A,2005,1073: 393-397
    [114]Hao Z., Xiao B., Weng N., Impact of column temperature and mobile phase components on selectivity of hydrophilic interaction chromatography (HILIC) [J]. Journal of Separation Science,2008,31:1449-1464
    [115]Jandera P., Stationary phases for hydrophilic interaction chromatography, their characterization and implementation into multidimensional chromatography concepts [J]. Journal of Separation Science,2008,31:1421-1437
    [116]dos Santos Pereira A., David F., Vanhoenacker G., The acetonitrile shortage:Is reversed HILIC with water an alternative for the analysis of highly polar ionizable solutes? [J]. Journal of Separation Science,2009,32:2001-2007
    [117]Bij K. E., Horvath C, Melander W. R., et al. Surface silanols in silica-bonded hydrocarbonaceous stationary phases:II. Irregular retention behavior and effect of silanol masking [J]. Journl of Chromatography,1981,203:65-84
    [118]Nawrocki J., The silanol group and its role in liquid chromatography [J]. Journal of Chromatography A,1997,779:29-71
    [119]Svendsen H., Greibrokk T., High-Performance liquid chromatographic determination of biogenic amines:I. Use of aqueous acidic mobile phase with silica columns [J]. J.Chromatography,1981,212:153-166
    [120]Gritti F., dos Santos Pereira A., Sandra P., et al. Comparison of the adsorption mechanisms of pyridine in hydrophilic interaction chromatography and in reversed-phase aqueous liquid chromatography [J]. Journal of Chromatography A,2009,1216:8496-8504
    [121]Li Y. Y., Li J., Chen T., et al. Covalently bonded polysaccharide-modified stationary phase for per aqueous liquid chromatography and hydrophilic interaction chromatography [J]. Journal of Chromatography A,2011,1218:1503-1508
    [122]Ali M. S., Ghori M., Rafiuddin S., et al. A new hydrophilic interaction liquid chromatographic (HILIC) procedure for the simultaneous determination of pseudoephedrine hydrochloride (PSH), diphenhydramine hydrochloride (DPH) and dextromethorphan hydrobromide (DXH) in cough-cold formulations [J]. Journal of Pharmaceutical and Biomedical Analysis,2007,43:158-167
    [123]Li W., Li Y., Francisco D. T., et al. Hydrophilic interaction liquid chromatographic tandem mass spectrometric determination of atenolol in human plasma [J], Biomedical Chromatography,2005,19:385-393
    [124]Macek J., Ptacek P., Klima J. J., Determination of tolterodine and its 5-hydroxymethyl metabolite in human plasma by hydrophilic interaction liquid chromatography-tandem mass spectrometry [J]. Journal of Chromatography B,2009,877:968-974
    [125]Brons C., Olieman C., Study of the high-performance liquid chromatographic separation of reducing sugars, applied to the determination of lactose in milk [J]. Journal of Chromatography,1983,259:79-86
    [126]Liu Y., Urgaonkar S., Verkade J. G., et al. Separation and characterization of underivatized oligosaccharides using liquid chromatography and liquid chromatography-electrospray ionization mass spectrometry [J]. Journal of Chromatography A,2005,1079: 146-152
    [127]Fu Q., Liang T., Zhang X. L., et al. Carbohydrate separation by hydrophilic interaction liquid chromatography on a'click'maltose column [J] Carbohydrate Research,2010,345: 2690-2697
    [128]Troyer J. K., Stephenson K. K., Fahey J. W., Analysis of glucosinolates from broccoli and other cruciferous vegetables by hydrophilic interaction liquid chromatography [J]. Journal of Chromatography A,2001,919:299-304
    [129]Wade K. L., Garrard I. J., Fahey J. W, Improved hydrophilic interaction chromatography method for the identification and quantification of glucosinolates [J]. Journal of Chromatography A,2007,1154:469-472
    [130]Wang C. Z., Wu J. A., McEntee E., et al. Saponins composition in American ginseng leaf and berry assayed by high-performance liquid chromatography [J]. Journal of Agricultural and Food Chemistry,2006,54:2261-2266
    [131]Oleszek W., Bialy Z., Chromatographic determination of plant saponins-An update (2002-2005) [J]. Journal of Chromatography A,2006,1112:78-91
    [132]Ren M. T, Li H. J, Sheng L. S., et al. Rapid analysis of constituents of Radix Cyathulae using hydrophilic interaction-reverse phase LC-MS [J]. Journal of Chromatography A,2009, 32:3988-3995
    [133]Zhang H., Guo Z. M., Li W., et al. Purification of flavonoids and triterpene saponins from the licorice extract using preparative HPLC under RP and HILIC mode [J]. Journal of Separation Science,2009,32:526-535
    [134]Wang Y., Lu X., Xu G. W., Development of a comprehensive two-dimensional hydrophilic interaction chromatography/quadrupole time-of-flight mass spectrometry system and its application in separation and identification of saponins from Quillaja saponaria [J]. Journal of Chxomatography A,2008,1181:51-59
    [135]Shibata-Koyama M., Iida S., Misaka H., et al. Nonfucosylated rituximab potentiates human neutrophil phagocytosis through its high binding for Fc gamma RⅢb and MHC class Ⅱ expression on the phagocytotic neutrophils [J]. Experimental Hematology,2009,37: 309-321
    [136]Wuhrer M, de Boer A. R., Deelder A. M., Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry [J]. Mass Spectrometry Reviews, 2009,28:192-206
    [137]Wuhrer M, Koeleman C. A. M., Deelder A. M., et al. Normal-phase nanoscale liquid chromatography-Mass spectrometry of underivatized oligosaccharides at low-femtomole sensitivity [J].2004, Analytical Chemistry,76:833-838
    [138]Maslen S. L., Goubet F., Adam A., et al. Structure elucidation of arabinoxylan isomers by normal phase HPLC-MALDI-TOF/TOF-MS/MS [J]. Carbohydrate Research,2007,342: 724-735
    [139]Zhu B. Y., Mant C. T., Hodges R. S., Mixed-mode hydrophilic and ionic interaction chromatography rivals reversed-phase liquid chromatography for the separation of peptides [J]. Journal of Chromatography,1992,594:75-86
    [140]Mant C. T., Kondejewski L. H., Hodges R. S., Hydrophilic interaction/cation-exchange chromatography for separation of cyclic peptides [J]. Journal of Chromatography A,1998, 816:79-88
    [141]Mant C. T., Litowski J. R., Hodges R. S., Hydrophilic interaction/cation-exchange chromatography for separation of amphipathic a-helical peptides [J]. Journal of Chromatography A,1998,816:65-78
    [142]Hyun M. H., Whangbo S. H., Cho Y. J., Effect of analyte lipophilicity on the resolution of a-and [3-amino acids on liquid chromatographic ligand exchange chiral stationary phases [J]. Journal of Separation Science,2003,26:1615-1622
    [143]Lindner H., Sarg B., Meraner C., et al. Separation of acetylated core histones by hydrophilic-interaction liquid chromatography, [J]. Journal of Chromatography A,1996,743: 137-144
    [144]Lindner H., Sarg B., Helliger W., Application of hydrophilic-interaction liquid chromatography to the separation of phosphorylated H1 histones [J]. Journal of Chromatography A,1996,782:55-62
    [145]Sarg B., Helliger W., Talasz H., et al. Histone H4 Hyperacetylation Precludes Histone H4 Lysine 20 Trimethylation [J]. The Journal of Biological Chemistry,2004,279: 53458-53464
    [146]Tetaz T., Detzner S., Friedlein A., et al. Hydrophilic interaction chromatography of intact, soluble proteins [J]., Journal of Chromatography A,2010, Doi:10.1016/j. chroma. 2010.09.027
    [147]Lam M. P. Y., Siu S. O., Lau E., et al. Online coupling of reverse-phase and hydrophilic interaction liquid chromatography for protein and glycoprotein characterization [J]. Analytical and Bioanalytical Chemistry,2010,398:791-804
    [148]Kalili K. M., De Villiers A., Off-line comprehensive two-dimensional hydrophilic interaction x reversed phase liquid chromatographic analysis of green tea phenolics [J]. Journal of Separation Science,2010,33:853-863
    [149]Wang Y., Lu X., Xu G., Simultaneous separation of hydrophilic and hydrophobic compounds by using an online HILIC-RPLC system with two detectors [J]. Journal of Separation Science,2008,31:1564-1572
    [150]Wang Y., Lehmann R., Lu X., et al. Novel, fully automatic hydrophilic interaction/reversed-phase column-switching high-performance liquid chromatographic system for the complementary analysis of polar and apolar compounds in complex samples [J]. Journal of Chromatography A,2008,1024:28-34
    [151]Wang Y., Lu X., Xu G., Development of a comprehensive two-dimensional hydrophilic interaction chromatography/quadrupole time-of-flight mass spectrometry system and its application in separation and identification of saponins from Quillaja saponaria [J]. Journal of Chromatography A,2008,1181:51-59
    [152]Bicker W., Wu J., Yeman H., et al. Retention and selectivity effects caused by bonding of a polar urea-type ligand to silica:A study on mixed-mode retention mechanisms and the pivotal role of solute-silanol interactions in the hydrophilic interaction chromatography elution mode [J]. Journal of Chromatography A,2011,1218:882-895
    [1]Yanagida A., Murao H., Ohnishi-Kameyama M., Retention behavior of oligomeric proanthocyanidins in hydrophilic interaction chromatography [J]. Journal of Chromatography A,2007,1143:153-161
    [2]Yoshida T., Peptide separation by Hydrophilic-Interaction Chromatography:A review [J]. Journal of Biochemical and Biophysical Methods,2004,60:265-280
    [3]Wu J. Y., Bicker W., Lindner W., Separation properties of novel and commercial polar stationary phases in hydrophilic interaction and reversed-phase liquid chromatography mode [J]. Journal of Separation Science,2008,31:1492-1503
    [4]Huang H., Jin Y., Xue M., A novel click chitooligosaccharide for hydrophilic interaction liquid chromatography [J]. Chemical Communications,2009,45:6973-6975
    [5]Liu Q., Xu L., Ke Y., Analysis of cephalosporins by hydrophilic interaction chromatography [J]. Journal of Pharmaceutical and Biomedical Analysis,2011,54:623-628
    [6]Bare M., Sliwka-Kaszynska M., Preparation and evaluation of 1,3-alternate 25,27-bis-(pentafluorobenzyloxy)-26,28-bis-(3-propyloxy)-calix[4]arene-bonded silica gel high performance liquid chromatography stationary phase [J]. Journal of Chromatography A, 2009,1216:3954-3960
    [7]肖鹤鸣,陈兆旭.四唑化学的现代理论[M].北京:科学出版社,2000:176-192
    [8]雷根虎,熊晓虎,卫引茂.以四唑为固定相配体的新型离子交换色谱固定相的制备及色谱性能[J].高等学校化学学报,2008,29(2):268-272
    [9]Lei G. H., Xiong X. H., Wei Y. M., et al. Novel Tetrazole-functionalized Ion Exchanger Weak Cation-exchange Chromatography of Proteins [J]. Journal of Chromatography A,2008, 1187:197-204
    [10]Eicher T., Hauptmann S., Speicher A., The chemistry of heterocycles:structure, reactions, syntheses, and applications [M]. Second Completely Revised and Enlarged Edition, Weinheim, Germany:WILIEY-VCH GmbH & Co. KGaA,2003:212-217
    [11]Marrubini G., Castillo-Mendoza B. E., Massolini G., Separation of purine and pyrimidine bases and nucleosides by hydrophilic interaction chromatography [J]. Journal of Separation Science,2010,33:803-816
    [12]Hemstrom P., Irgum K., Hydrophilic interaction chromatography [J]. Journal of Separation Science,2006,29:1784-1821
    [13]Li R. P., Huang J. X., Chromatographic behavior of epirubicin and its analogues on high-purity silica in hydrophilic interaction chromatography [J]. Journal of Chromatography A,2004,1041:163-169
    [14]Wu J. Y., Bicker W., Lindner W., Separation properties of novel and commercial polar stationary phases in hydrophilic interaction and reversed-phase liquid chromatography mode [J]. Journal of Separation Science,2008,31:1492-1503
    [15]Nguyen H. P., Yang S. H., Wigginton J. G., Retention behavior of estrogen metabolites on hydrophilic interaction chromatography stationary phases [J]. Journal of Separation Science,2010,33:793-802
    [16]Properties calculated at 25℃ using Advanced Chemistry Development (ACD/Labs) Software, version 8.14 for Solariss. SciFinder data
    [17]Bhaumik U., Ghosh A., Mandal U., Determination of Drospirenone in Human Plasma by LC-Tandem-MS [J]. Chromatographia 2008,68:713-720
    [18]Al-Tannak N. F., Bawazeer S., Siddiqui T. H., The hydrophilic interaction like properties of some reversed phase high performance liquid chromatography columns in the analysis of basic compounds [J]. Journal of Chromatography A,2011,1218:1486-149
    [1]Iwasaki Y., Ishihara K., Phosphorylcholine-containing polymers for biomedical applications [J]. Analytical and Bioanalytical Chemistry,2005,381:534-546
    [2]Wikberg E., Verhage J. J., Viklund C, et al. Grafting of silica with sulfobetaine polymers via aqueous reversible addition fragmentation chain transfer polymerization and its use as a stationary phase in HILIC [J]. Journal of Separation Science,2009,32:2008-2016
    [3]Jiang W., Fischer G., Girmay Y, et al. Zwitterionic stationary phase with covalently bonded phosphorylcholine type polymer grafts and its applicability to separation of peptides in the hydrophilic interaction liquid chromatography mode [J]. Journal of Chromatography A, 2006,1127:82-91
    [4]Pidgeon C, Venkataram U. V., Immobilized artificial membrane chromatography: Supports composed of membrane lipids [J]. Analytical Biochemistry,1989,176:36-47
    [5]Wiedmer S. K., Jussila M. S., Riekkola M. L., Phospholipids and liposomes in liquid chromatographic and capillary electromigration techniques [J]. Trends in Analytical Chemistry,2004,23:562-582
    [6]Jiang Z., Reilly J., Everatt B., Novel zwitterionic polyphosphorylcholine monolithic column for hydrophilic interaction chromatography [J]. Journal of Chromatography A,2009, 1216:2439-2448
    [7]Shimizu T., Goda T., Minour N., Super-hydrophilic silicone hydrogels with interpenetrating poly(2-methacryloyloxyethyl phosphorylcholine) networks [J]. Biomaterials, 2010,31:3274-3280
    [8]龚波林,任丽,阎超,等.单分散亲水两性离子交换树脂的制备及其在生物大分子分离中的应用[J].高等学校化学学报,2007,28(5):831-836
    [9]Laroche G., Mantovani D., Chevallier P., Process for modifying the surface properties of materials suitable for contact with living tissue and materials produced thereby [P].2002, WO02070032A1
    [10]Goodarzi M., Goodarzi T., Spectrophotometric Determination of Acidity Constants of Thiamine in Water, Water-Triton X-100 Micellar Media Solutions [J]. Iranian Journal of Chemistry & Chemical Engineering,2008,27:15-20
    [11]Properties calculated at 25℃ using Advanced Chemistry Development (ACD/Labs) Software, version 8.14 for Solariss. SciFinder data
    [1]Bicker W., Wu J. Y., Lammerhofer M., Hydrophilic interaction chromatography in nonaqueous elution mode for separation of hydrophilic analytes on silica-based packings with noncharged polar bondings [J]. Journal of Separation Science,2008,31:2971-2987
    [2]Guo Z., Lei A., Zhang Y., "Click saccharides":Novel separation materials for hydrophilic interaction liquid chromatography [J]. Chemical Communications,2007,2491-2493
    [3]Huang H., Jin Y., Xue M., A novel click chitooligosaccharide for hydrophilic interaction liquid chromatography [J]. Chemical Communications,2009,6973-6975
    [4]Matyjaszewski K., Spanswick J., Controlled/living radical polymerization [J]. Materials Today 2005,8:26-33
    [5]Hemstrom P., Szumski M., Irgum K., Atom-transfer radical graft polymerization initiated directly from silica applied to functionalization of stationary phases for high-performance liquid chromatography in the hydrophilic interaction chromatography mode [J]. Analytical Chemistry,2006,78:7098-7103
    [6]Jayaraman G., Li Y. F., Moore J. A., et al. Ion-exchange displacement chromatography of proteins Dendritic polymers as novel displacers [J]. Journal of Chromatography A,1995,702: 143-155
    [7]Pohl C, Saini C, New developments in the preparation of anion exchange media based on hyperbranched condensation polymers [J] Journal of Chromatography A,2008,1213:37-44
    [8]Khan M., Huck W. T. S., Hyperbranched Polyglycidol on Si/SiO2 Surfaces via Surface-Initiated Polymerization [J]. Macromolecules,2003,36:5088-5093
    [9]Jin G., Guo Z., Zhang F., et al. Study on the retention equation in hydrophilic interaction liquid chromatography [J]. Talanta,2008,76:522-527
    [10]Gritti F., dos Santos Pereira A., Sandra P., et al. Comparison of the adsorption mechanisms of pyridine in hydrophilic interaction chromatography and in reversed-phase aqueous liquid chromatography [J]. Journal of Chromatography A,2009,1216:8496-8504
    [11]Yang Z., Hofmeister effects:an explanation for the impact of ionic liquids on biocatalysis [J]. Journal of Biotechnology,2009,144:12-22
    [12]王文华,赵林,阎波,离子对水结构的影响[J].化学通报,2010,491-498
    [1]V. Smigol, F. Svec, J.M.J. Frechet, Anal. Chem. Hydrophilization of porous polystyrene-based continuous rod column,1995,67:670-674
    [2]Qu J.B., Zhou W.Q., Wei W., et al. Chemical modification and characterization of gigaporous polystyrene microspheres as rapid separation of proteins base supports [J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46:5794-5804
    [3]Qu J.B., Zhou W.Q., Wei W., et al. An effective way to hydrophilize gigaporous polystyrene microspheres as rapid chromatographic separation media for proteins [J]. Langmuir,2008,24:13646-13652
    [4]Qu J. B., Wan X. Z., Zhai Y. Q., et al. A novel stationary phase derivatized from hydrophilic gigaporous polystyrene-based microspheres for high-speed protein chromatography [J]. Journal of Chromatography A,2009,1216:6511-6516
    [5]倪刚,杨武,何晓燕,等.表面引发聚合反应研究进展[J].化学进展,2005,17(6):1074-1080
    [6]Matyjaszewski K., Xia J., Atom transfer radical polymerization [J]. Chemical Reviews, 2001,101:2921-2990.
    [7]Unsal E., Elmas B., Caglayan B., Preparation of an Ion-Exchange Chromatographic Support by A "Grafting From" Strategy Based on Atom Transfer Radical Polymerization [J]. Analtical Chemisty,2006,78:5868-5875
    [8]Mallik A. K., Rahman M. M., Czaun M., et al. Facile synthesis of high-density poly(octadecyl acrylate)-grafted silica for reversed-phase high-performance liquid chromatography by surface-initiated atom transfer radical polymerization [J]. Journal of Chromatography A,2008,1187:119-127
    [9]Mizutani A., Nagase K., Kikuchi A., et al. Thermo-responsive polymer brush-grafted porous polystyrene beads for all-aqueous chromatography [J]. Journal of Chromatography A, 2010,1217:522-529
    [10]Kumaraswamy G., Ankamma K., Pitchaiah A., Tandem Epoxide or Aziridine Ring Opening by Azide/Copper Catalyzed [3+2] Cycloaddition:Efficient Synthesis of 1,2,3-Triazolo β-Hydroxy or β-Tosylamino Functionality Motif [J]. The Journal of Organic Chemistry,2007,72:9822-9825
    [11]Gong B. L., Li L., Zhu J. X., et al. Synthesis of monodisperse poly (chloromethyl-styrene-co-divinyl benzene) beads and their application in separation of biopolymers [J]. Journal of Separation Science,2005,28:2546-2550
    [12]Tron G. C., Pirali T., Billington R. A., et al. Click Chemistry Reactions in Medicinal Chemistry:Applications of the 1,3-dipolar Cycloaddition Between Azides and Alkynes [J]. Medicinal Research Reviews,2008,28:278-308
    [13]Zhou Z., Li S. W., Zhang Y. L., et al. Promotion of proton conduction in polymer electrolyte membranes by 1H-1,2,3-triazole [J]. Journal of the American Chemical Society, 2005,127:10824-10825
    [14]Fu Q., Guo Z. M., Liang T., et al. Chemically bonded maltose via click chemistry as stationary phase for HILIC [J]. Analytical Methods,2010,2:217-224
    [15]Geng X. D., Regnier F. R., Retention model for proteins in reversed-phase liquid chromatography [J]. Journal of Chromatography,1984,296:15-30
    [16]Roth C. M., Unger K. K., Lenhoff A. M., Mechanistic model of retention in protein ion-exchange chromatography [J]. Journal of Chromatography A,1996,726:45-56
    [17]耿信笃,刘振岭,柯从玉,等.用参数Z表征疏水色谱中脲变α2糜蛋白酶及其折叠中间体的分子构象变化[J].西北大学学报(自然科学版),2007,37(6):879-884
    [18]Liu P., Yang H., Geng X., Mixed retention mechanism of proteins in weak anion-exchange chromatography [J]. Journal of Chromatography A,2009,1216:7497-7504
    [19]Nguyen H. P., Yang S. H., Wigginton J. G., Retention behavior of estrogen metabolites on hydrophilic interaction chromatography stationary phases [J]. Journal of Separation Science,2010,33:793-802
    [20]Alpert A. J., Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides [J]. Analytical Chemistry,2008,80:62-76
    [21]Alpert A. J., Petritis K., Kangas L., et al. Peptide Orientation Affects Selectivity in Ion-Exchange Chromatography [J]. Analytical Chemistry,2010,82:5253-5259
    [1]Guo Y., Gaiki S., Retention behavior of small polar compounds on polar stationary phases in hydrophilic interaction chromatography [J]. Journal of Chromatography A,2005,1074: 71-80
    [2]McCalley D. V., Study of the selectivity, retention mechanisms and performance of alternative silica-based stationary phases for separation of ionised solutes in hydrophilic interaction chromatography [J]. Journal of Chromatography A,2010,1217:3408-3417
    [3]Braunecker W. A., Matyjaszewski K., Controlled/living radical polymerization:Features, developments, and perspectives [J]. Progress in Polymer Science,2007,32:93-146
    [4]Xiao, D., Wirth M. J., Kinetics of surface-initiated atom transfer radical polymerization of acrylamide on silica [J]. Macromolecules,2002,35:2919-2925
    [5]Yu, W. H., Kang, E. T., Neoh, K. G., Controlled grafting of well-defined epoxide polymers on hydrogen-terminated silicon substrates by surface-initiated ATRP at ambient temperature [J]. Langmuir,2004,20,8294-8300
    [6]Edmondson, S., Huck, W. T. S., Controlled growth and subsequent chemical modification of poly (glycidyl methacrylate) brushes on silicon wafers [J]. Journal of Materials Chemistry, 2004,14:730-734
    [7]Hemstrom P., Szumski M., Irgum K., Atom-transfer radical graft polymerization initiated directly from silica applied to functionalization of stationary phases for high-performance liquid chromatography in the hydrophilic interaction chromatography mode [J]. Analytical Chemistry,2006,78:7098-7103
    [8]Bui N. T. H., Verhage J. J., Irgum K., Tris(hydroxymethyl)aminomethane-functionalized silica particles and their application for hydrophilic interaction chromatography [J]. Journal of Separation Science,2010,33:2965-2976
    [9]Lei G. H., Xiong X. H., Wei Y.M., et al. Novel Tetrazole-functionalized Ion Exchanger Weak Cation-exchange Chromatography of Proteins [J]. Journal of Chromatography A,2008, 1187:197-204
    [10]Dai X. J., Qian X. L., Wei Y. M., Tetrazole-Functionalized Silica for Hydrophilic Interaction Chromatography of Polar Solutes [J]. Chromatographia,2011,73:865-870
    [11]Unsal E., Elmas B., Caglayan B., Preparation of an Ion-Exchange Chromatographic Support by A "Grafting From" Strategy Based on Atom Transfer Radical Polymerization [J]. Analtical Chemisty,2006,78:5868-5875

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700