人类核糖核苷酸还原酶的模拟分子对接
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核糖核苷酸还原酶(RR)是人类体内唯一的催化4种核糖核苷酸还原、生成相应的脱氧核糖核苷酸的酶。研究表明,人体小亚基R2能促进各种致癌基因的转变,提高癌细胞的入侵能力。因此通过,研究R2抑制剂,抑制肿瘤细胞的生成和转移,已成为治愈人类癌肿的靶点研究之一,越来越受到关注。本文从结构生物信息学的角度研究人体中RR的小亚基R2蛋白质。首先,我们应用metaPocket2.0找出R2表面上可能的小分子作用位点,应用AutoDock Vina蛋白质与小分子对接软件对ZINC、DrugBank和PDB数据库中大规模的小分子进行了虚拟筛选,筛选出9个可用于实验验证的小分子化合物。我们筛选出一个新的R2抑制剂,格列喹酮,它与2个活性位点的结合亲和力值最好,为下一步实验验证提供依据。接着,我们应用ZDOCK蛋白质-蛋白质对接软件进行R1和R2模拟对接,并利用metaPPI预测出R1和R2上的蛋白质结合位点,构造出4种RR全酶模型。最后,通过从结构和序列上比较人类R2与大肠杆菌的R2,以及通过KFC、FlodX、HOTPOINT和HotSpot Wizard4种软件预测,得到了R2二聚体结合表面上的1对热点氨基酸A_PHE101-D_PHE101,它们在氨基酸序列上和空间结构上都是完全对称的。本文的结果可为后续实验筛选作用于R2的小分子药物及研究R2二聚体形成机制提供可靠的理论依据,具有一定的参考意义。
Ribonucleotide Reductase (RR) is the unique enzyme responsible for the conversion of ribonucleotides to2'-deoxyribonucleotides in human. Study have shown that small subunit R2can promote the transformation of various oncogenes and enhance the invasion ability of cancer cells. Therefore, the study of R2inhibitor, to inhibit the generation and transfer oftumor cells, has become one of the target for research to cure human cancer, and got more and more attention.In this article, we mainly focus the small submit R2of RR in Homo Sapiens by computational structural bioinformatics approaches. First, we applied metaPocket to identify potential ligand binding pockets on R2submit surface. Then we used AutoDock Vina to screen a large number of compounds from ZINC、DrugBank and PDB database that might bind to those pockets. Nine small molecules were screened out, which can be further validated experimentally to inhibit R2. The new R2inhibitor(gliquidone) with the best binding affinity values of the two active sites of R2provided the basis for further experimental verification. Secondly, we applied ZDOCK to build up the complex structure of RR from R1and R2. The protein binding sites of R1and R2were prediction by metaPPI.4good models of RR complex structure were obtained in the end. Last, by comparing structure and sequence of R2in Homo sapiens and in E. coli,, and hotspot residues predicted by KFC、FlodX、HOTPOINT and HotSpot Wizard, we got a pair of hotspot residues A_PHE101-D_PHE101in the interface of R2, and they are perfectly symmetrical on theamino acid sequence and spatial structure. The computational results in this work need to be validated by experiments and might provide insights to inhibit R2functions and R2dimerization mechanism.
引文
1. Ting, A.E. and R.H. Scheller, Insight into the molecular mechanisms of synaptic vesicle docking and fusion. Cold Spring Harb Symp Quant Biol,1995.60:p.361-9.
    2. Ackermann, F., et al., Protein docking combining symbolic descriptions of molecular surfaces and grid-based scoring functions. Proc Int Conf Intell Syst Mol Biol,1995.3:p.3-11.
    3. Kutchukian, P.S., D. Lou, and E.I. Shakhnovich, FOG:Fragment Optimized Growth algorithm for the de novo generation of molecules occupying druglike chemical space. J Chem Inf Model,2009.49(7):p.1630-42.
    4. Casadio, R., et al., Neural networks predict protein folding and structure:artificial intelligence faces biomolecular complexity. SAR QSAR Environ Res,2000.11(2):p.149-82.
    5. Sweatman, C.Z., B. Mulgrew, and G.J. Gibson, Two algorithms for neural-network design and training with application to channel equalization. IEEE Trans Neural Netw,1998.9(3):p. 533-43.
    6. Bies, R.R., et al., A genetic algorithm-based, hybrid machine learning approach to model selection. J Pharmacokinet Pharmacodyn,2006.33(2):p.195-221.
    7. Banzhaf, W.N., Peter; Keller, Robert; Francone, Frank Genetic Programming-An Introduction, Morgan Kaufmann. San Francisco, CA.1998.
    8. Correia Edos, R., et al., The generalized simulated annealing algorithm in the low energr electron diffraction search problem. J Phys Condens Matter,2005.17(1):p.1-16.
    9. Chunhua Li, Xiaohui Ma, Cunxin Wang. (2006). "Progress in Protein-protein Docking Approaches" Progress in Biochemistry and Biophysics,33(7):616-621.
    10. 李洪林,沈建华,罗小民,沈旭,朱维良,王希诚,陈凯先,蒋华良,虚拟筛选与新药发现.Chinese Bulletin of Life Sciences,2005.17(2).
    11. Sousa, S.F., P.A. Fernandes, and M.J. Ramos, Protein-ligand docking:current status and future challenges. Proteins,2006.65(1):p.15-26.
    12. Morris, G.M., R. Huey, and A.J. Olson, Using AutoDock for ligand-receptor docking. Curr Protoc Bioinformatics,2008. Chapter 8:p. Unit 814.
    13. Norgan, A.P., et al., Multilevel Parallelization of AutoDock 4.2. J Cheminform,2011.3(1):p. 12.
    14. Lang, P.T., et al., DOCK 6:combining techniques to model RNA-small molecule complexes. RNA,2009.15(6):p.1219-30.
    15. Verdonk, M.L., et al., Improved protein-ligand docking using GOLD. Proteins,2003.52(4):p. 609-23.
    16. Schellhammer, I. and M. Rarey, FlexX-Scan:fast, structure-based virtual screening. Proteins, 2004.57(3):p.504-17.
    17. Park, H., J. Lee, and S. Lee, Critical assessment of the automated AutoDock as a new docking tool for virtual screening. Proteins,2006.65(3):p.549-54.
    18. Morris, G.M., et al., Distributed automated docking of flexible ligands to proteins:parallel applications of AutoDock 2.4. J Comput Aided Mol Des,1996.10(4):p.293-304.
    19. Trott, O. and A.J. Olson, AutoDock Vina:improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem,2010.31(2): p.455-61.
    20. Sandeep, G., et al., AUDocker LE:A GUI for virtual screening with AUTODOCK Vina. BMC Res Notes,2011.4(1):p.445.
    21. Kramer, B., M. Rarey, and T. Lengauer, Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins,1999.37(2):p.228-41.
    22. Wishart, D.S., et al., DrugBank:a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res,2008.36(Database issue):p. D901-6.
    23. Irwin, J.J. and B.K. Shoichet, ZINC--a free database of commercially available compounds for virtual screening. J Chem Inf Model,2005.45(1):p.177-82.
    24. Wang, Y., et al., PubChem:a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res,2009.37(Web Server issue):p. W623-33.
    25. Schwede, T., et al., SWISS-MODEL:An automated protein homology-modeling server. Nucleic Acids Res,2003.31(13):p.3381-5.
    26. Guex, N. and M.C. Peitsch, SWISS-MODEL and the Swiss-P dbViewer:an environment for comparative protein modeling. Electrophoresis,1997.18(15):p.2714-23.
    27. Nielsen, M., et al., CPHmodels-3.0-remote homology modeling using structure-guided sequence profiles. Nucleic Acids Res,2010.38(Web Server issue):p. W576-81.
    28. Sheik, S.S., et al., Ramachandran plot on the web. Bioinformatics,2002.18(11):p.1548-9.
    29. Hooft, R.W., C. Sander, and G. Vriend, Objectively judging the quality of a protein structure from a Ramachandran plot. Comput Appl Biosci,1997.13(4):p.425-30.
    30. O'Donovan, C. and R. Apweiler, A guide to UniProt for protein scientists. Methods Mol Biol, 2011.694:p.25-35.
    31. Apweiler, R., et al., UniProt:the Universal Protein knowledgebase. Nucleic Acids Res,2004. 32(Database issue):p. D115-9.
    32. Zhang, Z., et al., Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction. Bioinformatics,2011.27(15):p.2083-8.
    33. Laskowski, R.A., SURFNET:a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph,1995.13(5):p.323-30,307-8.
    34. Brady, G.P., Jr. and P.F. Stouten, Fast prediction and visualization of protein binding pockets with PASS. J Comput Aided Mol Des,2000.14(4):p.383-401.
    35. Hendlich, M., F. Rippmann, and G. Barnickel, LIGSITE:automatic and efficient detection of potential small molecule-binding sites in proteins. J Mol Graph Model,1997.15(6):p.359-63, 389.
    36. Laurie, A.T. and R.M. Jackson, Q-SiteFinder:an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics,2005.21(9):p.1908-16.
    37. Kawabata, T. and N. Go, Detection of pockets on protein surfaces using small and large probe spheres to find putative ligand binding sites. Proteins,2007.68(2):p.516-29.
    38. Yu, J., et al., Roll:a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere. Bioinformatics,2010.26(1):p.46-52.
    39. Le Guilloux, V., P. Schmidtke, and P. Tuffery, Fpocket:an open source platform for ligand pocket detection. BMC Bioinformatics,2009.10:p.168.
    40. Capra, J.A., et al., Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure. PLoS Comput Biol,2009.5(12):p. e1000585.
    41. Huang, P.S., J.J. Love, and S.L. Mayo, Adaptation of a fast Fourier transform-based docking algorithm for protein design. J Comput Chem,2005.26(12):p.1222-32.
    42. Garcia, J., D. Mas. and R.G. Dorsch. Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm. Appl Opt,1996.35(35):p.7013-8.
    43. da Silva. R.A.. L. Degreve, and A. Caliri, LMProt:an efficient algorithm for Monte Carlo sampling of protein conform at i on al space. Biophys J,2004.87(3):p.1567-77.
    44. Guda, C, et al., A new algorithm for the alignment of multiple protein structures using Monte Carlo optimization. Pac Symp Biocomput,2001:p.275-86.
    45. De Gloria. A. and M. Olivieri, An asynchronous distributed architecture model for the Boltzmann machine control mechanism. IEEE Trans Neural Netw,1996.7(6):p.1538-41.
    46. Yuriev, E., M. Agostino, and P.A. Ramsland, Challenges and advances in computational docking:2009 in review. J Mol Recognit,2011.24(2):p.149-64.
    47. Lyskov, S. and J.J. Gray, The RosettaDock server for local protein-protein docking. Nucleic Acids Res,2008.36(Web Server issue):p. W233-8.
    48. Wang, C, et al., RosettaDock in CAPRI rounds 6-12. Proteins,2007.69(4):p.758-63.
    49. Chen, R., et al., ZDOCK predictions for the CAPRI challenge. Proteins,2003.52(1):p.68-73.
    50. Chen, R., L. Li, and Z. Weng, ZDOCK:an initial-stage protein-docking algorithm. Proteins, 2003.52(1):p.80-7.
    51. de Vries, S.J., et al., HADDOCK versus HADDOCK:new features and performance of HADDOCK2.0 on the CAPRI targets. Proteins,2007.69(4):p.726-33.
    52. Dominguez, C, R. Boelens, and A.M. Bonvin, HADDOCK:a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc,2003.125(7):p. 1731-7.
    53. Simons, K.T., et al., Ab initio protein structure prediction of CASPⅢ targets using ROSETTA. Proteins,1999. Suppl 3:p.171-6.
    54. Rohl, C.A., et al., Protein structure prediction using Rosetta. Methods Enzymol,2004.383:p. 66-93.
    55. Westbrook, J.D. and P.M. Fitzgerald, The PDB format, mmCIF, and other data formats. Methods Biochem Anal,2003.44:p.161-79.
    56. Gabb, H.A., R.M. Jackson, and M.J. Steinberg, Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol,1997.272(1):p. 106-20.
    57. Thorn, K.S. and A.A. Bogan, ASEdb:a database of alanine mutations and their effects on the free energy of binding in protein interactions. Bioinformatics,2001.17(3):p.284-5.
    58. Moreira, I.S., P.A. Fernandes, and M.J. Ramos, Hot spots--a review of the protein-protein interface determinant amino-acid residues. Proteins,2007.68(4):p.803-12.
    59. Fischer, T.B., et al., The binding interface database (BID):a compilation of amino acid hot spots in protein interfaces. Bioinformatics,2003.19(11):p.1453-4.
    60. Morrison, K.L. and G.A. Weiss, Combinatorial alanine-scanning. Curr Opin Chem Biol,2001. 5(3):p.302-7.
    61. DeLano, W.L., Unraveling hot spots in binding interfaces:progress and challenges. Curr Opin Struct Biol,2002.12(1):p.14-20.
    62. Pal, G., et al., Intramolecular cooperativity in a protein binding site assessed by combinatorial shotgun scanning mutagenesis. J Mol Biol,2005.347(3):p.489-94.
    63. Guerois, R., J.E. Nielsen, and L. Serrano, Predicting changes in the stability of proteins and protein complexes:a study of more than 1000 mutations. J Mol Biol,2002.320(2):p.369-87.
    64. Schymkowitz, J., et al., The FoldX web server:an online force field. Nucleic Acids Res,2005. 33(Web Server issue):p. W382-8.
    65. Schymkowitz, J.W., et al., Prediction of water and metal binding sites and their affinities by using the Fold-X force field. Proc Natl Acad Sci U S A,2005.102(29):p.10147-52.
    66. Tuncbag, N., A. Gursoy, and O. Keskin, Identification of computational hot spots in protein interfaces:combining solvent accessibility and inter-residue potentials improves the accuracy. Bioinformatics,2009.25(12):p.1513-20.
    67. Pavelka, A., E. Chovancova, and J. Damborsky, HotSpot Wizard:a web server for identification of hot spots in protein engineering. Nucleic Acids Res,2009.37(Web Server issue):p. W376-83.
    68. Darnell, S.J., D. Page, and J.C. Mitchell, An automated decision-tree approach to predicting protein interaction hot spots. Proteins,2007.68(4):p.813-23.
    69. Zhu, X. and J.C. Mitchell, KFC2:a knowledge-based hot spot prediction method based on interface solvation, atomic density, and plasticity features. Proteins,2011.79(9):p.2671-83.
    70. Kim, D.E., D. Chivian, and D. Baker, Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res,2004.32(Web Server issue):p. W526-31.
    71. Tuncbag, N., O. Keskin, and A. Gursoy, HotPoint:hot spot prediction server for protein interfaces. Nucleic Acids Res,2010.38(Web Server issue):p. W402-6.
    72. Dutta, S., et al., Promoting a structural view of biology for varied audiences:an overview-of RCSB PDB resources and experiences. J Appl Crystallogr,2010.43(Pt 5):p.1224-1229.
    73. Martin, A.C., Mapping PDB chains to UniProtKB entries. Bioinformatics,2005.21(23):p. 4297-301.
    74. Porter, C.T., G.J. Bartlett, and J.M. Thornton, The Catalytic Site Atlas:a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res,2004. 32(Database issue):p. D129-33.
    75. Jenuth, J.P., The NCBI. Publicly available tools and resources on the Web. Methods Mol Biol, 2000.132:p.301-12.
    76. Dundas, J., et al., CASTp:computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res,2006. 34(Web Server issue):p. W116-8.
    77. Petrek, M., et al., CAVER:a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics,2006.7:p.316.
    78. Mount, D.W., Using the Basic Local Alignment Search Tool (BLAST). CSH Protoc,2007. 2007:p. pdb top17.
    79. Li, W. and A. Godzik, Cd-hit:a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics,2006.22(13):p.1658-9.
    80. Edgar, R.C., MUSCLE:a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics,2004.5:p.113.
    81. Pupko, T., et al., Rate4Site:an algorithmic tool for the identification of functional regions in proteins by surface mapping of evolutionary determinants within their homologues. Bioinformatics,2002.18 Suppl 1:p. S71-7.
    82. Reichard, P.N.a.P., Ribonucleotide Reductases. Annu Rev Biophys Biomol Struct,2006.75:p. 25.
    83. Shao, J., et al., Ribonucleotide reductase inhibitors and future drug design. Curr Cancer Drug Targets.2006.6(5):p.409-31.
    84. Eklund. H. and M. Fontecave (1999). "Glycyl radical enzymes:a conservative structural basis for radicals." Structure 7(11):R257-262.
    85. Zhou, B.S., et al., Overexpression of ribonucleotide reductase in tramfected human KB cells increases their resistance to hydroxyurea:M2 but not Ml is sufficient to increase resistance to hydroxyurea in transfected cells. Cancer Res,1995.55(6):p.1328-33.
    86. Reichard, P., From RNA to DNA, why so many ribonucleotide reductases? Science,1993. 260(5115):p.1773-7.
    87. Sun, D., et al., Structure-Based Design, Synthesis, and Evaluation of 2'-(2-Hydroxyethyl)-2'-deoxyadenosine and the 5'-Diphosphate Derivative as Ribonucleotide Reductase Inhibitors. ChemMedChem,2009.4(10):p.1649-56.
    88. Herrick, J. and B. Sclavi, Ribonucleotide reductase and the regulation of DNA replication:an old story and an ancient heritage. Mol Microbiol,2007.63(1):p.22-34.
    89. Strand, K.R., et al., Crystal structural studies of changes in the native dinuclear iron center of ribonucleotide reductase protein R2 from mouse. J Biol Chem,2004.279(45):p.46794-801.
    90. Fairman, J.W., et al., Structural basis for allosteric regulation of human ribonucleotide reductase by nucleotide-induced oligomerization. Nat Struct Mol Biol,2011.18(3):p.316-22.
    91. Liu, X., et al., Ribonucleotide reductase subunits M2 and p53R2 are potential biomarkers for metastasis of colon cancer. Clin Colorectal Cancer,2007.6(5):p.374-81.
    92. Rose, P.W., et al., The RCSB Protein Data Bank:redesigned web site and web services. Nucleic Acids Res,2011.39(Database issue):p. D392-401.
    93. Berman, H.M., The Protein Data Bank:a historical perspective. Acta Crystallogr A,2008. 64(Pt 1):p.88-95.
    94. Berman, H.M., et al., The Protein Data Bank. Acta Crystallogr D Biol Crystallogr,2002.58(Pt 6 No 1):p.899-907.
    95. Bernstein, F.C., et al., The Protein Data Bank. A computer-based archival file for macromolecular structures. Eur J Biochem,1977.80(2):p.319-24.
    96. Kolberg, M., et al., Structure, function, and mechanism of ribonucleotide reductases. Biochim Biophys Acta,2004.1699(1-2):p.1-34.
    97. Kolpakov, F.A. and V.N. Babenko, [The MGL computer system--an instrument for generating, graphically representing, and analyzing regulatory genomic sequences]. Mol Biol (Mosk), 1997.31(4):p.647-55.
    98. Goodsell, D.S., G.M. Morris, and A.J. Olson, Automated docking of flexible ligands: applications ofAutoDock. J Mol Recognit,1996.9(1):p.1-5.
    99. O'Boyle, N.M., et al., Open Babel:An open chemical toolbox. J Cheminform,2011.3:p.33.
    100. Homer, R.W., et al., SYBYL line notation (SLN):a single notation to represent chemical structures, queries, reactions, and virtual libraries. J Chem Inf Model,2008.48(12):p. 2294-307.
    101. Tiikkainen, P., A. Poso, and O. Kallioniemi, Comparison of structure fingerprint and molecular interaction field based methods in explaining biological similarity of small molecules in cell-based screens. J Comput Aided Mol Des,2009.23(4):p.227-39.
    102. Cabrera, A.C., et al., VSDM1P 1.5:an automated structure-and ligand-based virtual screening platform with a PyMOL graphical user interface. J Comput Aided Mol Des,2011. 25(9):p.813-24.
    103. Seeliger, D. and B.L. de Groot, Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des,2010.24(5):p.417-22.
    104. Kirchmair, J., et al., The Protein Data Bank (PDB), its related services and software tools as key components for in silico guided drug discovery. J Med Chem,2008.51(22):p.7021-40.
    105. Gelbrich, T., M.F. Haddow, and U.J. Griesser, Gliquidone. Acta Crystallogr Sect E Struct Rep Online,2011.67(Pt 6):p. o 1343.
    106. Huang, B. and M. Schroeder, Using protein binding site prediction to improve protein docking. Gene,2008.422(1-2):p.14-21.
    107. 李春华,蛋白质-蛋白质对接方法的研究.2003.
    108. Altschul, S.F., et al., Basic local alignment search tool. J Mol Biol,1990.215(3):p.403-10.
    109. Porollo, A. and J. Meller, Prediction-based fingerprints of protein-protein interactions. Proteins,2007.66(3):p.630-45.
    110. Si, J., et al., MetaDBSite:a meta approach to improve protein DNA-binding sites prediction. BMC Syst Biol,2011.5 Suppl 1:p. S7.
    111. Wang, L. and S.J. Brown, BindN:a web-based tool for efficient prediction of DNA and RNA binding sites in amino acid sequences. Nucleic Acids Res,2006.34(Web Server issue):p. W243-8.
    112. Wang, L., et al., BindN+for accurate prediction of DNA and RNA-binding residues from protein sequence features. BMC Syst Biol,2010.4 Suppl 1:p. S3.
    113. Ahmad, S., M.M. Gromiha, and A. Sarai, Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information. Bioinformatics,2004.20(4):p.477-86.
    114. Yan, C., et al., Predicting DNA-binding sites of proteins from amino acid sequence. BMC Bioinformatics,2006.7:p.262.
    115. Ofran, Y., V. Mysore, and B. Rost, Prediction of DNA-binding residues from sequence. Bioinformatics,2007.23(13):p. i347-53.
    116. Hwang, S., Z. Gou, and I.B. Kuznetsov, DP-Bind:a web server for sequence-based prediction of DNA-binding residues in DNA-binding proteins. Bioinformatics,2007.23(5):p.634-6.
    117. Ansari, H.R. and G.P. Raghava, Identification of conformational B-cell Epitopes in an antigen from its primary sequence. Immunome Res,2010.6:p.6.
    118. Lundegaard, C., O. Lund, and M. Nielsen, Prediction of epitopes using neural network based methods. J Immunol Methods,2011.374(1-2):p.26-34.
    119. Ponomarenko, J., et al., ElliPro:a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics,2008.9:p.514.
    120. Raghava, S.S.a.G.P.S., BcePred:Prediction of Continuous B-Cell Epitopes in Antigenic Sequences Using Physico-chemical Properties. Springer,2004(In G.Nicosia, V.Cutello, P.J. Bentley and J.Timis (Eds.) ICARIS 2004, LNCS 3239,197-204).
    121. Rubinstein, N.D., et al., Epitopia:a web-server for predicting B-cell epitopes. BMC Bioinformatics,2009.10:p.287.
    122. Saha, S. and G.P. Raghava, Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins,2006.65(1):p.40-8.
    123. Sweredoski, M.J. and P. Baldi, COBEpro:a novel system for predicting continuous B-cell epitopes. Protein Eng Des Sel,2009.22(3):p.113-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700