多巴胺转运蛋白示踪药物~(18)F-FECNT的制备与临床前药理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中枢神经系统的多巴胺转运蛋白(DAT)与多种神经精神类疾病有关,以DAT为靶点的诊断与治疗药物的设计颇受重视。DAT示踪药物对帕金森病(PD)的分子影像研究具有临床价值。本论文研制了用于DAT示踪的放射性药物氟[18F]-N-(2-氟乙基)-2β-甲酯基-3β-(4-氯苯基)去甲基托烷(18F-FECNT),并评价其作为PD显像药物的成药性。论文主要结果如下:
     设计并制备了DAT示踪药物18F-FECNT标记前体化合物N-(2-甲磺酰乙基)-2β-甲酯基-3β-(4-氯苯基)去甲基托烷(MsOECNT)。以可卡因为起始原料,经酸性水解、分子内脱水、选择性1,4-加成反应等过程,制备了关键中间体2β-甲酯基-3β-(4-氯苯基)托烷(CClT),并通过衍生化法完成其立体结构测定。将CClT脱去N-位甲基,再进行羟乙基化制备了新化合化物N-(2-羟乙基)-2β-甲酯基-3β-(4-氯苯基)去甲基托烷(HOECClT),最后将HOECClT酯化获得了新的18F-FECNT标记前体化合物N-(2-甲磺酰乙基)-2β-甲酯基-3β-(4-氯苯基)去甲基托烷(MsOECNT)。此外,通过nor-CClT的氟乙基化反应制备了18F-FECNT的对照品FECNT。合成过程中对关键的合成步骤进行了优化,通过红外光谱、质谱、核磁共振谱、元素分析等技术确证了各步中间体及终产物的化学结构。建立了自动化的一步法、高产率的18F-FECNT放射合成方案。在催化剂K222作用下,4 mg的MsOECNT与K18F于1 ml无水乙腈中在90℃下反应20 min,直接生成了18F-FECNT,氟[18F]化产率为48%。通过高效液相色谱(HPLC)分享纯化,获得了高纯度的18F-FECNT注射液,其放射化学纯度为98.4%,最终放射化学产率为33%,总合成时间为80-100 min。标记反应过程实现了计算机自动化控制。
     完成了18F-FECNT的作为一种DAT示踪药物的临床前主要药效与药理学研究,证实了18F-FECNT的临床应用潜力。18F-FECNT在正辛醇-水相中的分配系数为34.1(pH7.0),56.4(pH7.4)。生物分布结果表明,18F-FECNT能穿透无损的血脑屏障而进入脑组织并有较好的滞留特性(给药后5, 15, 30, 60, 120, 180 min的脑摄取值分别为2.22, 1.20, 1.02, 0.78, 0.71, 0.67 %ID),脑内的18F-FECNT在靶部位(纹状体)有较好的摄取与滞留,纹状体(ST)与小脑(CB)、海马、顶叶、颞叶的放射性摄取比值分别高达3.47, 3.55, 4.40, 3.47(给药后15min),与额叶、枕叶的比值分别为3.17, 3.35(30min)。纹状体对18F-FECNT的摄取能被DAT阻断剂特异性地阻断。放射自显影结果显示正常大鼠纹状体显影清晰,双侧对称(ST左/CB = 5.42,ST右/CB = 5.52),单侧纹状体经6-OHDA损毁的PD模型大鼠其未损毁侧放射性浓聚(ST未损毁侧/CB = 2.57),而损毁侧放射性摄取不明显(ST损毁侧/CB = 1.05)。上述系列研究表明DAT对18F-FECNT对结合具有高特异性与高选择性。体内的18F-FECNT主要通过肝脏和肾脏代谢。异常毒性结果小鼠可耐受剂量是人体注射用量的625倍以上,表明18F-FECNT对人安全。
     完成了正常及PD模型大鼠的小动物PET显像研究,在活体内证实18F-FECNT用于PD显像的临床应用价值。正常大鼠纹状体显影清晰,双侧对称,脑内未见其它放射性浓聚区(ST/CB=2.18±0.16,ST左/ST右=1.00±0.05,n=3,给药后5-125 min)。动态分析结果双侧纹状体的放射性浓度在120 min内均高于小脑,ST/CB值最高达3.44(给药后25 min)。单侧纹状体经6-OHDA损毁的PD模型大鼠其未损毁侧显影清晰(ST未损毁侧/CB=2.01±0.23,n=3,5-125 min),而损毁侧不显影,其放射性浓度与小脑接近(ST损毁侧/CB=1.04±0.05,n=3)。单侧PD模型大鼠的动态分析结果未损毁侧纹状体在5-125 min内放射性浓度高于小脑,但相对摄取值低于正常大鼠,而损毁侧纹状体的放射性浓度始终与小脑接近,研究结果在活体动物内证实了18F-FECNT用于临床PD的影像学研究的可行性。
     研究结果表明:18F-FECNT是良好的DAT示踪药物,对PD的分子影像学研究具有临床应用潜力。
Dopamine tranporter (DAT) in the central nervous sysytem is related to many neurological and psychiatric disorders. Great attention has been paid to theraputic and diagnostic drug design targeted to DAT. Molecular imaging with DAT tracer provides valuable information for Parkinson’s diease. In this study, a DAT imaging agent, [18F]-2β-carbomethoxy-3β-(4-chlorophenyl)-8-(2-fluoroethyl)nortropane (18F-FECNT), was developed and evaluated for molecular imaging for PD. The synthesis and characterization of a new precursor, a automated high-radiochemical yield radiosyntheisis of 18F-FECNT, a series of preclinical studies including microPET imaging were reported to meet the requirement of the clinical application.
     A new mesylate precursor of 18F-FECNT, 2β-Carbomethoxy-3β-(4- chlorophenyl)-8-(2- mesyloxyethyl)nortropane (MsOECNT), was designed and synthesized. The synthesis began with hydrolysis of cocaine in hydrochloride solution and gave ecognine. Intramolecular dehydration of ecognine in POCl3 followed by treatment with methanol produced anhydraecognine methyl ester. The key intermediate, 2β-carbomethoxy-3β-(4- chlorophenyl)tropane (CClT), was obtained by selective 1,4-addition reaction of anhydraecognine methyl ester with p-chlorophenyl magnesium bromide followed by purification. The stereo structure of CClT was confirmed by single crystal x-diffraction. Demethylation of CClT afforded 2β-carbomethoxy-3β-(4-chlorophenyl)nortropane (nor-CClT). The new intermediate, 2β-carbomethoxy-3β-(4-chlorophenyl)-8-(2- hydroxyethyl)-nortropane (HOECNT), was prepared by hydroxyethylation of nor-CClT followed by purification by chromatography. Finally, MsOECNT was synthesized by mesylation of HOECNT with methanesulfonic anhydride. In addition, 2β-carbomethoxy-3β- (4-chlorophenyl)-8-(2-fluoroethyl)nortropane (FECNT) was synthesized by fluoroethylation of nor-CClT as the reference substance of 18F-FECNT. Structures of MsOECNT, FECNT and all intermediates were confirmed by IR, MS, 1HNMR and elemental analysis.
     A one-step automated high-radiochemical-yield synthesis of 18F-FECNT from the mesylate precursor was established. [18F]fluorination was performed by heating 4 mg mesylate precursor and K18F in 1.0 ml anhydrous acetonitrile at 90℃for 20 min. The crude 18F-FECNT was obtained with a radio labeling yield of 48%. After purification by preparative high performance liquid chromatography (HPLC), the final 18F-FECNT product was obtained with a radiochemical purity of 98.4% and a decay corrected radiochemical yield of 33±9% (and the uncorrected radiochemical yield was 19±5%, n=5). The procedure of the [18F]fluorination was automated and the duration of the total radiosynthesis was 80-100 min.
     A series of preclinical studies of 18F-FECNT was finished to testify its clinical potential. The octanol-water partition coefficients of 18F-FECNT were 34.1 and 56.4 at pH 7.0 and pH7.4 respectively. Biodistribution in mice showed that 18F-FECNT penetrated the blood-brain barrier (BBB) rapidly and had favorable retention in the brain. (2.22, 1.20, 1.02, 0.78, 0.71, 0.67 %ID at 5, 15, 30, 60, 120, 180min respectively post i.v. injection). In the brain, 18F-FECNT concentrated in the target area, the striatum (ST). The ratios of striatum to cerebellum (CB), hippocampus, parietal cortex and temporal cortex reached as high as 3.47, 3.55, 4.40 and 3.47, respectively, at 15 min post injection, while the ratios of striatum to frontal cortex, occipital cortex were 3.17, 3.35, respectively, at 30 min post injection. The selective striatum uptake of 18F-FECNT decreased dramatically to the background when the DAT was blocked withβ-CFT. The autoradiography showed that 18F-FECNT was concentrated in the striatum highly and symmetrically in normal rat brains (STleft/CB = 5.42,STright/CB = 5.52), while in left-sided lesioned PD rat brains, the striatal uptake of 18F-FECNT bilaterally decreased and no significant uptake was visible in the 6-OHDA lesioned-sided striatal areas (STunlesioned/CB = 2.57, STlesioned/CB = 1.05). These results indicated that 18F-FECNT had high affinity and selectivity to DAT. The major radioligand was metabolized by the hepatic system. Toxicity trial displayed that the acceptable dose per kilogram to mice was 625 times greater than that to human, which implied safty of 18F-FECNT for human.
     The microPET imaging of the normal and PD rats was carried out to verify the clinical potential of 18F-FECNT in living animals. The normal rat’s striatum exhibited the highest uptake of the radio ligand and prolonged retention of the radioligand in the brain (ST/CB=2.18±0.16,STleft/STright=1.00±0.05). Radiouptake in the striatum remained highest in 5-125 min post injection and the ratio of ST to CB peaked to 3.44 at 25 min. As for the 6-OHDA lesioned PD rats, the highest uptake was observed in the unlesioned side striatum ( STunlesioned/CB = 2.01±0.23, 5-125 min), whereas no significant uptake was visible in lesioned side (STlesioned /CB = 1.04±0.05). Time-activity curves demonstrate that uptake of the unlesioned side striatum remained higher than CB but lower than the normal rat’s striatum in 5-125 min post injection, whereas the lesioned side keep similar to CB.
引文
1. Marshall V, Grosset D. Role of dopamine transporter imaging in routine clinical practice. Mov Disord[J]. 2003, 18(12): 1415-1423.
    2. Ravina B, Eidelberg D, Ahlskog JE, et al. The role of radiotracer imaging in Parkinson disease. Neurology[J]. 2005, 64(2): 208-15.
    3. Shih MC, Hoexter MQ, Andrade LAFd, et al. Parkinsons disease and dopamine transporter neuroimaging - a critical review. Sao Paulo Medical Journal[J]. 2006, 124(3): 168-175.
    4. Au WL, Adams JR, Troiano AR, et al. Parkinson's disease: in vivo assessment of disease progression using positron emission tomography. Mol Brain Res[J]. 2005, 134(1): 24-33.
    5.郭新.人类多巴胺转运蛋白克隆及染色体定位成功.生理科学进展[J]. 1993, 24(2): 191.
    6.梁艳,胡军.多巴胺转运蛋白研究进展.中国药物滥用防治杂志[J]. 2003, 9(1): 56-60.
    7.孙文善,孙国勤,朱承谟.中枢多巴胺转运蛋白的结构功能与调控.生命的化学[J]. 2000, 20(2): 50-52.
    8. Runyon SP, Carroll FI. Dopamine transporter ligands: Recent developments and therapeutic potential. Curr Top Med Chem[J]. 2006, 6(17): 1825-1843.
    9.林岩松,林翔通.中枢多巴胺转运蛋白显像剂研究进展.国外医学.放射医学核医学分册[J]. 1997, 21(1): 1-4.
    10. Piccini PP. Dopamine transporter: Basic aspects and neuroimaging. Mov Disord[J]. 2003, 18(S7): S3-S8.
    11. Zhang ZX, Roman GC, Hong Z, et al. Parkinson's disease in China: prevalence in Beijing, Xian, and Shanghai. Lancet[J]. 2005, 365(9459): 595-7.
    12.邵明.帕金森病的现代治疗与进展.神经损伤与功能重建[J]. 2007, 2(6): 359-361.
    13. Parkinson J. An Essay on the Shaking Palsy, Sherwood, Nelly, and Jones, .[M]. London: Sherwood, Neely, and Jones, 1817.
    14.蒋雨平,王坚,丁正同,等.原发性帕金森病的诊断标准(2005年).中国临床神经科学[J]. 2006, 14(1): 40.
    15.刘焯霖.帕金森病的诊断标准.中华神经外科杂志[J]. 2002, 18(1): 62.
    16.罗毅.帕金森病的诊断标准及其评分.中国实用内科杂志[J]. 1999, 19(6): 325-327.
    17.王新德.帕金森病及帕金森综合征的诊断标准和鉴别诊断.中华神经精神科杂志[J]. 1985, 18(4): 255-256.
    18. Tolosa E, Wenning G, Poewe W. The diagnosis of Parkinson's disease. Lancet Neurol[J]. 2006, 5(1): 75-86.
    19. Meara J, Bhowmick BK, Hobson P. Accuracy of diagnosis in patients with presumed Parkinson's disease. Age Ageing[J]. 1999, 28(2): 99-102.
    20. Poewe W, Wenning G. The differential diagnosis of Parkinson's disease. Eur J Neurol[J]. 2002, 9(suppl 3): 23-30.
    21. Fuente-Fernandez R, Calne DB. Evidence for environmental causation of Parkinson’s disease. Parkinsonism Relat. Disord.[J]. 2002, 8: 235-241.
    22. Le W, Appel SH. Mutant genes responsible for Parkinson’s disease. Curr Opin Pharmacol[J]. 2004, 4: 79-84.
    23. Bernheimer H, Birkmayer W, Hornykiewicz O, et al. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci[J]. 1973, 20(4): 415-55.
    24. Jellinger K. Neuropathological substrates of Alzheimer's disease and Parkinson's disease. J Neural Transm Suppl[J]. 1987, 24: 109-129.
    25. Jellinger K. Overview of morphological changes in Parkinson's disease. Adv Neurol[J]. 1987, 45: 1-18.
    26. Garnett E, Firnau G, Namias C. Dopamine visualized in the brain ganglia of living man. Nature[J]. 1983, 305(8): 137-138.
    27.边艳珠,刘怀军,吴淑芬.正电子发射计算机断层显像在帕金森病中的应用.河北医科大学学报[J]. 2002, 23(1): 56-59.
    28. Thobois S, Jahanshahi M, Pinto S, et al. PET and SPECT functional imaging studies in Parkinsonian syndromes: from the lesion to its consequences. Neuroimage[J]. 2004, 23(1): 1-16.
    29. Piccini P, Whone A. Functional brain imaging in the differential diagnosis of Parkinson's disease. The Lancet Neurology[J]. 2004, 3(5): 284-290.
    30. Frey KA, Koeppe RA, Kilbourn MR, et al. Presynaptic monoaminergic vesicles in Parkinson's disease and normal aging. Ann Neurol[J]. 1996, 40(6): 873-84.
    31. Koeppe RA, Frey KA, Vander Borght TM, et al. Kinetic evaluation of [11C]dihydrotetrabenazine by dynamic PET: measurement of vesicular monoamine transporter. J Cereb Blood Flow Metab[J]. 1996, 16(6): 1288-99.
    32. Bohnen NI, Albin RL, Koeppe RA, et al. Positron emission tomography of monoaminergic vesicular binding in aging and Parkinson disease. J Cereb Blood Flow Metab[J]. 2006, 26(9): 1198-212.
    33. Kilbourn MR, Hockley B, Lee L, et al. Pharmacokinetics of [18F]fluoroalkyl derivatives ofdihydrotetrabenazine in rat and monkey brain. Nucl Med Biol[J]. 2007, 34(3): 233-237.
    34. Kung M-P, Hou C, Goswami R, et al. Characterization of optically resolved 9-fluoropropyl-dihydrotetrabenazine as a potential PET imaging agent targeting vesicular monoamine transporters. Nucl Med Biol[J]. 2007, 34(3): 239-246.
    35. Kaufmane MJ, Madras BK. Severe depletion of cocaine recognition sites associated with the dopamine transporter in Parkinson's diseased striatum. Synapse[J]. 1991, 9(1): 43-49.
    36. Aquilonius SM, Bergstrom K, Eckernas SA, et al. In vivo evaluation of striatal dopamine reuptake sites using 11C-nomifensine and positron emission tomography. Acta Neurol Scand[J]. 1987, 76(4): 283-287.
    37. Kilbourn MR. In vivo binding of [18F]GBR 13119 to the brain dopamine uptake system. Life Sci[J]. 1988, 42(14): 1347-1353.
    38. Kilbourn MR, Carey JE, Koeppe RA, et al. Biodistribution, dosimetry, metabolism and monkey PET studies of [18F]GBR 13119. Imaging the dopamine uptake system in vivo. International Journal of Radiation Applications and Instrumentation. Part B. Nuclear Medicine and Biology[J]. 1989, 16(6): 569-573.
    39. Reith MEA, Sershen H, Lajtha A. Saturable [3H]cocaine binding in central nervous system of mouse. Life Sci[J]. 1980, 27: 1055-1062.
    40. Kenney LT, Hanbauer I. Sodium-sensitive cocaine binding to rat striatum membrane: possible relationship to dopamine uptake sites. J Neurochem[J]. 1983, 41: 172-178.
    41. Calligaro DO, Elderfrawi ME. Elderfrawi, M. E. High affinity stereospecific binding of [3H]cocaine in striatum and its relationship to the dopamine transporter. Membr Biochem[J]. 1988, 7: 87-106.
    42. Madras BK, Fahey MA, Bergman J, et al. Spealman, R. D. Effects of cocaine and related drugs in nonhuman primates. I. [3H]Cocaine binding sites in caudate-putamen. J Pharmacol Exp[J]. 1989, 251: 131-141.
    43. Fowler J, Volkow N, Wolf A, et al. Mapping cocaine binding sites in human and baboon brain in vivo. Synapse[J]. 1989, 4(4): 371-7.
    44. Logan J, Fowler J, Volkow N, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to (N-11C-methyl)-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab[J]. 1990, 10(5): 740-747.
    45. Frost J, Rosier A, Reich S, et al. Positron emission tomographic imaging of the dopamine transporter with 11C-WIN 35,428 reveals marked declines in mild Parkinson's disease. Ann Neurol[J]. 1993, 34(3): 423-31.
    46. Dannals RF, Neumeyer JL, Milius RA, et al. Synthesis of a radiotracer for studying dopamine uptake site in vivo using PET: (2β-carbomethoxy- 3β-(p-fluorophenyl)-[N-11C-methyl] tropane)([11C] CFT or [11C] WIN 35,428). J. Labelled Compd. Radiopharm[J]. 1993, 33: 147-152.
    47. Boja JW, Patel A, Carroll FI, et al. [I-125] RTI-55 - a potent ligand for dopamine transporters. Eur J Pharmacol[J]. 1991, 194(1): 133-134.
    48. Cline E, Scheffel U, Boja J, et al. In vivo binding of [125I] RTI-55 to dopamine transporters: Pharmacology and regional distribution with autoradiography. Synapse[J]. 1992, 12(1): 37-46.
    49. Carroll FI, Gao YG, Rahman MA, et al. Synthesis, Ligand-Binding, Qsar, and Comfa Study of 3β-(Para-Substituted Phenyl)Tropane-2-Beta-Carboxylic Acid Methyl-Esters. J Med Chem[J]. 1991, 34(9): 2719-2725.
    50. Meltzer PC, Liang AY, Brownell AL, et al. Substituted 3-Phenyltropane Analogs of Cocaine - Synthesis, Inhibition of Binding at Cocaine Recognition Sites, and Positron Emission Tomography Imaging. J Med Chem[J]. 1993, 36(7): 855-862.
    51. Carroll FI, Abraham P, Lewin AH, et al. Isopropyl and phenyl esters of 3β-(4-substituted phenyl)tropan-2β-carboxylic acids. Potent and selective compounds for the dopamine transporter. J Med Chem[J]. 1992, 35(13): 2497-2500.
    52. Bois F, Baldwin RM, Kula NS, et al. Synthesis and monoamine transporter affinity of 3'-analogs of 2β-carbomethoxy-3β-(4'-iodophenyl)tropane (β-CIT) Bioorg Med Chem Lett[J]. 2004, 14(9): 2117-2120.
    53. Neumeyer JL, Wang S, Gao Y, et al. N-omega-fluoroalkyl analogs of (1R)-2β-carbomethoxy-3β-(4-iodophenyl)-tropane (β-CIT): radiotracers for positron emission tomography and single photon emission computed tomography imaging of dopamine transporters. J Med Chem[J]. 1994, 37(11): 1558-61.
    54. Neumeyer JL, Tamagnan G, Wang S, et al. N-Substituted Analogs of 2β-Carbomethoxy-3β-(4'-iodophenyl)tropane (β-CIT) with Selective Affinity to Dopamine or Serotonin Transporters in Rat Forebrain. J Med Chem[J]. 1996, 39(2): 543-548.
    55. Plotkin M, Amthauer H, Klaffke S, et al. Combined (123)I-FP-CIT and (123)I-IBZM SPECT for the diagnosis of parkinsonian syndromes: study on 72 patients. J Neural Transm[J]. 2005, 112(5): 677-92.
    56. Zijlmans J, Evans A, Fontes F, et al. 123I-FP-CIT spect study in vascular parkinsonism and Parkinson's disease. Mov Disord[J]. 2007, 22(9): 1278-1285.
    57. Ettlinger D, H?usler D, Wadsak W, et al. Metabolism and autoradiographic evaluation of [18F] FE@ CIT: a Comparison with [123 I]β-CIT and [123I] FP-CIT. Nucl Med Biol[J]. 2008, 35(4): 475-9.
    58. Berti V, Pupi A, Ramat S, et al. Clinical correlation of the binding potential with (123)I-FP-CIT in de novo idiopathic Parkinson's disease patients. Eur J Nucl Med Mol Imaging[J]. 2008:
    59. P?pperl G, Tatsch K, Ruzicka E, et al. Comparison ofα-dihydroergocryptine and levodopa monotherapy in Parkinson's disease: assessment of changes in DAT binding with [123I] IPT SPECT. J Neural Transm[J]. 2004, 111(8): 1041-1052.
    60. Med K. Dopamine Transporter Density of the Basal Ganglia Assessed with 123 I-IPT SPECT in Methamphetamine Abusers. Korean J Nucl Med[J]. 2005, 39(6): 481-488.
    61. Fischman A, Bonab A, Babich J, et al. Altropane: a highly selective ligand for PET imaging of dopamine transporter sites. Synapse[J]. 2001, 39(4): 332-342.
    62. Madras BK, Gracz LM, Meltzer PC, et al. Altropane, a SPECT or PET Imaging Probe for Dopamine Neurons: II. Distribution to dopamine-rich regions of primate brain. Synapse[J]. 1998, 29: 105-115.
    63. Ziebell M, Thomsen G, Knudsen G, et al. Reproducibility of [123I] PE2I binding to dopamine transporters with SPECT. Eur J Nucl Med Mol Imaging[J]. 2007, 34(1): 101-109.
    64. Emond P, Guilloteau D, Chalon S. PE2I: A Radiopharmaceutical for In vivo Exploration of the Dopamine Transporter. CNS Drug Rev[J]. 2008, 14(1): 47-64.
    65. Ziebell M, Thomsen G, Pinborg L, et al. Dopamine transporter quantification by [123I]-SPECT: A future paraclinical tool? J Nucl Med[J]. 2006, 47(suppl1): 8P.
    66. Kung HF, Kim HJ, Kung MP, et al. Imaging of dopamine transporters in humans with technetium-99m TRODAT-1. Eur J Nucl Med[J]. 1996, 23(11): 1527-30.
    67. Weintraub D, Newberg AB, Cary MS, et al. Striatal dopamine transporter imaging correlates with anxiety and depression symptoms in Parkinson's disease. J Nucl Med[J]. 2005, 46(2): 227-32.
    68. Huang CC, Yen TC, Shih TS, et al. Dopamine transporter binding study in differentiating carbon disulfide induced parkinsonism from idiopathic parkinsonism. Neurotoxicology[J]. 2004, 25(3): 341-7.
    69. Kung H, Kung M, Wey S, et al. Clinical acceptance of a molecular imaging agent: a long march with [99mTc] TRODAT. Nucl Med Biol[J]. 2007, 34(7): 787-789.
    70. Lu CS, Weng YH, Chen MC, et al. 99mTc-TRODAT-1 imaging of multiple system atrophy. J Nucl Med[J]. 2004, 45(1): 49-55.
    71. Johannsen B, Pietzsch HJ. Development of technetium-99m-based CNS receptor ligands: have there been any advances? Eur J Nucl Med Mol Imaging[J]. 2002, 29(2): 263-75.
    72.方平,陈正平,周翔,等.多巴胺转运蛋白显像剂99mTc-TRODAT-1的合成.中国医药工业杂志[J]. 2000, 31(6): 244-247.
    73. Fang P, Wu CY, Liu ZG, et al. The preclinical pharmacologic study of dopaminetransporter imaging agent [Tc-99m]TRODAT-1. Nucl Med Biol[J]. 2000, 27(1): 69-75.
    74.陈正平,王颂佩,李晓敏,等.新配方99mTc-TRODAT-1药盒的研制.中华核医学杂志[J]. 2006, 26(4): 235-237.
    75. Zhou Y, Dogan A, Brasic J, et al. Characterization of the dopamine transporter loss in Parkinson's disease by [11C] CFT dynamic PET with parametric imaging. J Cereb Blood Flow Metab[J]. 2003, 23: 627-627.
    76.张锦明,田嘉禾,郭喆,等.在线自动化制备多巴胺转运蛋白显像剂11C-β-CFT中华核医学杂志[J]. 2005, 25(3): 142-145.
    77. Chaly T, Dhawan V, Kazumata K, et al. Radiosynthesis of [18F] N-3-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) nortropane and the first human study with positron emission tomography. Nucl Med Biol[J]. 1996, 23(8): 999-1004.
    78. Kazumata K. Dopamine transporter imaging with fluorine-18-FPCIT and PET. J Nucl Med[J]. 1998, 39(9): 1521-1530.
    79. Ma Y, Dhawan V, Mentis M, et al. Parametric mapping of [18F]-FPCIT binding in early stage Parkinson's disease: a PET study. Synapse[J]. 2002, 45(2): 125-133.
    80. Goodman MM, Keil R, Shoup TM, et al. Fluorine-18-FPCT: A PET Radiotracer for Imaging Dopamine Transporters. J Nucl Med[J]. 1997, 38(1): 119-126.
    81. Koivula T, Perhola O, K?m?r?inen E, et al. Simplified synthesis of N-(3-[18F] fluoropropyl)-2β-carbomethoxy-3β-(4-fluorophenyl) nortropane([18F]-CFT-FP) using[18F] fluoropropyl tosylate as the labelling reagent. J Labelled Compd Radiopharm[J]. 2005, 48(6): 463-471.
    82. Davis MR, Votaw JR, Bremner JD, et al. Initial human PET imaging studies with the dopamine transporter ligand 18F-FECNT. J Nucl Med[J]. 2003, 44(6): 855-61.
    83. Goodman MM, Kilts CD, Keil R, et al. 18F-labeled FECNT: a selective radioligand for PET imaging of brain dopamine transporters. Nucl Med Biol[J]. 2000, 27(1): 1-12.
    84. Deterding TA, Votaw JR, Wang CK, et al. Biodistribution and radiation dosimetry of the dopamine transporter ligand F[18]-FECNT. J Nucl Med[J]. 2001, 42(2): 376-81.
    85. Voll RJ, McConathy J, Waldrep MS, et al. Semi-automated preparation of the dopamine transporter ligand [18F]FECNT for human PET imaging studies. Appl Radiat Isot[J]. 2005, 63(3): 353-61.
    86. Goodman MM, Kung MP, Kabalka GW, et al. Synthesis and Characterization of Radioiodinated N-(3-Iodopropen-1-yl)-2β-Carbomethoxy-3β-(4- Chlorophenyl)Tropane: Potential Dopamine Reuptake Site Imaging Agents. J Med Chem[J]. 1994, 37(10): 1535-1542.
    87. Clarke RL, Daum SJ, Gambino AJ, et al. Compounds Affecting the Central Nervous System 4. 3β-Phenyltropane-2-carboxylic Esters and Analogs. J Med Chem[J]. 1973, 16(11): 1260-1267.
    88. Carroll FI, Kotian P, Dehghani A, et al. Cocaine and 3β-(4'-Substituted Phenyl)Tropane-2β-Carboxylic Acid Ester and Amide Analogs: New High-Affinity and Selective Compounds for the Dopamine Transporter. J Med Chem[J]. 1995, 38(2): 379-388.
    89. Olofson RA, Martz JT, Senet J-P, et al. A New Reagent for the Selective, High-Yield N-Dealkylation of Tertiary Amines: Improved Syntheses of Naltrexone and Nalbuphine. J Org Chem[J]. 1984, 49(11): 2081-2082.
    90. Goodman MM, Kabalka GW, Kung MP, et al. Synthesis of N-3-[18F]Fluoropropyl-2β-carbomethoxy-3β-(4-chlorophenyl)tropane: A High Affinity Neuroligand to Map Dopamine Reuptake Sites by PET. J Labelled Compd Radiopharm[J]. 1994, 35(S1): 488-490.
    91.陈正平,李晓敏,王颂佩,等.一种N-2-氟乙基-2β-甲酯基-3β-(4-氯苯基)去甲基托烷的制备方法[P].中国,发明专利, ZL 2006100396678,
    92.张岚,李俊玲,尹端芷,等. 18F标记的脑受体PET显像剂的制备研究进展.核技术[J]. 2001, 24(5): 428-432.
    93. Schubiger PA, Lehmann L, Friebe M. PET Chemistry: The Driving Force in Molecular Imaging[M]. New York: Springer-Verlag Berlin Heidelberg, 2007.
    94. Harada N, Ohba H, Fukumoto D, et al. Potential of [18F]-CFT-FE (2β-carbomethoxy-3β-(4-fluorophenyl)-8-(2-[18F]fluoroethyl)nortropane) as a dopamine transporter ligand: A PET study in the conscious monkey brain. Synapse[J]. 2004, 54(1): 37-45.
    95. Chaly Jr T, Matacchieri R, Dahl R, et al. Radiosynthesis of [18F] N-3-fluoropropyl-2β-carbomethoxy-3β-(4'-methylphenyl)nortropane (FPCMT). Appl Radiat Isot[J]. 1999, 51(3): 299-305.
    96.李晓敏,陈正平,傅榕赓,等. 2β-甲酯基-3β-(4-氟苯基)去甲基托烷的合成.化学试剂[J]. 2004, 26(3): 185-186.
    97.张均田,张庆柱.神经药理学研究技术与方法[M].北京:人民卫生出版社, 2005. 330-332
    98.包新民,舒斯云.大鼠脑立体定位图谱[M].北京:人民卫生出版社, 1991.
    99.国家药典委员会.中华人民共和国药典2005年版二部[M].北京:化学工业出版社, 2005.附录XI C
    100. Zoghbi SS, Shetty HU, Ichise M, et al. PET Imaging of the Dopamine Transporter with 18F-FECNT: A Polar Radiometabolite Confounds Brain Radioligand Measurements. J Nucl Med[J]. 2006, 47(3): 520-527.
    101.国家食品药品监督管理局,局令第28号.药品注册管理办法附件二化学药品注册分类及申报资料要求[G].2007.
    102. Krause K-H, Dreselb SH, Krausec J, et al. The dopamine transporter and neuroimaging in attention deficit hyperactivity disorder Neurosci Biobehav Rev[J]. 2003, 27(7): 605-613.
    103. Honer M, Hengerer B, Blagoev M, et al. Comparison of [18F]FDOPA, [18F]FMT and [18F]FECNT for imaging dopaminergic neurotransmission in mice. Nucl Med Biol[J]. 2006, 33(5): 607-614.
    104.陈正平,吴春英,张政伟,等.多巴胺转运蛋白显像剂18F-FP-β-CIT制备与分布.中华核医学杂志[J]. 2003, 23(4): 241-243.
    105. Milius RA, Saha JK, Madras BK, et al. Synthesis and Receptor-Binding of N-Substituted Tropane Derivatives - High-Affinity Ligands for the Cocaine Receptor. J Med Chem[J]. 1991, 34(5): 1728-1731.
    106. Haaparanta M, Bergman J, Laakso A, et al. [F-18]CFT ([F-18]WIN 35,428), a radioligand to study the dopamine transporter with PET: Biodistribution in rats. Synapse[J]. 1996, 23(4): 321-327.
    107. Laakso A, Bergman J, Haaparanta M, et al. [F-18]CFT ([F-18]WIN 35,428), a radioligand to study the dopamine transporter with PET: Characterization in human subjects. Synapse[J]. 1998, 28(3): 244-250.
    108. Forsback S, Niemi R, Marjamaki P, et al. Uptake of 6-[F-18]fluoro-L-dopa and [F-18]CFT reflect nigral neuronal loss in a rat model of Parkinson's disease. Synapse[J]. 2004,
    51(2): 119-127.
    109. Li XM, Chen ZP, Wang SP, et al. The preclinical pharmacological study of dopamine transporter imaging agent 18F-FP-β-CIT. Nuclear Science and Techniques[J]. 2007, 18(4): 223-226.
    110. Nikolaus S, Larisch R, Beu M, et al. Bilateral increase in striatal dopamine D-2 receptor density in the 6-hydroxydopamine-lesioned rat: a serial in vivo investigation with small animal PET. Eur J Nucl Med Mol Imaging[J]. 2003, 30(3): 390-395.
    111. Koller WC, Langston JW, Hubble JP, et al. Does a long preclinical period occur in Parkinson's disease? Geriatrics[J]. 1991, 41(5 suppl2): 8-13.
    112. Koller WC. When does Parkinson's disease begin? Neurology[J]. 1992, 42(4 Suppl 4): 27-31.
    113. Paxinos G, Franklin KBJ. The Mouse Brain in Stereotaxic Coordinates[M]. San Diego, California: Academic Press, 2001.
    114.熊永前,程海松.微型正电子发射断层显像技术(microPET)及其进展.中国医疗器械杂志[J]. 2007, 31(4): 271-274.
    115. Laforest R, Longford D, Siegel S, et al. Performance evaluation of the microPET (R) - FOCUS-F120. Ieee Transactions on Nuclear Science[J]. 2007, 54(1): 42-49.
    116. Guerra P, Rubio JL, Ortuno JE, et al. Performance analysis of a low-cost small animal PET/SPECT scanner. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment[J]. 2007, 571(1-2): 98-101.
    117. Hastings DL, Reader AJ, Julyan PJ, et al. Performance characteristics of a small animal PET camera for molecular imaging. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment[J]. 2007, 573(1-2): 80-83.
    118.周伟,尹端沚,汪勇先.小动物PET.核技术[J]. 2006, 29(3): 207-213.
    119. Roselt P, Meikle S, Kassiou M. The role of positron emission tomography in the discovery and development of new drugs; As studied in laboratory animals. European Journal of Drug Metabolism and Pharmacokinetics[J]. 2004, 29(1): 1-6.
    120. Herschman HR. Micro-PET imaging and small animal models of disease. Current Opinion in Immunology[J]. 2003, 15(4): 378-384.
    121. Hume SP, Myers R. Dedicated small animal scanners: A new tool for drug development? Current Pharmaceutical Design[J]. 2002, 8(16): 1497-1511.
    122. Krause BJ, Beck R, Souvatzoglou M, et al. PET and PET/CT studies of tumor tissue oxygenation. Quarterly Journal of Nuclear Medicine and Molecular Imaging[J]. 2006, 50(1): 28-43.
    123. Kopka K, Law MP, Breyholz HJ, et al. Non-invasive molecular imaging of beta-adrenoceptors in vivo: Perspectives for PET-radioligands. Current Medicinal Chemistry[J]. 2005, 12(18): 2057-2074.
    124. Chen ZP, Wang SP, Tang J, et al. Simplified method for determining radiochemical purity of 99mTc-TRODAT-1. J Radioanal Nucl Chem[J]. 2008, 277(3): 591-594.
    125. Bao Q, Newport D, Chen M, et al. Performance Evaluation of the Inveon Dedicated PET Preclinical Tomograph Based on the NEMA NU-4 Standards. J Nucl Med[J]. 2009, 50(3): 401-408.
    126. Visser EP, Disselhorst JA, Brom M, et al. Spatial Resolution and Sensitivity of the Inveon Small-Animal PET Scanner. J Nucl Med[J]. 2009, 50(1): 139-147.
    127. Wang S, Chen Z, Li X, et al. The animal biodistribution, safety and validation study of dopamine transporter PET imaging agent 18F-FECNT. Nuclear Science and Techniques[J]. 2009, 20(1): 11-16.
    128. Munhoz RP, Teive HA, Troiano AR, et al. Parkinson's disease and thyroid dysfunction. Parkinsonism Relat Disord[J]. 2004, 10(6): 381-383.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700