缺氧-好氧膜生物反应器处理高浓度氨氮废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体中氮污染引起的问题,严重的影响着水体生态系统和人类的健康生活。
    研究高效、经济的脱氮方法已经成为当前环境工作者一项重要的研究课题。
     基于传统硝化反硝化的脱氮原理以及膜生物反应器的优点,采用前置缺氧-
    好氧膜生物反应器作为本次试验的主要工艺,处理高浓度氨氮废水。希望通过运
    行特性及试验结果来说明此方法的可行性并依据其不足之处,加以改进和完善。
     试验主要分为两个阶段:第一阶段采用配水的方法来模拟高氨氮废水。进水
    平均 COD 为 269mg/L,平均去除率为 85%,进水平均氨氮浓度为 63mg/L,去除
    率仅为 49%。试验中出现以丝状菌得过量生长导致的活性污泥膨胀现象,SVI
    平均为 203mL/g,最高达到 401mL/g。丝状菌的大量滋生导致系统内的微生物生
    长受抑制,影响总氮的去除。此外,氨氮污泥负荷、C/N 比、pH 值以及污泥活
    性等都对脱氮效果有影响。
     第二阶段采用稀释后的生活污水添加硫酸铵的方法来模拟高氨氮废水。由于
    生活污水中的微生物以及微量元素的补给,活性污泥性状良好,SVI 平均为
    104mL/g,没有发生丝状菌过量生长的现象。COD 的去除效果较好,平均去除率
    达到 86%,而且对于进水出现的 COD 冲击负荷,MBR 系统显现了其抗冲击负
    荷的能力,出水 COD 满足污水回用要求。由于膜的截留作用,使得有机物在反
    应器内积累,混合液 COD 增高,造成膜堵塞现象异常严重,需要频繁的进行膜
    清洗以保证系统的稳定运行。进水氨氮平均值为 436mg/L,去除率达到为 89%,
    但是由于原水中 C/N 值过低、停留时间比较短等原因造成亚硝酸盐严重积累,
    影响反硝化效果,使得总氮的去除率最高仅为 50%。
     从整个试验结果来看,此组合工艺对于有机物和氨氮的确有较高的去除效
    果,系统具有抗冲击负荷的能力。但是混合液内有机物浓度的增高引起膜污染现
    象严重,必需采取有效的物理、化学或生物等方法来解决;同时亚硝酸盐过量积
    累造成脱氮效果不佳的状况也要加以解决。论文结尾提出了短程硝化反硝化工艺
    的设想以及系统相应的改进方法。
Nitrogen pollution has become a big problem to the health and survival of aquatic
    organisms and human beings. It is an arduous task for environmental engineers to
    develop more and more efficient, economic processes to solve this problem.
     On the basis of existed nitrogen treatment processes, an anoxic-oxic MBR was
    chosen to treat the high-strength synthetic ammonia wastewater. It meaned to make
    full use of nitrification and denitrification as well as advantages of membrane
    bioreactor (MBR) during the treatment.
     The experiment was divided into two parts according to sources of raw
    wastewater. At the first part, the influent was synthetic wastewater. In this part of
    experiment the average COD concentration and removal efficiency were 269mg/L and
    85%. And the ammonia concentration and removal efficiency were 63mg/L and 49%
    separately. However, the quality of influent caused sevious filamentous bulging of
    activated sludge and the maximum SVI was as high as 401mL/g, which restrained the
    growth of nitrifying bacteria, and brought bad effects on nitrogen removal. In addition,
    the sludge loading, C/N ratio, pH value and activity of sludge were main influcing
    factors for nitrogen removal.
     In the second part, the influent was made by diluted domestic sewage added with
    ammonium sulfate. Due to multiple microorganisms and trace elements supplied from
    domestic sewage, the sludge was active and average SVI was only 104mL/g. The
    COD removal was well and MBR showed an ability to resist impact loads, which
    promised the COD effluent to be lower than the reuse water standard. Because of
    membrane seperation, the COD value in mixed liquor was so high that membrane
    fouling happened seriously. In order to insure normal operation, it was necessary to
    make membrane cleaning frequently. The average ammonia concentration was
    436mg/L and its removal efficiency was as high as 89%. However, C/N ratio and
    short hydraulic retention time caused nitrite accumulation in the reactor and rejected
    nitrogen removal, the maximum efficiency of which was only 50%.
     In order to solve the problem of membrane fouling, it was necessary to apply the
    physical, chemical or biological processes to decrease the concentration of organic
    matters in mixed liquor. Besides, from the experiment results, it was feasible to keep
    on the experiment with short nitrification-denitrification process in future. On the
    condition of some modification such as adding carbon source, the nitrogen removal
    efficiency would likely be increased.
引文
[1] 郑兴灿,李亚新.污水除磷脱氮技术.北京:中国建筑工业出版社,1998
    [2] 吴婉娥,葛红光,张克峰.废水生物处理技术.北京:化学工业出版社,2003:
     167~168
    [3] 张景来,王剑波等.环境生物技术及应用.北京:化学工业出版社,2002:377~
     378
    [4] 顾国维,何义亮.膜生物反应器在污水处理中的研究和应用.北京:化学工业
     出版社,2002,40~55
    [5] 杨朝晖等.废水生物脱氮除磷机理与技术研究的进展.四川环境,2002,21
     (2):25~29
    [6] 仝武刚,王继徽,刘大鹏.高浓度氨氮废水的处理现状与发展.工业水处理,
     2002,22 (9): 9~12
    [7] 丁思慧. 用物化法对高浓度氨氮废水的前期处理. 安徽化工,2000,106 (4):
     42~43
    [8] 吴方同等.吹脱法去除城市垃圾填埋场渗滤液中的氨氮.给水排水,2001,27
     (6):20~24
    [9] 王宗平等.垃圾渗滤液预处理———氨吹脱. 给水排水,2001,27 (6):15~
     19
    [10]邓斌.利用烟道气处理焦化剩余氨水技术.环境工程,2000,18 (3):17
    [11]Borgerding J. Phosphate Deposits in Digestion Systems. Water Pollute Control,
     1972,44: 813~819
    [12]赵庆良,李湘中.化学沉淀法去除垃圾渗滤液中的氨氮.环境科学,1999,20
     (5):90~92
    [13]Schulze Rettmer R. The simultaneous chemical precipitation of ammonium and
     phosphate in the form of magnesium ammoniump hosphate. Wat. Sci. Tech.,
     1991, 23 (11/12): 659~667
    [14]Stratful, et al. Conditions influencing the precipitation of magnesium ammonium
     phosphate. Wat. Res., 2001, 35 (17): 4191~4 199
     - 49 -
    
    
    天津大学硕士学位论文 参考文献
    [15]周娟贞.化学沉淀法治理高浓度氨氮废水的研究.净水技术,1992,42 (4):13~
     14
    [16]王鹏等.垃圾渗沥液中氨氮的电化学氧化.中国环境科学,2000,20 (4):289~
     291.
    [17]沈耀良,王宝贞. 废水生物处理新技术-理论与应用.北京:中国环境科学
     出版社,1999:195~196
    [18]罗志腾.污染控制工程微生物学.北京:北京科学技术出版社,1988:190~
     192
    [19]徐亚同.废水反硝化除氮.上海环境科学,1994,13(10):8~12
    [20]赵宗升,刘鸿亮,李炳伟等.高浓度氨氮废水的高效生物脱氮途径.中国给水
     排水,2001,17(5):24~28
    [21]袁林江,彭党聪,王志盈.短程硝化-反硝化生物脱氮.中国给水排水,2000,
     16(2):29~31
    [22]Haniki K., et al. Nitification at Low Level of Dissolved Oxygen with and without
     Organic Loading in a Suspended Growth Reactor. Wat. Res., 1990, 24 (3): 297~
     302
    [23]Yang L., Alleman J E. Investigation of Batchwise Nitrite Build-up by an Enriched
     Nitirfication Culture. Wat. Sci. Tech,1992, 26 (5/ 6): 997~1005
    [24]Hellinga C., et al. The SHARON process: an innovative method for nitrogen
     removal from ammonium rich wastewater. Wat. Sci. Tech., 1998, 37 (9): 135~
     142
    [25]Werstraete W., Philips S. Nitrification denitrification processes and technologies
     in new contexts. Environmental Pollution, 1998, 102: 717~726
    [26]樊耀波等.水与废水处理中的膜生物反应器技术.环境科学,1996,16 (5):79~
     81
    [27]王建龙.生物脱氮新工艺及其技术原理.中国给水排水,2000,16 (2):25~28
    [28]Wartchow D. Nitrification and Denitrification in Combined Activated Systems.
     Wat. Sci.Tech., 1990,22 (7/9):199~206
    [29]Daigger G T., Littleton H X. 氧化沟同时硝化/ 反硝化及生物除磷的机理研究.
     中国给水排水,1999,15 (3):1~7
    [30]吕锡武,李峰,稻森悠平等. 氨氮废水处理过程中的好氧反硝化研究.给水
     排水,2000,26 (4):17~20
     - 50 -
    
    
    天津大学硕士学位论文 参考文献
    [31]Hippen A., Rosenwinkel K., Baumgarten G., et al. Aerobic deam monification: a
     new experience in the treatment of wastewater. Wat. Sci. Tech., 1997, 35
     (10):111~120
    [32]Muller E B., et al. Simultaneous NH3 oxidation and N2 productionat reduced O2
     tensions by sewage sludge subcultured with chemolithotrophic medium.
     Biodegradation, 1995, 6 (4): 339~349.
    [33]Graaf A A Van de, Mulder A, Bruijn P de, et al. Anaerobic ammonium oxidation
     is a biologically mediated process,Appl. Environ. Microbiol.,1995,61 (4):
     1246~1251
    [34]Straous M., et al. Ammonium removal from concentrated wastestreams with the
     anaerobic ammonium oxidation (ANAMMOX) process in different reactor
     configurations. Wat. Res,1997,31 (8): 1955~1962.
    [35]Broda E. Two Kinds of Lithotrophs Missing in Nature. Z Allg Mikrobiol, 1997,
     58:1746~1763
    [36]Graaf A A., et al. Autotrophic grouwth of Anaerobic Ammonium - Oxidizing
     Microorganisms in a Fluidized Bed Reactor. Microbiology, 1996, 142: 2187~
     2196
    [37]Graaf A A., et al. Metabolic Pathway of Anaerobic Ammonium Oxidation on the
     Basis of NH3 Studies in a Fluidized Bed Reactor, Microbiology, 1997, 143:
     2415~2421
    [38]郑平等. 厌氧氨氧化菌基质转化特性的研究.浙江农业大学学报,1997,23
     (4):409~413
    [39]吴自强,刘志宏,曹刚.膜生物反应器处理废水技术研究的进展.工业水处理,
     2001,21 (6):1~3
    [40]邢传宏等.超滤膜-生物反应器处理生活污水及其水力学研究.环境科学,
     1997,18 (5):19~22
    [41]樊耀波等.膜生物反应器净化石油化工污水的研究.环境科学学报,1997,
     17(1):68~74
    [42]徐又一等.环保领域中聚丙烯中空纤维膜-生物反应器的研究.膜科学与技
     术,2000,20 (2):26~30
    [43]Suwa Y., Suzuki T., Toyohara H., Yamagishi T.and Urushigawa Y. Single
     stage-single sludge nitrogen removal by an activated sludge process with cross
     flow filtration. Wat. Res., 1992, 26 (9): 1149~1157
     - 51 -
    
    
    天津大学硕士学位论文 参考文献
    [44]G.T.Seo, T.S.Lee, B.H.Moon, et al. Two stage intermittent aeration membrane
     bioreactor for simultaneous organic, nitrogen and phosphorus removal. Wat.
     Sci.Tech., 2000, 41 (10/11): 217~225
    [45]S-H. Yoon, H-S. Kim, and J.-K. Park, et al. Influence of important operational
     parameters on performance of a membrane biological reactor. Wat. Sci. Tech.,
     2000, 41 (10/11): 235~242
    [46]Tatsuki Ueda and Kenji Hata, Dometic wastewater treatment by a submerged
     membrane bioreactor with gravitational filtration, Wat. Res., 1999, 33 (12):
     2888~2892
    [47]刘锦霞,顾平.膜生物反应器脱氮除磷工艺的研究进展.城市环境与城市生
     态,2001,14 (2):27~29
    [48]杨睿.应用膜生物反应器处理高氨氮废水的研究.天津大学硕士学位论文,天
     津,2002
    [49]翁稣颖等.环境微生物学.北京:科学出版社,1981
    [50]国家环保局《水和废水监测方法》编委会,水和废水监测分析方法(第四版).
     北京:中国环境科学出版社,2002
    [51]邹联沛等.SRT 对膜生物反应器出水水质的影响研究.中国给水排水,2000,
     16(7):16~18
    [52]Chudoba J.Quantitative estimation in COD units of refractory organic compounds
     produced by activated sludge microorganisms. Wat. Res., 1985, (19): 37~43
    [53]Rittmann B E, et al. A critical evaluation microbial product formation in
     biological processes. Water Sci. Tech., 1987, 19: 517~528
    [54]王凯军等. 活性污泥膨胀的机理和控制. 国家环保总局,1992,10~11
    [55]刘锐等.一体式膜生物反应器长期运行的膜污染控制.环境科学,2000,21 (2):
     58~61
    [56]Boran Zhang, et al. Floc size distribution and bacterial activities in membrane
     separation activated sludge processes for small-scale wastewater treatment /
     reclamation. Wat. Sci. Tech., 1997, 35 (6): 37~44
    [57]Chang J S., et al. Experimental investigation of the effect of particle size
     distribution of suspended particles on microfiltration, Wat. Sci. Tech., 1996, 34
     (9): 133~140
    [58]李红岩.一体式膜生物反应器处理高氨氮废水特性研究.西安建筑科技大学
     硕士学位论文,2002
     - 52 -
    
    
    天津大学硕士学位论文 参考文献
    [59]张军等.复合淹没式膜生物反应器脱氮除磷效能研究.中国给水排水,2000,
     16 (9):9~11
    [60]聂梅生.污水除磷脱氮技术.北京:中国建筑工业出版社,1998.
    [61]郑兴灿,李亚新.污水除磷脱氮技术.北京:中国建筑工业出版社,1998,155
    [62]李红岩等.组合式膜生物反应器处理高浓度氨氮废水.环境科学,2002,23(5):
     62~66
    [63]张希衡等.废水厌氧生物处理工程.北京:中国环境科学出版社,1996:332~
     333
    [64]刘锐等.一体式膜-生物反应器处理生活污水的中试研究.给水排水,1999,
     5(4)
    [65]丁杭军等.一体式膜-生物反应器处理医院污水.中国给水排水,2001,17 (9)
    [66]张希衡等.废水厌氧生物处理工程.北京:中国环境科学出版社,1996
    [67]张西旺,金奇庭.一体式 MBR 处理高氨氮小区生活污水中试研究.环境工程,
     2003,21 (1):23~26
    [68]郑兴灿,李亚新. 污水除磷脱氮技术.北京:中国建筑工业出版社,1998,
     37
    [69]顾国维,何义亮.膜生物反应器在污水处理中的研究和应用.北京:化学工业
     出版社,2002,76~77
    [70]邹联沛等.MBR 对同步硝化反硝化的影响.中国给水排水,2001,17(6)
    [71]邹联沛等.MBR 中影响同步硝化反硝化的生态因子.环境科学,2001,
     21(4):51~55
    [72]Laanbroek H J. Gerards S Competition for limiting amounts of oxygen between
     Nitrosomanas europaea and Nitrobacteria winogradskyi grown in mixed
     continuous cultures, Arch Microbiology, 1993, 159: 453~459
    [73]罗红.序批式膜生物反应器处理生活污水及混合液可过滤性的研究.天津大
     学硕士学位论文,天津,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700