复合膜生物反应器处理榨菜废水效能及膜污染控制试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着三峡库区经济的迅速发展,其支柱产业榨菜的生产集约化程度越来越高,规模越来越大,生产企业越来越多。但三峡库区绝大部分榨菜生产企业所产生的高盐高氮有机废水未经有效处理便直接排放,导致库区内多条河流的生态系统受到严重威胁,对库区居民生活带来危害。
     针对传统含盐废水生物处理活性污泥沉降性能差、生物反应器内微生物难以聚集,二沉池泥水分离难等问题,充分利用生物膜固定活性污泥,膜生物反应器能大量聚集微生物而不受污泥沉降性能影响限制等优势,选择具有代表性的榨菜废水为研究对象,开展复合膜生物反应器处理榨菜废水试验研究。通过研究不同膜材质、不同处理工艺对污染物的去除效能的影响,得出了复合膜生物反应器处理榨菜废水的基本运行参数,揭示了盐析对膜污染的影响,探索了膜污染控制及清洗方式,构建了膜通量的数学模型,为缓减膜污染形成、确定膜污染清洗方法、降低MBR处理榨菜废水的运行能耗和提高MBR处理效能提供了理论依据和技术支撑,本文主要研究内容及结论如下:
     ①开展了好氧生物膜-膜生物反应器处理榨菜废水效能试验研究。针对含盐废水生物处理污泥沉降性能差等特点,设计了4组试验研究复合膜生物反应器使用PVDF膜和PP膜处理榨菜废水,在不同进水负荷,常温,盐度为2%~3%,挂膜密度为30%,DO为4mg/L~5mg/L,抽吸泵抽10min停3min,跨膜压差为15KPa的运行条件下,对比使用PVDF膜和使用PP膜的处理效能及膜污染情况。试验结果表明:在常温条件下,MBR采用PVDF膜处理榨菜废水的推荐运行负荷为1.0KgCOD/(m3.d),出水COD、氨氮和SS浓度均达到国家《污水综合排放标准》(GB8978-1996)的一级排放标准,TP需后续通过化学除磷去除达标;对比使用PVDF膜和使用PP膜时的处理效能及膜污染情况,认为使用PVDF膜组件能更经济有效处理榨菜废水。
     ②开展了缺氧+好氧生物膜-膜生物反应器处理榨菜废水强化脱氮效能试验研究。针对好氧生物膜-膜生物反应器TN去除率低的特点,设计了3组试验,研究了复合膜生物反应器在使用PVDF膜条件下处理榨菜废水,在不同进水负荷,常温,盐度为2%~3%,缺氧区DO为1mg/L、MLSS为2000mg/L,好氧区挂膜密度为15%、DO为3mg/L~4mg/L,膜片区DO为4mg/L~5mg/L、MLSS为6000mg/L,混合液回流比200%,抽吸泵抽10min停3min,跨膜压差为15KPa的运行条件下COD、TN和SS等污染物的去除效果及膜污染情况。试验结果表明:进水容积负荷为0.9KgCOD/(m3.d)时,系统对各污染物去除效果达到最佳,出水COD、氨氮和SS浓度达到国家《污水综合排放标准》(GB8978-1996)的一级排放标准,相对好氧生物膜-膜生物反应器,TN去除率提高了30%。
     ③开展了复合膜生物反应器处理榨菜废水膜污染与控制研究。试验结果表明:高盐条件下,盐析会加剧膜污染速率,温度是影响盐析的主要因素,温度越低,盐析现象越严重,膜污染越严重,且膜污染以不可逆污染为主;DO、污泥浓度、跨膜压差和跨膜压差对膜污染影响效果的顺序是:DO>停抽时间>污泥浓度>跨膜压差,得出了四因素影响膜污染数学模型为:
     Y=-12.01+133.06A+3.14×10~(-4)B+2.79C+1.07D-5.51×10~(-4)AB-8.76×10-15AC-1.13×10-14AD-1.45×10~(-4)BC-2.5×10~(-6)BD+0.01CD-64.2A2+4.8×10~(-8)B2-0.32C2-0.04 D2。通过对该模型的响应面分析,得出了推荐膜污染控制的反应器运行工况为:DO为5mg/L,停曝时间为3.24min,跨膜压差为15.22KPa,污泥浓度为6000mg/L;提出了污染后膜组件的推荐清洗方式:使用水气联合反冲方式进行物理清洗,在物理清洗不能使膜通量有效恢复的情况下需进行化学清洗。推荐的化学清洗方式是0.5%盐酸+0.5%次氯酸钠浸泡,其膜通量能恢复到起始通量的82%。复合膜生物反应器处理榨菜废水效能及膜污染控制的研究成果,将为高盐榨菜废水处理提供一条新的技术路线,为今后膜生物反应器处理榨菜废水的推广与实践提供科学依据与技术支撑,具有重要的现实意义。
With the rapid development of the Three Gorges Reservoir economy, the level of intensive producing of its pillar business pickle is getting higher, its scale is getting larger and larger with more and more producing enterprises. But organic wastewater with high concentration of salt and nitrogen from some pickle processing enterprises is discharged directly without effective treatment, as a result, the ecosystems of many rivers in the Reservoir are facing a real danger, and the life of local inhabitants is caused tremendous harm.
     In response to the features of low treatment efficiency of wastewater with high concentration of salt and poor activated sludge sedimentation, microorganism in Microbial bioreactor is difficult to gather, wastewater and mud in Secondary settling tank is not easy to Separate, the paper took a good use of good advantages of MBR process, which can gather in large numbers of microorganisms and can be unaffected by sludge sedimentation, and the tests were carried out to study on MBR treating pickle wastewater choosing the representative pickle wastewater as research object. It’s mainly to reveal the removal efficiencies of MBR treating pickle wastewater, the effects of salting on membrane critical flux and the control of membrane fouling and cleaning ways, when MBR was used to treat pickle wastewater by studying the removal efficiencies of organic pollutant under the different membrane material and different treating process. A mathematic model of membrane critical fluxes is established to provide theoretical foundations for preventing membrane from fouling, determining fouling membrane cleaning method, reducing energy demands of treating industrial wastewater by MBR and improving treatment efficiency. The contents and main results of the paper are as the follows:
     ①Pickle wastewater was treated by aerobic membrane bioreactor. In response to the features of low treatment efficiency of wastewater with high concentration of salt and poor activated sludge sedimentation, four groups of experiments were designed to study on treating pickle wastewater by mixed MBR using PVDF and PP membrane. On the condition of different feed loadings and normal temperature, and on the condition that the bio-film density was 15%, Salinity was 2%~3%,DO was 4mg/L~5mg/L, suction pumps were operated for 10 minutes and closed for 3 minutes, pressure gradient was 15KPa, compared on the removal efficiency of anaerobic tank effluent and the situation of membrane fouling of PP membrane and PVDF membrane, it’s indicated that the best operating feed loading was 1.0KgCOD/(m3.d) for aerobic membrane bioreactor, and that the effluent concentrations of COD, NH4+-N and SS could meet the first class discharge standard of comprehensive discharge standard of sewage (GB8978-1996), TP is needed to discharge according to Standard by removal in Chemical methods; PVDF membrane modules could treat pillar wastewater more economically and effectively.
     ②Pickle wastewater was treated by anoxic/aerobic membrane bioreactor. In response to the features of low TN removal rate by anoxic/aerobic membrane bioreactor, three groups of experiments were designed to study on treating pickle wastewater by mixed MBR using PVDF membrane. On the condition of different feed loadings and normal temperature, Salinity was 2%~3% and on the condition that the bio-film density was 15%, DO was 1mg/L and MLSS was 2000 mg/L in the anoxic zone, the bio-film density was 15%, DO was 4mg/L~5mg/L and MLSS was 6000 mg/L in the aerobic zone, the ratio of recycling the mixture was 200%, suction pumps were operated for 10 minutes and closed for 3 minutes, pressure gradient was 15KPa, by studying on removal efficiencies of organic pollutant and situation of membrane fouling, it’s indicated that when the feed volume loading was 1.2KgCOD/(m3.d), the removal efficiencies of organic pollutant was the best, when the effluent concentrations of COD, NH4+-N and SS could meet the first class discharge standard of comprehensive discharge standard of sewage (GB8978-1996). Compared to Aerobic biofilm, the persent Removal of TN in Microbial bioreactor is improved 30%.
     ③By analyzing the situation of membrane fouling when operating, it’s indicated that salting-out could accelerate speed of membrane fouling, and that temperature was considered the main factor of effecting salting out, the lower the temperature was, the more salting-out would be, and the worse membrane fouling would be, and that adhering fouling membrane modules was mainly not reversible. The effect of the factors on fouling membrane was aeration strength > cease time > sludge concentration > pressure gradient between diaphragms. It’s also indicated that the mathematic model of the effects of the above 4 factors on membrane fouling was:
     Y=-12.01+133.06A+3.14×10~(-4)B+2.79C+1.07D-5.51×10~(-4)AB-8.76×10~(-15)AC-1.13×10~(-14)AD-1.45×10~(-4)BC-2.5×10~(-6)BD+0.01CD-64.2A2+4.8×10~(-8)B2-0.32C2-0.04 D2. By analyzing the model by Response Surface Method, it’s the best operating mode was obtained, and it’s when DO was 5mg/L, cease time was 3.24min, pressure gradient between diaphragms was 15.22KPa, sludge concentration was 6000mg/L.
     The cleaning methods of fouling membrane modules were also studied, and it’s found that the air-water conbined backwash is the more effective way of physical cleaning, and that chemical cleaning was needed when the physical cleaning can't recovered effectively. Soaking in 0.5% HCl following 0.5% sodium hypochlorite was the most effective way of chemical cleaning, which could make the flux recovered with 82%.
     The research achievements of the efficiency and the control of membrane fouling of treating pickle wastewater by Mixed MBR Reactor would provide both a new technical route for the treatment of pickle wastewater with high concentration of salt, and would also provide scientific basis for spread and practice of treating pickle wastewater by Mixed MBR Reactor, which would be of important realistic significance.
引文
[1]刘佩瑛.中国芥菜[M].北京:中国农业出版社, 1996: 3.
    [2]周健,曾朝银,龙腾锐,等.高盐高氮榨菜废水生物脱氮试验研究[J].环境科学学报, 2005, 25(12): 1635-1640.
    [3]崔玉琴.水务公司受益水价提升[J].新财富, 2007, 3, 15.
    [4]国家环境保护总局. 2008年水资源公报[J].环境保护, 2009(6): 11-28.
    [5]三峡水库出入水量基本平衡,新华网, 2003. 6. 11.
    [6]徐安书.涪陵榨菜特色产业建设与思考[J].中国调味品, 2011, 36(2): 14-16.
    [7]曾超.试论涪陵榨菜文化的构成[J].西南农业大学学报, 2003, 12(4): 45-48.
    [8]李孝林,苏中玲,等.三峡库区人口发展的数学模型[J].重庆三峡学院学报, 2006, 24(3): 24-27.
    [9]周健,赖文蔚,等.压力式生物膜反应器处理榨菜腌制废水的效能[J].中国给水排水, 2010, 23(5): 20-24.
    [10]吴绮桃.超高盐榨菜腌制废水处理技术试验研究[D].重庆大学硕士学位论文, 2007, 04.
    [11]李耀辰,鲍建国,等.高盐度有机废水对生物处理系统的影响研究进展[J].环境科学与技术, 2006, 29(6): 108-111.
    [12]冯克亮.含盐废水的生物处理[J].环境科学动态, 1998, (3): 22-23.
    [13] Hamoda M F, Al-Attar M S. Effect of high sodium chloride concen-trations on activated sludge treatment[J]. Wat. Sci. Tech, 1995, 36(2-3): 345-352.
    [14] Campos J L, et, al. Nitrification in saline wastewater with ammonia concentration in an activated sludge unit[J]. Water Research, 2002, 36(10): 2555-2560.
    [15] Intrasungkha N, et al. Biological nutrient removal efficiency in treatment of saline wasterwater[J]. Wat. Sci. Tech, 1999, 39(6): 183-190.
    [16]何健,陈立伟,李顺鹏.高盐度难降解工业废水生化处理的研究[J].中国沼气, 2000, 18(2): 12-16.
    [17]文守成,马文臣,许建民,等.油田高盐浓度废水对其生化处理的影响[J].油气田环境保护, 2005, 15(2): 17-19.
    [18]王静,张雨山,徐梅生,等.海水盐度对完全混合活性污泥法氨氮去除率的影响研究[J].工业水处理, 2000, 20(4): 18-19.
    [19]张雨山,王静,蒋立冬,等.海水盐度对二沉池污泥沉降性能分影响[J].中国给水排水, 2000, 16(2): 18-19.
    [20]张勇,于德爽,王洪娟. SBR工艺处理高盐度生活污水试验[J].环境工程, 2008, 2(26):27-30.
    [21]崔有为,王淑莹,朱岩,等.海水代用及其含盐污水的生物处理[J].工业水处理, 2005, 25(10): 1-5.
    [22]刘长青,张峰,毕学军,等.海水对污泥沉降性能及脱氮除磷影响的试验[J].工业用水与废水, 2005, 36(6): 24-26.
    [23]王志霞,王志岩,武周虎.高盐度废水生物处理现状与前景展望[J].工业水处理, 2002, 22(11): 1-4.
    [24]柴宏祥.常温ASBBR反应器处理高盐高浓度有机榨菜废水效能研究[D].重庆大学硕士学位论文, 2005, 04.
    [25]包勇.高浓度含盐染料废水电混凝处理研究[J].工业水处理, 2006, 26(7): 33-35.
    [26] Vlyssides A G, Karlis P K, Zorpas A A. Electrochemica Oxidation of Noncyanide Strippers Wastes[J]. Environmen International, 1999, 25(5): 663-670.
    [27]刘贤杰,陈福明.电渗析技术在酱油脱盐中的应用[J].中国调味品, 2004, 4(4): 17~21.
    [28]金可勇,周勇,金水玉,等.高盐度废水的新型膜法处理研究[J].水处理技术, 2009, 35(2): 50-52.
    [29] Peishi Qi, Zhanli Chen . et al. Pre-treatment of organic-high refractory dyestuff wastewater with electrolysis processes, 2nd International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2008, 3700-3703, 2008.
    [30]时文中,华杰,朱国才,等.电化学法处理高盐苯酚废水的研究[J].化工环保, 2003, 23(3): 129-133.
    [31]祁佩时,陈战利,等.微电解-fenton工艺预处理难降解染料废水研究[J].中国矿业大学学报, 2008, 37(5): 684-689.
    [32]杨蕴哲,杨卫身,杨凤林.电化学法处理高含盐活性艳蓝KN-R废水的研究[J].化工环保, 2005, 25(3): 178-181.
    [33]马前,胥丁文,顾学喜. UASB-好氧-混凝工艺处理高盐榨菜废水研究[J].工业水处理, 2011, 31(4): 62-65.
    [34]王夏敏,周健,等.生物/化学组合工艺处理高盐榨菜废水的除磷效能[J].中国给水排水, 2008, 24(7): 29-33.
    [35]陈垚,龙腾锐,等.超高盐高磷废水磷酸盐还原系统构建过程中磷系统转化分析研究[J].土木建筑与环境工程, 2009, 5(2): 25-30.
    [36]武道吉,孙伟,等.水解酸化-SBR-混凝工艺处理榨菜废水试验研究[J].水处理技术, 2009, 35(6): 60-63.
    [37]李哲,周健,等.榨菜废水水质特性及其对活性污泥沉降性能的影响[J].给水排水, 2005, 31(11): 57-60.
    [38]刘江国,陈玉成,等.榨菜废水的混凝处理研究[J].西南大学学报, 2011, 5(21): 22-25.
    [39]封享华,朱明雄,等. Fenton氧化去除榨菜生产废水COD[J].水处理技术, 2008, 34(12): 68-70.
    [40]尹晓静.曝气微电解-电化学氧化-沉淀组合工艺处理高盐榨菜综合废水研究[D].重庆大学硕士学位论文, 2011, 06.
    [41]于水利,赵方波.膜生物反应器技术发展沿革与展望[J].工业用水与废水, 2006, 37(2): 1-6.
    [42]许振良.膜法水处理技术.北京:化学工业出版社, 2001, . 219-260.
    [43]谭译,李勇,等.膜生物反应器的优缺点及改进思路[J].江苏环境科技, 2006. 19(6): 49-53.
    [44] Yamamoto K. , Hiasa M. , Mahmood T. And Matsuo T. Direct solid-liquid separation using fiber membrane in a actived sludge aeration tank[J]. Wat. Sci. Tech. , 1989, 21: 43-54.
    [45]魏源送,郑祥,等.国外膜生物反应器在污水处理中的研究进展[J].工业水处理, 2003, 1(2): 15-30.
    [46]王从厚,吴鸣.国外膜工业发展概况[J].膜科学与技术, 2002(1).
    [47]谭译,李勇,等.膜生物反应器的优缺点及改进思路[J].江苏环境科技, 2006, 19(6): 49-53.
    [48] Samer Asham, P. Gagliardo, L. Boulos, J. Oppenhenimer and R. Trussell. Feasibility of the membrane bioreactor process for water reclamation[J]. Wat. Sci. Tech. , 2001, 43(10): 203-209.
    [49] Ben Aim R. M. , Semmens M. J. Membrane bioreactors for wastewater treatment and reuse: A success story[J]. Water Science and Technology, 2003, 47(1): 1.
    [50]魏源送,樊耀波.废水处理中污泥减量技术的研究及应用[J].中国给水排水, 2000, 17(7): 23-26.
    [51]顾国维,何义亮.膜生物反应器-在污水处理中的研究和应用[M]. 2002,北京:化学工业出版社.
    [52] T Stephenson, SJudd. Membrane bioreactors for wastewater treat-ment[M].张树国,李咏梅,译.北京:化学工业出版社, 2003.
    [53] K Yamamoto. Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank[J]. Wat Sci Tech, 1989, 21(4/5): 43-54.
    [54] S Kimura. Japan's aqua renaissance 90′project[J]. Wat Sci Tech, 1991, 25(10): 95-105.
    [55]郑祥,朱小龙,张绍园.膜生物反应器在水处理中的研究和应用[J].环境污染治理技术与设备, 2000, 1(5): 12-19.
    [56] Kazuaki Yamagiwa. Activated sludge treatment of small-scale wastewater by a plunging liquidjet bioreactor with cross-flow filtration[J]. Bioresource Technology, 1991, 37: 215-222.
    [57] W Y Kiat. Optimal fiber spacing in externally pressurized hollow fiber module for solid liquid separation[J]. Wat Sci Tech, 1992, 26(5/6): 1245.
    [58] VLPillay. Cake formation in cross-flowmicrofiltration systems[J]. Wat Sci Tech, 1992, 25(10): 149.
    [59] A Nagano. The treatment of liquor wastewater containing high-strength suspended solids by membrane bioreactor system[J]. Wat Sci Tech, 1992, 26(3-4): 887-895.
    [60] C Chiemchaisri. Removal of nitrogen under low temperature in a membrane separation bioreactor[J]. Wat Sci Tech, 1993, 28(10): 325-333.
    [61] H Buisson. The use of immersed membranes for upgrading wastewater treatment plants[J]. Wat Sci Tech, 1998, 37(9): 89-95.
    [62] Pieere Arcangeli, Andrew tboam, et al. extractive membrane bioreactors for detoxi-fication of chemical industry wastes: process development[J]. Journal of Membrane Science, 1998, 151(1): 29-44.
    [63] Yeom I. T., Nah Y. M. , Ahn K. H. Treatment of household waste using an intermittently aerated membrane bioreactor[J]. Desalination, 1999, 124(1-3): 193~203.
    [64] C Wisniewski. Kinetics of organic carbon removal by a mixed culture in a membrane bioreactor[J]. Biochemical Engineering Journal, 1999, 3(1): 61-69.
    [65] S L Yu, F B Zhao. Performance Evaluation of ICAS-MBR for De-centralized treatment and Reuse of Domestic wastewater[C]. Xi'an: International Water Association(IWA) Conference 2005.
    [66] Lesjean, B. , Leiknes, T. , Hochstrat, R. , et al. MBR: Technology gets timely EU cash boost, Filtration and Separation, 2006, 43(9): 20-23.
    [67]岑运华.膜生物反应器在污水处理中的应用[J].水处理技术, 1991, 17(5): 319-323.
    [68]孟凡生,王业耀.膜生物反应器在我国的研究发展展望[J].水资源保护, 2005, 21(4): 1-4.
    [69]潘巧明,楼永通,陈小良.膜法处理糖蜜酒精废水的初探[J].水处理技术, 2000, 26(6): 53-55.
    [70]李红岩,高孟春,等.组合式膜生物反应器处理高浓度氨氮废水[J].环境科学, 2002, 23(5): 62-66.
    [71]杨宗政.膜生物反应器去除废水中的高浓度氨氮的研究[D].天津大学博士学位论文, 2005, 07.
    [72]张兴旺,金奇庭,等.一体式MBR处理高氨氮小区生活污水中试研究[J].环境工程, 2003, 21(1)23-26.
    [73]王晋,杨敏.一体式膜生物反应器硝化性能的研究[J].江苏工业学院学报, 2003, 15(1):1-3.
    [74]王景峰.好氧颗粒污泥脱氮除磷及颗粒污泥膜生物反应器研究[D].天津大学博士学位论文, 2006, 08.
    [75]申欢,金奇庭,李明波,等.膜生物法处理城市垃圾渗滤液[J].中国给水排水, 2004, 20(3): 56-59.
    [76]曽萍,吴志超,张鹏,等.膜生物反应器处理高氨氮有机处理废水的研究[J].水处理技术, 2004, 30(4): 202-204.
    [77]李旭东,何小娟,邱江平.间歇曝气MBR处理低碳高氮磷城市生活污水研究[J].环境科学, 2008(6).
    [78]曹斌,黄霞,杨瑜芳,等. MBR-RO组合工艺污水回收中试研究[J].环境科学, 2008, 29(4): 915-918.
    [79]李剑锋.一体式A/O膜生物反应器脱氮性能及在船舶污水处理中的应用研究[D].大连理工大学博士学位论文, 2008, 06.
    [80] Ng W J, Ong S L, Gomez M J, et al. Study on sequencing batch membrance bioreactor for wasterwater treatment[J]. Water Science and Technology, 2000, 41(10-11): 227-234.
    [81] Surmacz-J rska J., Cichon A. , Miksch K. Nitrogn removeal from wastewater with high ammonia nitrogn concentration viashort a nitrification and denitrification[J]. Wat. Research, 1996, 30(5): 1228-1236.
    [82] Yun, Kim. effect of a addition on membrane folling and nutrient removal in a submerged membrane bioreactor[J]. Science Direct, 2008, 221(2): 467-474.
    [83] Yeom Ick Tac. Treatment od Household Wastewater with an Intermittently Aerated Membrane Bioreactor[J]. Desalination, 1999, 124(1~3): 193-204.
    [84] Ueda T, Hata K, Kikuoka Y. Treatment of domestic sewage from rural settlement by a membrance bioreactor[J]. Water Science and Technology, 1996, 34(9): 189-196.
    [85] P. Artiga, G. Garcia-Toriello, R. Mendez, J. M. Garrido. Use of a hybrid membrane bioreactor for the treatment of saline wastewater from a fish canning factory[J]. Desalination, 2008, 221: 518-525.
    [86] Mark J. Sharrer , Yossi Tal , Membrane biological reactor treatment of a saline backwash flow from a recirculating aquaculture system [J]. Aquacultural Engineering Journal of Hazardous Materials, 2007(36): 159-176.
    [87] Mark J. Sharrer, Yossi Tal. Membrane biological reactor treatment of a saline backwash flow from a recirculatin awuaculture system[J]. Aquacultural Engineering Journal of Hazardous Materials, 2007(36): 159-176.
    [88] Sridang Porntip Choksuchar, Pottier Anthony, Wisniewski Christelle, Grasmick Alain.Performance and microbial surveying in submerged membrane bioreactor for seafood processing wastewater treatment[J]. Journal of Membrane Science. 2008, ( 317): 43-49.
    [89] E. Reid, Xingrong Liu, S. J. Judd. Effect of high salinity on activated sludge characteristics and membrane permeability in an immersed membrane bioreactor[J]. Journal of Membrane Science. 2006, (283): 164-171.
    [90]李津,于德爽,等. MBR工艺处理含盐污水的试验研究[J].中国给水排水, 2008, 24(3): 5-8.
    [91]许艳红,赵新华,等.一体式膜生物反应器中料液粘度的研究[J].工业用水与废水, 2006, 37(4): 34-36.
    [92]何圣兵,王宝贞,王琳.生物膜-膜生物反应器处理生活污水的试验研究[J].给水排水, 2002, 28(11): 21-24.
    [93]成英俊,张悍民,张兴文,等.生物膜-膜生物反应器脱氮除磷性能[J].中国环境科学, 2004, 24(1): 72-75.
    [94]刘琳.两段式膜生物反应器在污泥减量中的应用研究[D].武汉大学硕士学位论文, 2005. 05.
    [95] Seo G T, Moon B H, Park Y M, et al. Filtration characteristics of immersed coarse pore filters in an activated sludge system for do-mestic wastewater reclamation[J]. Water Science and Techinology, 2007, 55(1-2): 55-58.
    [96]范彬,黄霞,文湘华,等.动态膜-生物反应器对城市污水的处理[J].环境科学, 2002, 23(6): 51-56.
    [97]熊丽,濮文虹,杨昌柱,等.动态膜生物反应器处理生活污水特性[J].化学与生物工程, 2005, (1): 31-33.
    [98]董春松,樊耀波,李刚,等.我国垃圾渗滤液的特点和处理技术探讨[J].中国给排水, 2005, 21(12): 27-31.
    [99]张京伟,杜小刚,鲁东.中水处理新技术-气升循环分体式平板膜生物反应器[J].技术与部品, 2010, 7(2): 72-74.
    [100]徐慧芳,樊耀波,等.气升循环分体式膜生物反应器再生回用厕所污水的研究与应用[J],环境科学, 2003, 24(2): 125-129.
    [101]樊耀波,王菊思.水与废水处理中的膜生物反应器技术[J].环境科学, 1995, 16(5): 79-81.
    [102]王孟杰,魏春梅,黄霞,等.一体式膜生物反应器降低能耗的中试试验[J].中国环境科学, 2005, 25(3): 297-301.
    [103]尚岩,王宝贞,尚琳,等.膜生物反应器投加PAC处理生活污水效能的试验[J].城市环境与城市生态, 2003, 16(6): 128-129.
    [104]曹占平,张景丽,张宏伟. PAC对膜生物反应器过滤性能的影响[J].工业水处理, 2008, 28(10): 17-20.
    [105]魏奇锋.动态膜技术处理生活污水试验研究[D],大连理工大学博士学位论文, 2000, 06.
    [106]刘忠洲,续曙光,李锁定.微滤、超滤过程中的膜污染与清洗[J].水处理技术, 1992, 23(4): 187-193.
    [107] SongL. Flux decline in crossflow microfiltration and ultrafiltration: Mechanisms and modeling of membrane fouling[J]. Journal of Membrane Seienee, 1998, 139(2): 183.
    [108] Ick TY, Ki R L, Young G C, et al. Evaluation of a membrane bioreactor system coupled with sludge pretreatment for aerobic sludge digestion[A]. IWA Specialty Conference: Water-Environment Membrane Technology[C]. Seoul: Seoul National University, 2004.
    [109] Seong H Y, John H C, Deepak M, et al. Application of membrane performance enhancer(MPE)for full scale membrane bioreactors [A]. IWA Specialty Conference: Water-Environment Membrane Technology [C]. Seoul: Seoul National University, 2004.
    [110] Zhang Y, Bu D, Liu C G, et al. Study on retarding membrane fouling by ferric salts dosing in membrane bioreactors [A]. IWA Specialty Conference: Water-Environment Membrane Technology[C]. Seoul: Seoul National University, 2004.
    [111] Chang, I. S. , Clech, P. L. , Jefferson, B. , et, al. Membrane fouling in membrane bioreactors for wasterwater treatment. Journal of Environmental Engineering, 2002, 128(11): 1018-1029.
    [112] Kang, I. , Yoon, S. H. , and Lee, C. H. Comparison of the filtration characteristics of organic and inorganic membranes in a membrane-coupled anaerbic bioreactor. Water Research, 2002, 36(7): 1803-1813.
    [113] Shoji, M. , et al. . J. Membrane Science, 54: 269-283, 1990.
    [114] Choo, K. H. and Lee, C. H. Effect of anaerobic digestion broth composition on membrane permeability[J]. Water Science and Technology, 1996. 34(9 pt 5): 173-179.
    [115]刑传宏,等.无机膜生物反应器处理生活污水实验研究[J].环境科学, 1997, 18(3): 1-4.
    [116]邱恒,汪永辉,等.聚醚砜醋酸纤维素共混膜的制备及其在膜生物反应器中的应用研究[J].现代化工, 2009, 29(9): 57-60.
    [117]孟志国.非织造布膜生物反应器处理生活污水研究[D].大连理工大学博士论文, 2006, 08.
    [118] Meng F. G. , Zhang H. , Yang F. L. , Zhang S. T. , Li Y. S. , Zhang X. W. Identification of activated aludge properties affecting membrane fouling in submerged membrane bioreactors. Separation and Purification Technology, 2006, 51(1): 95-103.
    [119] Hasar H., Kinaci C. Empirical model representing microbial activity in a submerged MBR treating strength wastewater. Desalination, 2004, 170(2): 161-167.
    [120] Xing C. H., Yamamoto K. Membrane bioreactor at zero excess sludge-The dream or the reality. International priciple symposium on membrane technologies for water and wastewater Treatment. Beijing, 2005.
    [121] Nagaoka H., Ueda. S, Miya A. , Influence of bacterial extracellular polymers on the membrane separation activated sludge process, Water Science and Technology, 1996, 34(9): 165-172.
    [122]李邵峰,崔崇威,黄君礼,等.胞外聚合物EPS对MBR膜污染的影响[J].哈尔滨工业大学学报, 2007, 39(02): 266-269.
    [123]孟凡刚.膜生物反应器膜污染行为的识别与表征[D].大连理工大学博士学位论文, 2007, 01.
    [124] Howell J. A. Sub-critical flux operation of microfiltration. Journal of Membrane [J] Science, 1995, 107(1-2): 165~171.
    [125] Chang I. S., Judd S. J. Air sparging of a submerged MBR for municipal wastewater treatment[J]. Process Biochemistry, 2002, 37(8): 915~920.
    [126] P. Gui, X. Huang, Y. Chen, Y. Qian. Effect of operational parameters sludge accumulation on membrane surfaces in a submerged bioreactor[J]. Desalination. 2003, 151(2): 185-194.
    [127]艾翠玲.一体式膜生物反应器膜污染机理及处理生活污水稳定运行特性研究[D].西安理工大学博士学位论文, 2004, 05.
    [128] Sofia A. , Ng W. J. , Ong S. L. Engineering design approaches for minimum fouling in submerged MBR[J]. Desalination, 2004, 160(1): 67-74.
    [129] Bouhabila E. H. , Aim R. B. , Buisson H. Fouling characterization in membrane bioreactors[J]. Separation and Purification Technology, 2001, 22-23: 123~132.
    [130]张颖,吴亿宁,任南琪.运行方式对减缓SMBR膜污染的影响研究[J].东北农业大学学报, 2003, 34(3): 258-261.
    [131]曹斌,袁宏林,王晓昌.膜生物反应器设计中工艺参数的探讨[J].环境工程, 2004, 22(5): 79-82.
    [132]刘恩华,环国兰,等.一种有效的膜清洗方法-海绵球管式膜清洗系统研究[J].膜科学与技术, 2003, 23(6): 65-68.
    [133]刘锐,黄霞,汪诚文,等.一体式膜生物反应器长期运行中的膜污染控制[J].环境科学, 2000, 21(2): 58-61.
    [134] Sofia A. , Ng W. J. , Ong S. L. Engineering design approaches for minimum fouling in submerged MBR[J]. Desalination, 2004, 160(1): 67~74.
    [135] Shim J. K. , Yoo I. K. , Lee Y. M. Design and operation considerations for wastewater treatment using a flat submerged membrane bioreactor[J]. Process Biochemistry, 2002, 38(2): 279~285.
    [136]张博丰,马世虎.超/微滤膜的膜污染与膜清洗研究[J].供水技术, 2009, 38(06): 28-31.
    [137]邹联沛,张立秋,王宝贞,王琳. MBR中DO对同步硝化反硝化的影响[J].中国给水排水, 2001, 17(6): 10-14.
    [138]王磊.膜生物反应器(MBR)处理味精废水效果研究[D].天津工业大学硕士学位论文, 2006, 12.
    [139]肖景霓.膜生物反应器强化除磷脱氮性能研究[D].大连理工大学博士学位论文, 2007, 07.
    [140]王建华,徐又一,朱宝库.膜生物反应器的研究及其在废水处理中的应用[J].膜科学与技术, 2003, 23(4): 224-233.
    [141]曹斌,黄霞. A2O膜生物反应器强化生物脱氮除磷中试研究[J].中国给水排水, 2007, 23(3): 22-26.
    [142]金建华,刘建广,等.一体式膜生物反应器脱氮除磷效能研究[J].中国给水排水, 2008, 24(11): 12-14.
    [143]王心芳,等.水和废水监测分析方法[M].中国环境科学出版社.
    [144]董良飞,郗晓敏,等. MBR组合工艺脱氮除磷研究进展[J].中国给水排水, 2010, 26(4): 24-28.
    [145]刘爱萍,李开明,等.膜生物反应器同步脱氮除磷研究进展[J].工业水处理, 2006, 26(7): 1-3.
    [146]陈冠辉,王建永,等. MBR的脱氮除磷工艺研究[J].水科学与工程技术, 2008, 1(4): 57-59.
    [147]欧阳雄文. MBR在脱氮除磷方面的最新研究进展[J].工业水处理, 2005, 9-12.
    [148]林燕,何义亮. MBR同步硝化反硝化及异氧硝化试验研究[J].环境科学与技术, 2006, 7-10.
    [149]柳清香,张勇.膜生物反应器在污水处理中的应用前景[J].工业安全与环保, 2003, 29(6): 5-8.
    [150]黄亮,王定勇.膜生物反应器在有机废水处理中的研究进展[J].四川环境, 2003, 22(4): 35-37.
    [151]付国凯,余建,等.膜生物反应器的研究与展望[J].工业水处理, 2003, 23(10): 1-4.
    [152]天津化工研究院.无机盐工业手册[J],北京:化学工业出版社, 1996.
    [153] A.Fedyushkin, N. Bourago , V. Polezhaev et al. The influence of vibration on hydrodyamics and heat-mass transfer during crystal growth [J]. J. Crystal Growth, 2005, 275:e1557-e1563.
    [154]姚连增.晶体生长基础[M].中国科学计数大学出版社, 1995.
    [155]张克从.晶体生长科学与技术(上册)[M].科学出版社, 1997.
    [156] Maret Liiri, T. Koiranen, J. Aittamaa. Secondary nucleation due to crystal-impeller and crystal-vessel collision by population balances in CFD-modelling[M]. J. Crystal Growth, 2002, 237: 2188-2139.
    [157] A. Shakib Manesh, J. A. Astrom, A. Koponen et al. Fouling dynamics in suspension flowa[J]. Eur. Phys. J. E. , 2002, 9: 97-102.
    [158] Yamamoto K. Membrane bioreactor at zero excess sludge-The dream or the reality. International priciple symposium on membrane technologies for water and wastewater Treatment. Beijing, 2005.
    [159] A. J. Nowak, R. A. Bialecki, Adam Fic, et al. Analysis of fluid flow and energy transport in Czochralski's process[J]. Compu. &Fluid, 2003, 32: 85-95.
    [160] Q. Kang, L. Duan, W. R. Hu. Mass transfer process during the NaCLO3 crystal growth process[J]. Int. J. Hert Mass Transfer, 2001, 44: 3213-3222.
    [161] Hongmin Li, M. J. Braun. A new herting configuration for hydrothermal crystal growth vessels to achieve better thermal and flow environments[J]. J. Crystal Growth, 2007, 299: 109-119.
    [162] B. Bansal, X. D. Chen, H. M. Steinhagen. Analysis of classical deposition rate law for crystallization fouling[J]. Chem. Eng. Proc. , 2008, 47: 1201-1210.
    [163]顾惕人,等.表面化学[M].科学出版社, 1994.
    [164] F. Brahim, W. Augustin, M. Bohhnet. Numerical simulation of fouling process[J]. Int. J. Therm. Sci. , 2003, 42: 323-334.
    [165] D. Q. Kean, R. E. Seaton. Surface fouling how to calculate limits[J]. Chem. Eng. Proc. , 1959, 55: 71-73.
    [166] M. Bohnet. Fouling of heat transfer surfaces[J]. Chem. Engrg. Technon. , 1987, 10: 113-125.
    [167]高波.盐析两相流理论及旋流泵内部流动的研究[D].江苏大学博士学位论文, 2009, 06.
    [168]郑化桂,倪小敏.高等无机化学[M].中国科学技术大学出版社, 2006, 12.
    [169] Stephenson T, Judd S, Jefferson B, et al, Membrane Bioreactorsfor Wastewater Treatment. London: IWA Publishing, 2000: 25-37.
    [170] Chang I S, Bag O, Lee C H. Effects of membrane fouling on solute rejecting during membrane filtration of activated aludge[J]. Process Biochemistry, 2001, 36(8-9): 855-860.
    [171]北京石油化工工程公司.氯碱工业理化常数手册[M]. 1988. 11.
    [172] P. Le-Clech, V. Chen, T. A. G. Fane. Fouling in membrane bioreactors used in wastewater treatment[J]. Journal of Membrane Science. 2006, 284(1-2): 17-53.
    [173] P. Gui, X. Huang, Y. Chen, Y. Qian. Effect of operational on sludge accumulation on membrane surfaces in a submerged bioreactor [J]. Desalination. 2003, 151(2): 185-194.
    [174] L. Defrance, M. Y. Jaffrin. Comparison between filtrations at fixed transmembrane preaaure and fixed permeate flux: application to a membrane bioreactor used foe wastewater treatment [J]. Journal of Membrane Science. 1999, 152(2): 203-210.
    [175] Deniz B, ? sal H B. Modeling and optimization I: Usability of response surface methodology[J]. Journal of Food Engineering, 2007, 78(1): 836- 845.
    [176]傅剑锋,武秋立.响应面法分析Fenton氧化垃圾渗透液的过程[J].化工进展, 2006, 25(12): 1493-1503.
    [177] Sellar R. S. , Batill S. M. , Renaud J. E. Response surface based concurrent subspace optimization for multidisciplinary system design[M]. Reno Nevada: AIAA, 1996. 696-714.
    [178] Mason R. L. , Gunst R. F. , Hess J. J. Statistical design and analysis of experiments with applications to engineering and science[M]. London: John Wiley and Sons Inc, 2003. 600-610.
    [179]秦俊哲,吕嘉枥.食用菌栽培[M].西北农林科技大学出版社, 2002. 177-178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700