黄海浮游动物功能群的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浮游动物在海洋生态系统物质循环和能量流动中起着至关重要的作用。浮游动物物种组成、生物量和次级生产力的变化会改变生态系统的结构和功能。在黄海生态系统中如何描述这个过程,并使它易于模拟是本论文的研究目的。生物量和生产力是海洋生态系统食物网的基础。谁是浮游动物生物量和次级生产力的基础?哪些种类在生态系统中起关键作用?这些问题在黄海这样的温带陆架边缘海区很难回答,原因是物种组成、生物量和生产力的季节变化显著。因此,在对黄海食物产出的关键过程进行模拟时,需要应用既准确又简便的方法来对浮游动物群落的生态过程进行模拟。在对黄海浮游动物群落结构和物理海洋学特征进行充分的分析之后,浮游动物功能群的方法被确定用来进行黄海生态系统结构和功能的模拟。
     根据浮游动物的粒径、摄食习性和营养功能,黄海浮游动物被分为6个功能群:大型浮游甲壳动物功能群(Giant crustacean,GC)、大型桡足类功能群(Large copepods, LC)、小型桡足类功能群(Small copepods,SC)、毛颚类功能群(Chaetognaths)、水母类功能群(Medusae)和海樽类功能群(Salps)。GC、LC和SC是按照粒径大小而划分的功能群,他们是高营养层次的主要食物资源。毛颚类和水母类是两类胶质性的肉食性浮游动物功能群,他们与高营养层次竞争摄食饵料浮游动物;海樽类与其他浮游动物种类竞争摄食浮游植物,而本身的物质和能量却不能有效的传递到高营养层次。本文研究报道了浮游动物各功能群的时空分布、基于浮游动物动能群的黄海生态区划分、饵料浮游动物功能群的生产力、毛颚类对浮游动物的摄食压力以及中华哲水蚤(Calanus sinicus)的摄食生态学。
     春季,浮游动物生物量为2.1 g m–2,GC、LC和SC对生物量的贡献率分别为19, 44和26%。高生物量的LC和SC功能群主要分布于山东半岛南岸的近岸海域,而GC主要分布在远岸站位。夏季,浮游动物的生物量为3.1 g m–2,GC贡献了73%。GC、LC和SC主要分布在黄海的中部海域。秋季,浮游动物生物量为1.8 g m–2,GC、LC和SC的贡献率相似,分别为36, 33和23%,高生物量的GC和LC分布在黄海中部,而SC主要分布在远岸站位。GC和LC是冬季浮游动物生物量(2.9 g m–2)的优势功能群,分别贡献率了57%和27%,高生物量的GC、LC和SC都分布在黄海的中部海域。与GC、LC和SC相比,毛颚类生物量较低,主要分布于黄海的中北部海域。水母类(本文中指小型水母类)和海樽类斑块分布明显,主要分布于黄海沿岸和北部海域。属于不同功能群的约10个种类为浮游动物的优势种,控制着浮游动物群落的动态。
     春季,黄海可以被分成4个浮游动物生态区,浮游动物生物量的分布中心位于山东半岛南岸近岸海域,与第一个生态区相对应,LC和SC在分布中心起主要的控制作用;夏、秋和冬季,黄海分别被分成3、4和3个生态区,浮游动物生物量的分布中心均位于黄海的中部海域,均与各季节的第一个生态区相对应,GC和LC是分布中心生态区的优势功能群,对分布中心起主要的控制作用。黄海冷水团(YSCBW)在GC、LC和SC的空间分布模式中起着重要的作用。黄海不同季节浮游动物生态区的空间分布模式及生态区中起控制作用的优势功能群类别有着重要的生态学意义。
     我们将饵料浮游动物功能群细化为0.16–0.25 mm、0.25–0.5 mm、0.5–1 mm、1–2 mm和>2 mm5个粒径组。应用生物能量学的方法研究了不同粒径浮游动物的生产力。结果表明:浮游动物次级生产力5月份最高,为91.9 mg C m–2 d–1,其次是6月和9月,分别为75.6 mg C m–2 d–1和65.5 mg C m–2 d–1,8月、3月和12月较低,仅为42.3 mg C m–2 d–1、35.9 mg C m–2 d–1和27.9 mg C m–2 d–1。根据这些结果,黄海浮游动物年次级生产力为18.9 g C m–2 year–1。0.16–0.25 mm和0.25–0.5 mm两个粒径组对浮游动物次级生产力的贡献率为58–79%,即相对应的SC功能群的周转率(P/B, 0.091–0.193 d–1)要高于GC和LC。
     黄海毛颚类功能群的优势种类为强壮箭虫(Sagitta crassa)、纳嘎箭虫(S. nagae)、肥胖箭虫(S. enflata)和百陶箭虫(S. bedoti)。我们对这四种箭虫的生产力和对浮游动物生物量和生产力的摄食压力进行了研究。结果表明:黄海毛颚类总的生物量为98–217 mg m–2,总的生产力为1.22–2.36 mg C m–2 d–1。黄海毛颚类的生物量占浮游动物总生物量的6.35–14.47%,而生产力仅占浮游动物总生产力的2.54–6.04%。强壮箭虫和纳嘎箭虫是黄海毛颚类功能群的绝对优势种,控制着黄海毛颚类群落的动态。黄海毛颚类总的摄食率为4.24–8.18 mg C m–2d–1,对浮游动物现存量和生产力总的摄食压力分别为为0.94%和12.56%。黄海冬季,浮游动物的现存量和生产力为0.4 g C m–2和0.026 g C m–2d–1,而毛颚类的摄食压力却达到了全年的最大值,为1.4%和20.94%。因此,毛颚类的摄食可能对冬季浮游动物群落结构造成重要的影响。通过不同体长组箭虫的摄食率可以推断,黄海毛颚类全年主要摄食小型桡足类,对SC功能群的摄食压力最大。但是在夏季黄海冷水团形成的月份,毛颚类对前体长为2 mm的LC功能群中的种类摄食压力也较大,但此时,由于优势种中华哲水蚤进入滞育阶段,因此毛颚类的摄食会对其种群数量造成严重的影响。
     中华哲水蚤在春、秋季的摄食率分别为2.08–11.46和0.26–3.70μg C female–1 day–1,与微型浮游生物的现存量呈显著的正相关。春季,在黄海的北部,中华哲水蚤通过摄食微型浮游生物吸收的碳量能够满足其代谢和繁殖需求,而在黄海的南部和秋季黄海冷水团锋区附近,中华哲水蚤必须通过摄食其他类型的食物资源来维持其代谢和生殖需求。较低的摄食率、无产卵以及种群中CV期桡足幼体占优势表明,秋季中华哲水蚤在黄海冷水团区域内处于滞育状态。中华哲水蚤优先摄食微型原生动物,并且春季中华哲水蚤总的生长效率(GGE, 3–39%)与食物中微型原生动物的比例呈显著的正相关,表明微型原生动物具有较高的营养价值。但是,因较低的产卵率(0.16–12.6 eggs female–1 day–1)而导致的中华哲水蚤较低的总生长效率(13.4%),可能就是由于其食物中的必需营养成分含量不足(或缺乏)造成的。
     本文从生物量的角度,对黄海浮游动物各功能群的时空分布、生态区划分进行了研究报道,对GC、LC和SC功能群的生产力、毛颚类对浮游动物的摄食压力和中华哲水蚤的摄食生态学进行了较为深入的研究,这些结果为黄海食物产出的关键过程的模拟提供了基础资料。今后的研究重点应搞清楚黄海水母类对浮游动物次级生产力的摄食压力和海樽类在食物产出模型中产生的负效应的程度,浮游动物各功能群的组成、季节变化和空间分布模式的长期变化,尤其是在气候变化和人类活动的影响下,将是今后研究的重点。
Zooplankton plays a vital role in the marine ecosystems. The variations of zooplankton species composition, biomass and secondary production will change the structure and function of the ecosystems. How to describe this process and make it easier to be modeled in the Yellow Sea ecosystem is the main purpose of this paper. The biomass and secondary productivity are the basis of the food web in the marine ecosystem. Who are the main contributors in the biomass and secondary productivity of zooplankton? Which species take the roles to affect the structure and function of the ecosystem? It is very hard to describe in the temperate continental shelf area, such as in the Yellow Sea, where the species composition, biomass and secondary production changed seasonally. Therefore, when modeling the key process of ecosystem food production in the Yellow Sea, an approach which is both precise and easy must be applied. After adequately analyzing the structure of zooplankton community and features of physical oceanography, the zooplankton functional groups approach, which is considered to be a good method of linking the structure of food webs and the energy flow through ecosystems, is used in the Yellow Sea ecosystem modeling.
     According to the size spectrum, feeding habits and trophic functionality, the zooplankton could be classified into 6 functional groups: giant crustacean (GC), large copepods (LC), small copepods (SC), chaetognaths, medusae and salps. The GC, LC and SC groups which are the main food resources of fish are defined based on the size spectrum. Medusae and chaetognaths are two gelatinous carnivorous groups, which compete with fish for food. The salps group, acting as passive filter-feeders, competes with other species feeding on phytoplankton, but their energy could not be efficiently variations and geographical distributions of each zooplankton functional group, the ecoregions related to zooplankton functional groups, the secondary production of zooplankton, the impact of chaetognaths group feeding on zooplankton and trophic ecology of Calanus sinicus were studied in this paper.
     The mean zooplankton biomass was 2.1 g dry weight m–2 during spring, to which the GC, LC and SC contributed 19, 44 and 26%, respectively. High biomasses of the LC and SC were distributed at the coastal waters, while the GC was mainly located at offshore stations. In summer, the mean biomass was 3.1 g dry weight m–2 which was mostly contributed by the GC (73%), and high biomasses of the GC, LC and SC were all distributed in the central part of the Yellow Sea. During autumn, the mean biomass was 1.8 g dry weight m–2 which was similarly constituted by the GC, LC and SC (36, 33 and 23%, respectively) and high biomasses of the GC and LC were occurred in the central part of the Yellow Sea, while the SC was mainly located at offshore stations. The GC and LC dominated the zooplankton biomass (2.9 g dry weight m–2) in winter, each contributing 57% and 27% and they as well as the SC were all mainly located in the central part of the Yellow Sea. The chaetognaths group was mainly located in the central and northern part of the Yellow Sea during all seasons, but contributed lower to the biomass compared with other groups. The small medusae and salps groups were distributed unevenly with sporadic dynamics, mainly along the coast line and at the northern part of the Yellow Sea. No more than 10 species belonging to the respective functional group dominated the zooplankton biomass and controlled the dynamics of the zooplankton community.
     During spring, the Yellow Sea can be divided into 4 zooplankton ecoregions. The high biomass of zooplankton was mainly distributed at the coastal waters near the south shore of Shandong peninsula, which corresponded to the first ecoregion. The LC and SC were the dominated functional groups in the first ecoregion. In summer, autumn and winter, the Yellow Sea can be classified into 3, 4 and 3 zooplankton ecoregions, and the high biomass were all mainly distributed in the central part of the Yellow Sea, which all corresponded to the first ecoregion. The GC and LC were the dominated functional groups in the first ecoregion in these three seasons. The Yellow Sea Cold Bottom Water (YSCBW) plays a vital role in the distribution mode of GC, LC and SC. The geographical distribution mode of each zooplankton ecoregion in different season had important ecological meaning in the Yellow Sea ecosystem.
     In terms of size spectrum, the main food zooplankton of higher trophic levels can be divided into 5 classes of 0.16–0.25 mm, 0.25–0.5 mm, 0.5–1 mm, 1–2 mm and >2 mm using sieves onboard. The secondary production of each size class was estimated by using physiological method. The results showed that the estimated production rate of zooplankton was enormously high in May 2007 (91.9 mg C m–2 d–1), followed in order by June (75.6 mg C m–2 d–1), September (65.5 mg C m–2 d–1), August (42.3 mg C m–2 d–1), March (35.9 mg C m–2 d–1) and December (27.9 mg C m–2 d–1). On the basis of these rates, the integrated production of zooplankton was 18.9 g C m–2 year–1 in the Yellow Sea. The 0.16–0.25 and 0.25–0.5 mm classes which correspond to the SC group together comprised 58–79% of the production in the study area. The P/B value of 0.16–0.25 and 0.25–0.5 mm (0.091–0.193 d–1) were higher than other size classes.
     Sagitta crassa, S. nagae, S. enflata and S. bedoti were the dominated species of chaetognaths group. The production of these four species as well as feeding impact of them on zooplankton secondary production was estimated in this paper. The results showed that the biomass and estimated production rate of chaetognaths were in the range of 98–217 mg m–2 and 1.22–2.36 mg C m–2 d–1. The proportion of chaetognath biomass was 6.35–14.47% of the zooplankton biomass, while chaetognath production rate was 2.54–6.04% of the zooplankton production. S. crassa and S. nagae were the absolutely dominated species, controlling the dynamics of chaetognath community. The feeding rate of chaetognath ranged from 4.24–8.18 mg C m–2d–1, and feeding impact on biomass and secondary production of zooplankton were 0.94% and 12.56%. In winter, the biomass and production of zooplankton were only 0.4 g C m–2 and 0.026 g C m–2d–1, while the feeding impact peaked in winter at 1.4% and 20.94%. Therefore, the structure of zooplankton community may be significantly affected by chaetognath in winter. On the basis of feeding rate of different body length groups, we can conclude that chaetognaths mainly feed on the species in SC group throughout the year. And besides small copepods, the species in LC group, such as C. sinicus, was largely feed by chaetognahs. Because C. sinicus was in diapause, so C. sinicus community would be affected significantly by chaetognaths in summer.
     The ingestion rate of C. sinicus (2.08–11.46 and 0.26–3.70μgC female–1 d–1 in spring and autumn, respectively) was positively correlated with microplankton carbon concentrations. In the northern part of the Yellow Sea, feeding on microplankton easily covers the respiratory and production requirements, whereas in the southern part in spring and in the front zone in autumn, C. sinicus must ingest alternative food sources. Low ingestion rates, no egg production and the dominance of the fifth copepodite (CV) stage indicated that C. sinicus was in quiescence inside the YSCBW area in autumn. C. sinicus ingested ciliates preferentially over other components of the microplankton. The EPR (0.16–12.6 eggs female–1 d–1 in spring and 11.4 eggs female–1 d–1 at only one station in autumn) increased with ciliate standing stock. Gross growth efficiency (GGE) was 13.4% (3–39%) in spring, which was correlated with the proportion of ciliates in the diet. These results indicate that ciliates have higher nutrient quality than other food items, but the low GGE indicates that the diet of C. sinicus is nutritionally incomplete.
     The feeding impact of medusae group on zooplankton, the ecological effects of salps group in the ecosystem, long term variations of seasonal and spatial distribution and composition patterns of zooplankton functional groups, especially under the climate changes and human perturbations, should be considered in the future.
引文
1. Albuquerque, R. A., da Costa, M., Koening, M. L. and Pereira, L. C. C. (2005) Feeding adult of Artemia salina (Crustacea-Branchiopoda) on the dinoflagellate Gyrodinium corsicum (Gymnodiniales) and the Chryptophyta Rhodomonas baltica. Brazilian Arch. Biol. Tech., 48, 581–587.
    2. Alldredge, A.L. (1984) The quantitative significance of gelatinous zooplankton as pelagic consumers. In Fasham, M.J.R. (ed.) Flow of energy and materials in marine ecosystems: theory and practice. Plenum Press, London, pp. 407-433.
    3. Andersen, V. and Nival, P. (1988) A pelagic ecosystem model simulating production and sedimentation of biogenic particles-role of salps and copepods. Mar. Ecol. Prog. Ser., 44, 37–50.
    4. Anderson, T. (2005) Plankton functional type modeling: running before we can walk? J. Plankton Res., 27, 1073–1081.
    5. Araújo, J. N., Mackinson, S., Stanford, R. J., Sims, D. W., Southward, A. J., Hawkins, S. J., Ellis, J. R. and Hart, P. J. B. (2006) Modelling food web interactions, variation in plankton production, and fisheries in the western English Channel ecosystem. Mar. Ecol. Prog. Ser., 309, 175–187.
    6. Arendt, K. E., Jónasdóttir, S. H. and Hansen, P. J. (2005) Effects of dietary fatty acids on the reproductive success of the calanoid copepod Temora longicornis. Mar. Biol., 146, 513–530.
    7. Baier, C. T. and Purcell, J. E. (1997a) Effects of sampling and preservation on apparent feeding by chaetognahts. Mar. Ecol. Prog. Ser., 146, 37–42.
    8. Baier, C. T. and Purcell, J. E. (1997b) Trophic interactions of chaetognaths, larval fish and zooplankton in the South Atlantic Bight. Mar. Ecol. Prog. Ser., 146, 43–53.
    9. Bailey, R. G. (1998) Ecoregions: the ecosystem geography of the oceans and continents. New York: Springer.
    10. Bajkov, A. D. (1935) How to estimate the daily food consumption of fish undernatural conditions. Trans. Am. Fish. Soc., 65, 288–289.
    11. B?mstedt, U., Gifford, D. J., Irigoien, X., Atkinson, A. and Roman, M. (2000) Feeding. In Harris, R. P., Wiebe, P. H., Lenz, J., Skjoldal, H. R. and Huntley, M. (ed.) ICES zooplankton methodology manual. Academic Press, London, pp. 297–399.
    12. Bathmann, U., Bundy, M. H., Clarke, M. E. et al. (2001) Future marine zooplankton research–a perspective. Mar. Ecol. Prog. Ser., 222, 297–308.
    13. Bonnet, D. and Carlotti, F. (2001) Development and egg production in Centropages typicus (Copepoda: Calanoida) fed different food types: a laboratory study. Mar. Ecol. Prog. Ser., 224, 133–148.
    14. Bouman, H. A., Platt, T., Sathyendranath, S. et al. (2003) Temperature as indicator of optical properties and community structure of marine phytoplankton: implications for remote sensing. Mar. Ecol. Prog. Ser., 258, 19–30.
    15. Bradford-Grieve, J., Boyd, P. W., Chang, F. H., Chiswell, S., Hadfield, M., Hall, J. A., James, M. R., Nodder, S. D. and Shushkina, E. A. (1999) Pelagic ecosystem structure and functioning in the Subtropical Front region east of New Zealand in austral winter and spring 1993. J. Plankton Res., 21, 405–428.
    16. Bredin, K.A., Gerriets, S.H. and Van Guelpen, L. (2001) Distribution of rare, endangered, and keystone marine vertebrate species in Bay of Fundy Seascapes. Atlantic Conservation Data Centre, Sackville, NB.
    17. Briggs, J. C. (1974) Marine Zoogeography. New York: McGraw-Hill.
    18. Briggs, J. C. (1995) Global Biogeography. Amsterdam: Elsevi.
    19. Broglio, E., Jónasdóttir, S. H., Calbet, A., Jakobsen, H. H. and Saiz, E. (2003) Effect of heterotrophic versus autotrophic food on feeding and reproduction of the calanoid copepod Acartia tonsa: relationship with prey fatty acid composition. Aquat. Microb. Ecol., 31, 267–278.
    20. Brown, M. R., Jeffrey, S. W., Volkman, J. K. and Dunstan, G. A. (1997) Nutritional properties of microalgae for mariculture. Aquaculture, 151, 315–331.
    21. Calbet, A. and Landry, M. R. (1999) Mesozooplankton influences on the microbial food web: Direct and indirect trophic interactions in the oligotrophicopen ocean. Limnol. Oceanogr., 44, 1370–1380.
    22. Carlotti, F., Giske, J. and Werner, F. (2000) Modeling zooplankton dynamics. In Harris, R., Wiebe, P., Lenz, J. et al. (ed.) ICES Zooplankton Methodolgy Manual. Academic Press, pp. 571–667.
    23. Castellani, C., Irigoien, X., Harris, R. P. and Lampitt, R. S. (2005) Feeding and egg production of Oithona similis in the North Atlantic. Mar. Ecol. Prog. Ser., 288, 173–182.
    24. Chen, B.Y. (1986) A preliminary study on fauna of planktonic copepods in the China seas. Acta Oceanol. Sin. 5, 118-125.
    25. Choi, J. K, Noh, J. H., Shin, K. S. and Hong, K. H. (1995) The early autumn distribution of chlorophyll a and primary productivity in the Yellow Sea, 1992. Yellow Sea, 1, 68–80.
    26. Claustre, H. (1994) The trophic status of various oceanic provinces as revealed by phytoplankton pigment signatures. Limnol. Oceanogr., 39, 1206–1210.
    27. Cotonnec, G., Brunet, C., Sautour, B. and Thoumelin, G. (2001) Nutritive value and selection of food particles by copepods during a spring bloom of Phaeocystis sp. In the English Channel, as determined by pigment and fatty acids analyses. J. Plankton Res., 23, 693–703.
    28. Cowardin, L. M., Carter, V., Golet, F. C.and LaRoe, E. T. (1979) Classification of wetlands and deepwater habitats of the United States. US Department of the Interior, Fish and Wildlife Service, Washington, DC.
    29. Curl, H., Jr. (1962) Standing crops of carbon, nitrogen and phosphorus and transfer between trophic levels, in continental shelf waters south of New York. Rapp. P-v Reun. Cons. Perm. Int. Explor. Mer., 153, 183–189.
    30. Cushing, D. H. (1990) Plankton production and year-class strength in fish-populations: an update of the match/mismatch hypothesis. Advances in Mar. Biol., 26, 249–293.
    31. Dam, H. G. and Colin, S. P. (2005) Prorocentrum minimum (clone Exuv) is nutritionally insufficient, but not toxic to the copepod Acartia tonsa. Harmful Algae, 4, 575–584.
    32. Dam, H. G. and Lopes, R. M. (2003) Omnivory in the calanoid copepod Temora longicornis: feeding, egg production and egg hatching rates. J. Exp. Mar. Biol. Ecol., 292, 119–137.
    33. Deibel, D. (1998) The abundance, distribution, and ecological impact of doliolids. In: Bone, Q. (ed.) The biology of pelagic tunicates. Oxford University Press, Oxford, pp. 171–186.
    34. Delgado, M. and Alcaraz, M. (1999) Interactions between red tide microalgae and herbivorous zooplankton: the noxious effects of Gyrodinium corsicum (Dinophyceae) on Acartia grani (Copepoda: Calanoida). J. Plankton Res., 21, 2361–2371.
    35. Drits, A. V. and Utkina, S. V. (1988) Feeding of Sagitta setosa in the layers of daytime phytoplankton accumulation in the Black Sea. Oceanology, 28, 781–785.
    36. Ekman, S. (1953) Zoogeography of the sea. London: Sidgwick and Jackson.
    37. Elton, C.(1927)Animal Ecology. New York, McMillan.
    38. Falkowski, P. G., Barber, R. T., Smetacek, V. (1998) Biogeochemical controls and feedbacks on ocean primary production. Science, 281, 200–206.
    39. Feigenbaum, D. L. (1977) Nutritional ecology of the Chaetognatha with particular reference to external hair patterns, prey detection, and feeding, Ph.D. dissertation, Univ. of Miami, Coral Gables.
    40. Feigenbaum, D. (1979) Daily ration and specific daily ration of the Chaetognath Sagitta enflata. Mar. Biol., 54, 75–82.
    41. Flynn, K. J. (2006) Reply to Horizons article ‘Plankton functional type modeling: running before we can walk’ Anderson (2005): II. Putting trophic functionality into plankton functional types. J. Plankton Res., 28, 873–875.
    42. Forbes, E. (1856) Map of the distribution of marine life. pp. 99–102 and plate 131 in Johnston, A. K. (ed.) The physical atlas of natural phenomena. Edinburgh (Scotland), William Blackwood and Sons.
    43. Frost, B. W. (1972) Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr., 17, 805–815.
    44. Frost, B. W. (1975) A threshold feeding behavior in Calanus pacificus. Limnol. Oceanogr., 20, 263–266.
    45. Giesecke, R. and Gonzalez, H. E. (2004) Feeding of Sagitta enflata and vertical distribution of chaetognaths in relation to low oxygen concentrations. J. Plankton Res., 26, 475–486.
    46. Gifford, D. J. (1993) Consumption of protozoa by copepods feeding on natural microplankton assemblages. In Kemp, P. F., Sherr, B. F., Sherr, E. B. and Cole, J. J. (ed.) Handboook of methods in aquatic microbial ecology. Lewis Publishers, Boca Raton, FL, pp. 723–729.
    47. Gnaiger, E. (1983) Calculation of energetic and biochemical equivalents of respiratory oxygen consumption. In Gnaiger, E., Horstner, H. (ed.) Polarographic Oxygen Sensors. Springer-Verlag, Berlin, pp. 337-347.
    48. González, H. E., Giesecke, R., Vargas, C. A. et al. (2004) Carbon cycling through the pelagic foodweb in the northern Humboldt Current off Chile (23°S). ICES Journal of Marine Science, 61, 572–584.
    49. Gregg, W. W., Ginoux, P., Schopf, P. S. and Casey, N. W. (2003) Phytoplankton and iron: validation of a global three-dimensional ocean biogeochemical model. Deep-Sea Research II, 50, 3143–3169.
    50. Gregr, E. J. and Bodtker, K. M. (2007) Adaptive classification of marine ecosystem: Identifying biologically meaningful regions in the marine environment. Deep-Sea Research I, 54, 385–402.
    51. Harris, R., Bonnet, D., Hirst, A. and Irigoien, X. (2007) Understanding the role of Calanus nauplii in the ecosystem dynamics of the North Atlantic. Globec International Newsletter, 13, 13–14.
    52. Hayden, B. P., Ray, G. C. and Dolan, R. (1984) Classification of coastal and marine environments. Environmental Conservation, 11, 199–207.
    53. Hedgpeth, J. W. (1957) Marine biogeography. Geological Society of America Memoirs, 67, 359–382
    54. Hempel, G. and Sherman. K. (2003) Large marine ecosystems of the world: trends in exploitation, protection, and research. Amsterdam, Elsevier.
    55. Hirst, A.G. and Sheader, M (1997) Are in situ weight-specific growth rates body-size independent in marine planktonic copepods? Are-analysis of the global syntheses and a new empirical model. Mar. Ecol. Prog. Ser., 154, 155-165.
    56. Hood, R. R., Laws, E. A., Armstrong, R. A., Bates, N. R., Brown, C. W., Carlson, C. A., Chai, F., Doney, S. C., Falkowski, P. G., Feely, R. A., Friedrichs, M. A. M., Landry, M. R., Moore, J. K., Nelson, D. M., Richardson, T. L., Salihoglu, B., Schartau, M., Toole, D. A. and Wiggert, J. D. (2006) Pelagic functional group modeling: Progress, challenges and prospects. Deep-Sea Research II 53, 459–512.
    57. Hopkins, T. L. (1985) Food web of an Antarctic midwater ecosystem. Mar. Biol., 89, 197–212
    58. Hopkins, T. L. (1987) Midwater food web in McMurdo Sound, Ross Sea, Antarctica. Mar. Biol., 96, 93–106.
    59. Hopkins, T. L., Lancraft, T. M., Torres, J. J. and Donnelly, J. (1993) Community structure and trophic ecology of zooplankton in the Scotia Sea marginal ice zone in winter (1988). Deep-Sea Research I, 40, 81–105.
    60. Hopkins, T. L. and Torres, J. J. (1989) Midwater food web in the vicinity of a marginal ice zone in the western Weddell Sea. Deep-Sea Research, 36, 543–560.
    61. Huang, C., Uye, S. and Onbé, T. (1993) Geographical distribution, seasonal life cycle, biomass and production of a planktonic copepod Calanus sinicus in the Inland Sea of Japan and its neighboring Pacific Ocean. J. Palnkton Res., 15, 1229-1246.
    62. Hulsizer, E. E. (1976) Zooplankton of lower Narragansett Bay. Chesapeake Sci., 17, 260-270.
    63. Huntley, M. and Lopez, M. D. G. (1992) Temperature dependent growth production of marine copepods: a global synthesis. Am. Nat., 140, 201–242.
    64. Ichinokawa, M. and Takahashi, M. M. (2006) Size-dependent carbon flow in the epipelagic food web of the Western Equatorial Pacific. Mar. Ecol. Prog. Ser., 313, 13–26.
    65. Ikeda, T. (1985) Metabolic rates of epipelagic marine zooplankton as a functionof body mass and temperature. Mar. Biol., 85, 1–11.
    66. Ikeda, T. and Motoda, S. (1978) Estimated zooplankton production and their ammonia excretion in the Kuroshio and adjacent seas. Fish. B., 76, 357–367.
    67. Irigoien, X., Head, R. N., Harris, R. P., Cummings, D. and Harbour, D. (2000) Feeding selectivity and egg production of Calanus helgolandicus in the English Channel. Limnol. Oceanogr., 45, 44–54.
    68. Ivlev, V. S. (1961) Experimental ecology of the feeding of fishes. Yale University Press, New Haven.
    69. Jacobs, G.A., Hur, H.B. and Riedlinger, S.K. (2000) Yellow and East China Seas response to winds and currents. J. Geophys. Res. (C Oceans), 105 (C9), 21,947-21,968.
    70. Jónasdóttir, S. H., Fields, D. and Pantoja, S. (1995) Copepod egg production in Long Island Sound, USA, as a function of the chemical composition of seston. Mar. Ecol. Prog. Ser., 119, 87–98.
    71. Kang, H. K. and Poulet, S. A. (2000) Reproductive success in Calanus helgolandicus as a function of diet and egg cannibalism. Mar. Ecol. Prog. Ser., 201, 241–250.
    72. Kang, J-H., Kim, W. S., Jeong, H. J., Shin, K. and Chang, M. (2007) Why did the copepod Calanus sinicus increase during the 1990s in the Yellow Sea? Mar. Environ. Res., 63, 82–90.
    73. Katechakis, A., Stibor, H., Sommer, U. and Hansen, T. (2004) Feeding selectivities and food niche separation of Acartia clause, Penilia avirostris (Crustacea) and Doliolum denticulatum (Thaliacea) in Blanes Bay (Catalan Sea, NW Mediterranean). J. Plankton Res., 26, 589–603.
    74. Kerr, S. R. (1974) Theory of size distribution in ecological communities. J. Fish. Res. Board Can., 31, 1859–1862.
    75. Kerr, S. R. and Dickie, L. M. (2001) The biomass spectrum. A predator-prey theory of aquatic production. New York, Columbia University Press.
    76. Ki?rboe, T., Mohlenberg, F. and Hamburger, K. (1985) Bioenergetics of the planktonic copepod Acartia tonsa: relation between feeding, egg production andrespiration, and composition of specific dynamic action. Mar. Ecol. Prog. Ser., 26, 85–97.
    77. Klein Breteler, W. C. M., Koski, M. and Rampen, S. (2004) Role of essential lipids in copepod nutrition: no evidence for trophic upgrading of food quality by a marine ciliate. Mar. Ecol. Prog. Ser., 274, 199–208.
    78. Klein Breteler, W. C. M., Schogt, N., Baas, M., Schouten, S. and Kraay, G. W. (1999) Trophic upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids. Mar. Biol., 135, 191–198.
    79. Kleppel, G. S. (1993) On the diets of calanoid copepods. Mar. Ecol. Prog. Ser., 99, 183–195.
    80. Kleppel, G. S., Burkart, C. A., Carter, K. and Tomas, C. (1996) Diets of calanoid copepods on the West Florida continental shelf: relationships between food concentration, food composition and feeding activity. Mar. Biol., 127, 209–217.
    81. Kleppel, G. S., Burkart, C. A., Houchin, L. and Tomas, C. (1998) Egg production of the copepod Acartia tonsa in Florida Bay during summer. 1. The role of food environment and diet. Estuaries., 21, 328–339.
    82. Kleppel, G. S., Holliday, D. V. and Pieper, R. E. (1991) Trophic interactions between copepods and microplankton: a question about the role of diatoms. Limnol. Oceanogr., 36, 172–178.
    83. Laabir, M., Poulet, S. A., Cueff, A. and Ianora, A. (1999) Effect of diet on levels of amino acids during embryonic and naupliar development of the copepod Calanus helgolandicus. Mar. Biol., 134, 187–199.
    84. Landry, M. R. and Hassett, R. P. (1982) Estimating the grazing impact of marine microzooplankton. Mar. Biol., 67, 283–288.
    85. Landry, M. R. and Lehner-Fournier, J. M. (1988) Grazing rates and behavior of Neocalanus plumchrus: implications for phytoplankton control in the subarctic Pacific. Hydrobiologia, 167/168, 9–19.
    86. Landry, M. R., Hassett, R. P., Fargerness, V., Downs, J. and Lorenzen, C. J. (1984) Effect of food acclimation on assimilation efficiency of Calanus pacificus. Limnol. Oceanogr., 26, 361–364.
    87. Le Quéré, C., Harrison, S. P., Prentice, I. C. et al. (2005) Ecosystem dynamics based on plankton functional types for global biogeochemistry models. Global Change Biology, 11, 2016–2040.
    88. Lenz, J. (2000) Introduction. In Harris, R., Wiebe, P., Lenz, J. et al. (ed.) ICES Zooplankton Methodolgy Manual. Academic Press, pp. 1–32.
    89. Li, C. L., Sun, S., Wang, R. and Wang, X. (2004) Feeding and respiration rates of a planktonic copepod (Calanus sinicus) oversummering in Yellow Sea Cold Bottom Waters. Mar. Biol., 145, 149–157.
    90. Li, C. L., Sun, S., Wang, R. and Wang, X. (2004) Feeding and respiration rates of a planktonic copepod (Calanus sinicus) oversummering in Yellow Sea Cold Bottom Waters. Mar. Biol., 145, 149–157.
    91. Lin, C., Ning, X., Su, J., Lin, Y. and Xu, B. (2005) Environmental changes and the responses of the ecosystems of the Yellow Sea during 1976–2000. J. Mar. Syst., 55, 223-234.
    92. Liu, G. M., Sun, S., Wang, H., Zhang, Y., Yang, B. and Ji, P. (2003) Abundance of Calanus sinicus across the tidal front in the Yellow Sea, China. Fish. Oceanogr., 12, 291–298.
    93. Liu, H. B., Dagg, M. J., Wu, C. J. and Chiang, K. P. (2005) Mesozooplankton consumption of microplankton in the Mississippi River plume, with special emphasis on planktonic ciliates. Mar. Ecol. Prog. Ser., 286, 133–144.
    94. Longhurst, A. (1998) Ecological Geography of the Sea. San Diego: Academic Press.
    95. Madin, L. (2006) Pelagic tunicates pack and ship the carbon. Integrative and Comparative Biology, 46, E88–E88.
    96. Mann, K. H. (1993) Physical oceanography, food chains, and fish stocks: a review. ICES J. Mar. Sci., 50, 105–119.
    97. Marrari, M., Vi?as, M.D., Martos, P. and Hernández, D. (2004) Spatial patterns of mesozooplankton distribution in the Southwestern Atlantic Ocean (34°-41°S) during austral spring: relationship with the hydrographic conditions. ICES J. Mar. Sci., 61, 667-679.
    98. Menden-Deuer, S. and Lessard, E. J. (2000) Carbon to volume relationship for dinoflagellates, diatoms, and other protest plankton. Limnol. Oceanogr., 45, 569–579.
    99. Mills, C. E. (1995) Medusae, siphonophores, and ctenophores as planktivorous predators in changing global ecosystems. ICES J. Mar. Sci., 52, 575–581.
    100.Moore, K. J., Doney, S. C., Kleypas, J. A., Glover, D. M. and Fung, I. Y. (2002) An intermediate complexity marine ecosystem model for the global domain. Deep-Sea Research II, 49, 403–462.
    101.Moore, K. J., Doney, S. C. and Lindsay, K. (2004) Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochemical Cycles, 18, GB4028, doi: 10.1029/2004/GB002220.
    102.Mullin, M. M. (1969) Production of zooplankton in the ocean: the present status and problems. Oceanogr. Mar. Bio. Ann. Rev., 7, 293–310.
    103.Murakami, A. (1959) Marine biological study on the planktonic chaetognaths in the Seto Inland Sea. Bull. Naikai Reg. Fish. Res. Lab., 12, 1–186 (In Japanese).
    104.Nagai, N., Tadokoro, K., Kuroda, K. and Sugimoto, T. (2006) Occurrence characteristics of chaetognath species along the PM transect in the Japan Sea during 1972–2002. J. Oceanogr., 62, 598–606.
    105.Nagasawa, S. (1991) Vertical distribution, life cycle and production of the chaetognath Sagitta crassa in Tokyo Bay, Japan. J. Plankton Res., 13, 1325–1338.
    106.Nagasawa, S. and Marumo, R. (1976) Further studies on the feeding habits of Sagitta nagae Alvari?o in Suruga Bay, central Japan. J. Oceanogr. Soc. Japan., 32, 209–218.
    107.Nagasawa, S. (1984) Laboratory feeding and egg production in the Chaetognath Sagitta crassa Tokioka. J. Exp. Mar. Biol. Ecol., 76, 51-65.
    108.Nagasawa, S. and Marumo, R., (1978) Reproduction and life history of the Chaetognath Sagitta nagae ALVARI?O in Suruga Bay. Journal of the Oceanographical Society of Japan, 25, 67–84 (In Japanese with English abstract).
    109.Nejstgaard, J. C., Naustvoll, L. J. and Sazhin, A. (2001) Correcting forunderestimation of microzooplankton grazing in bottle incubation experiments with mesozooplankton. Mar. Ecol. Prog. Ser., 221, 59–75.
    110.Nielsen, T. G. and Sabatini, M. (1996) Role of cyclopoid copepods Oithona spp. in North Sea plankton communities. Mar. Ecol. Prog. Ser., 139, 79–93.
    111.Ohman, M. D. (1986) Predator-limited population growth of the copepod Pseudocalanus sp. J. Plankton Res., 8, 673–713.
    112.Omori, M. (1969) Weight and chemical composition of some dominant oceanic zooplankton in the North Pacific Ocean. Mar. Biol., 3, 4-10.
    113.Omori, M. and Ikeda, T. (1984) Methods in marine zooplankton ecology. John Wiley and Sons, New York.
    114.Orr, J. C., Fabry, V. J., Aumont, O. et al. (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437, 681–686.
    115.Paffeenh?fer, G. A. (1988) Feeding rates and behavior of zooplankton. B. Mar. Sci., 43, 430–445.
    116.Park, W., Sturdevant, M., Orsi, J. et al. (2004) Interannual abundance patterns of copepods during an ENSO event in Icy strait, southeastern Alaska. ICES J. Mar. Sci., 61, 464-477.
    117.Parsons, T R. and Lalli, C. M. (1988) Comparative oceanic ecology of the plankton communities of the subarctic Atlantic and Pacific oceans. Oceanogr. Mar. Biol. Annu. Rev., 26, 317–359
    118.Parsons, T. R., Maita, Y. and Lalli, G. M. (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, pp. 101–122.
    119.Pearre, S. Jr. (1980) Feeding by Chaetognatha: the relation of prey size to predator size in several species. Mar. Ecol. Prog. Ser., 3, 125–134.
    120.Peters, R.H. (1983) The ecological implications of body size. Cambridge University Press, Cambridge, 329 pp.
    121.Pinchuk, A. A. and Hopcroft, R. R. (2007) Seasonal variations in the growth rates of euphausiids (Thysanoessa inermis, T. Spinifera, and Euphausia pacifica) from the northern Gulf of Alaska. Mar. Biol., 151, 257–269.
    122.Platt, T. and Denman, K. (1977) Organization in the pelagic ecosystems. Helgolander Wissenschaftliche Meeresuntersuchungen, 30, 575–581.
    123.Platt, T. and Denman, K. (1978) The structure of pelagic ecosystems. Rapports et Procès-Verbaux des Réunions du Conseil International pour I’ Exploration de la Mer, 173, 60–65.
    124.Platt, T. (1985) Structure of the marine ecosystem: Its allometric basis. In Ulanowicz, R.E., Platt, T. (ed.) Ecosystem theory for biological oceanography. Can. Bull. Fish. Aquat. Sci., 213, 55-64.
    125.Platt, T., Lewis, M. and Geider, R. (1984) Thermodynamics of the pelagic ecosystem: Elementary closure conditions for biological production in the open ocean. In Fasham, M. J. R. (ed.) Flows of energy and material in marine ecosystems. New York, Plenum Publishing Corporation, pp. 49–84.
    126.Polis, G. A. (1991) Complex trophic interactions in deserts: an empirical critique of food-web theory. The Am. Nat., 138, 123–155.
    127.Poulet, S. A., Cueff, A., Wichard, T., Marchetti, J., Dancie, C. and Pohnert, G. (2007) Influence of diatoms on copepod reproduction. III. Consequences of abnormal oocyte maturation on reproductive factors in Calanus helgolandicus. Mar. Biol., 152, 415–428.
    128.Poulicek, M., Gaill, F.and Goffinet, G. (1998) Chitin biodegradation in marine environments. ACS symposium Series, 707, 163–210.
    129.Pu, X. M., Sun, S., Yang, B., Ji, P., Zhang, Y. S. and Zhang, F. (2004a) The combined effects of temperature and food supply on Calanus sinicus in the Southern Yellow Sea in summer. J. Plankton Res., 26, 1049–1057.
    130.Pu, X. M., Sun, S., Yang, B., Zhang, G. T. and Zhang, F. (2004b) Life history strategies of Calanus sinicus in the southern Yellow Sea in Summer. J. Plankton Res., 26, 1049–1068.
    131.Putt, M. and Stoecker, D. K. (1989) An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal water. Limnol. Oceanogr., 34, 1097–1103.
    132.Qui?ones, R. A. (1994) A comment on the use of allometry in the study ofpelagic ecosystem processes. Scientia Marina, 58, 11–16.
    133.Quinones, R.A., Platt, T. and Rodríguez, J. (2003) Patterns of biomass-size spectra from oligotrophic waters of the Northwest Atlantic. Prog. Oceanogr., 57, 405-427.
    134.Raghukumar, S. and Anil, A. C. (2003) Marine biodiversity and ecosystem functioning: A perspective. Current Science, 84, 884–892.
    135.Rakusa-Suszczewski, S. J. (1969) The food and feeding habits of chaetognatha in the seas around the British Isles. Pol. Arch. Hydrobiologia, 16, 213–232.
    136.Reeve, M. R. and Baker, L. D. (1975) Production of two planktonic carnivores (chaetognath and ctenophore) in South Florida inshore waters. Fish. Bull., 73, 238–248.
    137.Richardson, A. J. and Schoeman, D. S. (2005) Climate impact on plankton ecosystems in the Northeast Atlantic. Science, 305, 1609–1612.
    138.Rinaldo, A., Maritan, A., Cavender-Bares, K.K. and Chisholm, S.W. (2002) Cross-scale ecological dynamics and microbial size spectra in marine ecosystems. Proceedings of the Royal Society of Landon B., 269, 2051-2059.
    139.Rodríguez, J. (1994) Some comments on the size based structural analysis of the pelagic ecosystem. Sci. Mar., 58, 1-10.
    140.Rose, K., Roff, J. C. and Hopcroft, R. R. (2004) Production of Penilia avirostris in the Kingston harbour, Jamaica. J. Plankton Res., 26, 605–615.
    141.Ruiz, J., d’Alcalà, M. R., Crise, A.and Siokou-Frangou, L. (2007) An end to end approach in modeling Mediterranean pelagic ecosystems: can the Naples approach be a proof of feasibility? Globec International Newsletter, 13, 39–40.
    142.Sameoto, D. D. (1973) Annual life cycle and production of the chaetognath Sagitta elegans in Bedford Basin, Nova Scotia. J. Fish. Res. Bd. Canada, 30, 333–344.
    143.Sanders, R. W., Berninger, U. G., Lim, E. L. et al. (2000) Heterotrophic and mixotrophic nanoplankton predation on picoplankton in the Sargasso Sea and on Georges Bank. Mar. Ecol. Prog. Ser., 192, 103–118.
    144.Sargent, J. R., Parkes, R. J., Mueller-Harvey, J. and Henderson, R. J. (1987) Lipidbiomarkers in marine ecology. In Sleigh, M. A. (ed.) Microbes in the sea. Ellis Horwood Ltd, Chichester, pp. 119–138.
    145.Satapoomin, S., Nielsen, T. G. and Hansen, P. J. (2004) Andaman Sea copepods: spatiao-temporal variations in biomass and production, and role in the pelagic food web. Mar. Ecol. Prog. Ser., 274, 99–122.
    146.Sheldon, R. W., Sutcliffe, W. H. Jr. and Paranajape, M. A. (1977) Structure of pelagic food chain and relationship between plankton and fish production. J. Fish. Res. Bd. Canada, 34, 2344–2355.
    147.Sherman, K. (1986) Introduction to parts one and two: large marine ecosystem as tractable entities for measurement and management. In Sherman, K. and Alexander, L. M. (ed.) Variability and management of large marine ecosystems. Westview Press, Boulder, CO, pp. 319.
    148.Sherman, K. and Alexander, L. M. (1989) Biomass yields and Geography of Large Marine Ecosystems. Boulder (CO), Westview Press.
    149.Sherman. K., Sissenwine, M., Christensen, V. et al. (2005) A global movement toward on ecosystem approach to management of marine resources. Mar. Ecol. Prog. Ser., 300, 275–279.
    150.Son, S. H., Campbell, J., Dowell, M., Yoo, S. and Noh, J. (2005) Primary production in the Yellow Sea determined by ocean color remote sensing. Mar. Ecol. Prog. Ser., 303, 91–103.
    151.Spalding, M. D., Fox, H. E., Allen, G. R. et al. (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience, 57, 573–583.
    152.Sprules, W. G. and Munawar, M. (1986) Plankton size spectra in relation to ecosystem productivity, size, and perturbation. Can. J. Fish. Aquat. Sci., 43, 1789–1794.
    153.Stoecker, D. K. and Capuzzo, J. M. (1990) Predation on protozoa: importance to zooplankton. J. Plankton Res., 12, 891–908.
    154.Straile, D. (1997) Gross-growth efficiencies of protozoan and metazoan zooplankton and their dependence on food concentration, predator-prey weight ratio and taxonomic group. Limnol. Oceanogr., 42, 1375–1385.
    155.Strathmann, R.R. (1967) Estimating the organic carbon content of phytoplankton from cell volume. Limnol. Oceanogr., 12, 411–418.
    156.Su, Y.and Weng, X. (1994) Water Masses in China Seas. In: Zhou, D., Liang, Y.B., Zeng, C.K. (ed.) Oceanology of China Seas. vol. 1 (C). Dordrecht/Boston/London, Kluwer Academic Publishers, pp. 3–26.
    157.Tang, K. W. and Taal, M. (2005) Trophic modification of food quality by heterotrophic protists species-specific effects on copepod egg production and egg hatching. J. Exp. Mar. Biol. Ecol., 318, 85–98.
    158.Tang, Q. (1993) Effects of long-term physical and biological perturbation on the contemporary biomass yields of the Yellow Sea ecosystem. In Sherman, K. et al. (ed.) Large Marine Ecosystems: stress mitigation and sustainability. AAAS press.
    159.Teague, W. J. and Jacobs, G. A. (2000) Current observations on the development of the Yellow Sea Warm Current. J. Geophys. Res. (C Oceans), 105, 3401–3411.
    160.Turner, J. T., Ianora, A., Miralto, A., Laabir, M. and Esposito, F. (2001) Decoupling of copepod grazing rates, fecundity and egg hatching success on mixed and alternating diatom and dinoflagellate diets. Mar. Ecol. Prog. Ser., 220, 187–199.
    161.Uye, S. I. and Murase, A. (1997) Relationship of egg production rates of the planktonic copepod Calanus sinicus to phytoplankton availability in the Inland Sea of Japan. Plankton Biol. Ecol., 44, 3–11.
    162.Uye, S. (1982) Length-weight relationships of important zooplankton from the Inland Sea of Japan. J. Oceanogr. Soc. Japan, 38, 249–158.
    163.Uye, S. (1988) Temperature-dependent development and growth of Calanus sinicus (Copepoda: Calanoida) in the laboratory. Hydrobiologia, 167/168, 285-293.
    164.Uye, S. and Ichino, S. (1995) Seasonal variations in abundance, size composition, biomass and production rate of Oikopleura dioica (Fol) (Tunicata: Appendicularia) in a temperate eutrophic inlet. J. Exp. Mar. Biol. Ecol., 189, 1–11.
    165.Uye, S. and Shimazu, T. (1997) Geographical and seasonal variations in abundance, biomass and estimated production rates of meso- and macrozooplankton in the Inland Sea of Japan. J. Oceanogr., 53, 529-538.
    166.Verity, P. G. and Langdon, C. (1984) Relationship between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J. Plankton Res., 6, 859–868.
    167.Verity, P. G. and Smetacek, V. (1996) Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar. Ecol. Prog. Ser., 130, 277–293.
    168.Vi?as, M. D., Negri, R. M., Ramírez, F. C. and Hernández, D. (2002) Zooplankton and hydrography in the spawning area of anchovy (Engraulis anchoita) off Río de la Plata estuary (Argentine–Uruguay). Mar. Freshwater Res., 53, 1–13.
    169.Vi?as, M. D. and Ramírez, F. C. (1996) Gut analysis of first-feeding anchovy larvae from the Patagonian spawning areas in relation to food availability. Archive Fish. Mar. Res., 4, 231–256.
    170.Wang, R. and Zuo, T. (2004) The Yellow Sea Warm Current and the Yellow Sea Cold Bottom Water, their impact on the distribution of zooplankton in the Southern Yellow Sea. J. Soc. Oceanogr. Korean, 39, 1–13.
    171.Wang, R., Zuo, T. and Wang, K. (2003) The Yellow Sea Cold Bottom Water-an oversummering site for Calanus sinicus (Copepoda, Crustacea). J. Plankton Res., 25, 169–185.
    172.Wu, Y., Guo, Y. and Zhang, Y. (1995) Distributional characteristics of chlorophyll a and primary productivity in the Yellow Sea. Yellow Sea, 1, 81–92.
    173.Yoo, S. and Shin, K. (1995) Primary productivity properties in the nearshore region of Taean Peninsula. Ocean Res., 17, 91–99.
    174.Zacharias, M.A., Howes, D.E., Harper, J.R. and Wainwright, P. (1998) The British Columbia marine ecosystem classification: rationale, development and verification. Coastal Management, 26, 105–124.
    175.Zeldis, J., James, M. R., Grieve, J. and Richards, L. (2002) Omnivory by copepods in the New Zealand Subtropical Frontal Zone. J. Plankton Res., 24,9–23.
    176.Zervoudaki, S., Christou, E. D., Nielsen, T. G. et al. (2007) The importance of small-sized copepods in a frontal area of the Aegean Sea. J. Plankton Res., 29, 317-338.
    177.Zetina-Rejón, M. J., Arreguín-Sánchez, F. and Chávez, E. A. (2003) Trophic structure and flows of energy in the Huizache-Caimanero lagoon complex on the Pacific coast of Mexico. Estuarine, Coastal and Shelf Science, 57, 803–815.
    178.Zhang, G. T., Li, C. L., Sun, S., Zhang, H. Y., Sun, J. and Ning, X. R. (2006a) Feeding habits of Calanus sinicus (Crustacea: Copepoda) during spring and autumn in the Bohai Sea studied with the herbivore index. Sci. Mar., 70, 381–388.
    179.Zhang, G., T., Sun, S. and Zhang, F. (2005) Seasonal variation of reproduction rates and body size of Calanus sinicus in the Southern Yellow Sea, China. J. Plankton Res., 27, 135–143.
    180.Zhang, G.T., Sun, S. and Yang, B. (2007) Summer reproduction of the planktonic copepod Calanus sinicus in the Yellow Sea: influences of high surface temperature and cold bottom water. J. Plankton Res., 29, 179-186.
    181.Zhang, H. Q. (1995) Relationship between zooplankton distribution and hydrographic characteristics of southern Yellow Sea. The Yellow Sea, 1, 50–67.
    182.Zhang, W. C., Li, H. B., Xiao, T., Zhang, J., Li, C. L. and Sun, S. (2006b) Impact of microzooplankton and copepods on the growth of phytoplankton in the Yellow Sea and East China Sea. Hydrobiologia, 553, 357–366.
    183.Zuo, T., Wang, R., Chen, Y. Q., Gao, S. W. and Wang, K. (2006) Autumn net copepod abundance and assemblages in relation to water masses on the continental shelf of the Yellow Sea and East China Sea. J. Mar. Syst., 59, 159–172.
    184.万瑞景,黄大吉,张经. 东海北部和黄海南部鳀鱼卵和仔稚鱼数量、分布及其与环境条件的关系. 水产学报,2002,26(4):321–330.
    185.王云龙,袁骐. 东海毛颚动物的生态研究Ⅰ.种类组成和数量分布. 海洋渔业,2004,26(1):29–34.
    186.王克,王荣,左涛. 南黄海鳀鱼产卵场浮游动物昼夜垂直移动研究. 海洋与湖沼,2002,增刊,129–136.
    187.王春生. 东海黑潮区毛颚类数量分布及几种水团指示种的初步研究. 黑潮调查研究论文选(二),1990,224–235.
    188.王荣,王克. 两种浮游生物网捕获性能的现场测试. 水产学报,2003,27(增刊):98–102.
    189.王荣,高尚武,王克,左涛. 冬季黄海暖流的浮游动物指示. 水产学报,2003,27(增刊):39–48.
    190.王真良. 黄海区水母类的生态研究. 黄渤海海洋,1996,14(1):41–50.
    191.左涛,王克,王荣,高尚武. 春季南黄海浮游动物群落的多元统计分析. 水产学报,2003,27(增刊):108–113.
    192.左涛,王克,李超伦. 南黄海中华哲水蚤体长-干重的关系. 水产学报,2003,27(增刊):103–107.
    193.左涛,王荣,王克,高尚武. 夏季南黄海浮游动物的垂直分布与昼夜垂直移动. 生态学报,2004,24(3):524–530.
    194.左涛,王荣,王克,高尚武. 夏季南黄海浮游动物的垂直分布和昼夜垂直移动. 生态学报,2004,24(3):524–530.
    195.左涛,王荣,高尚武,王克. 南黄海鳀鱼(Engraulis japonicus)产卵场小型桡足类的数量分布. 海洋与湖沼,2006,37(4):330–336.
    196.左涛,王荣,高尚武,王克. 南黄海鳀鱼(Engraulis japonicus)产卵场小型桡足类的数量分布. 海洋与湖沼,2006,37(4):330–336.
    197.左涛. 东、黄海浮游动物群落结构研究. 中国科学院海洋研究所博士学位论文. 2003.
    198.刘青,曲晗,张硕,魏杰. 强壮箭虫摄食生态的实验研究. 水产学报,2006,30(6):767–772.
    199.刘慧莲,孙松. 南黄海及东海北部太平洋磷虾产卵、孵化及早期幼体发育的初步研究. 海洋与湖沼,2002,增刊,51–60.
    200.孙松,王荣,张光涛,杨波,吉鹏,张芳. 黄海中华哲水蚤度夏机制初探. 海洋与湖沼,2002,增刊,92–99.
    201.张启龙,翁学传,杨玉玲. 南黄海春季水团分析. 海洋与湖沼,1996,27(4):421–428.
    202.张武昌,王荣. 海洋微型浮游动物对浮游植物和初级生产力的摄食压力. 生态学报,2001,21(8),1360–1368.
    203.李超伦,王荣,张芳,王新刚. 黄东海浮游桡足类摄食研究 II. 摄食率及摄食压力. 海洋与湖沼,2002,增刊,111–119.
    204.杜飞雁,李纯厚,贾晓平. 北部湾海域毛颚类组群的初步分析. 水产学报,2005,29(1):43–47.
    205.杜飞雁,李纯厚,贾晓平. 北部湾海域毛颚类种类组成和数量分布. 中国水产科学,2004,11(1):59–64.
    206.杨纪明,李军. 渤海强壮箭虫摄食的初步研究. 海洋科学,1995,6:38–42.
    207.杨纪明. 渤海中华哲水蚤摄食的初步研究. 海洋与湖沼,1997,28(4):376–382.
    208.陈清潮. 中华哲水蚤的繁殖、性比率和个体大小的研究. 海洋与湖沼,1964,6(3):272–288.
    209.孟田湘. 黄海中南部鳀鱼各发育阶段对浮游动物的摄食. 海洋水产研究,2003,24(3):1–9.
    210.林雅蓉. 东海毛颚动物夏季垂直分布. 生态学报,1985,5(2):175–186.
    211.林雅蓉. 东海陆架区毛颚动物的分布. 海洋科学集刊,1982,19:51–63.
    212.郑执中,郑守仪. 黄海和东海浮游有孔虫的研究. 海洋与湖沼,1962,4(1-2):60–85.
    213.郑执中,萧贻昌. 毛颚动物作为中国海及邻近水域海流指示种的初步探讨. 中国海洋湖沼学会1963年学术年会论文摘要汇编,1964,84,科学出版社.
    214.郑执中. 黄、东海西部浮游动物群落的结构及其季节变化. 海洋与湖沼,1965,7(3):199–204.
    215.赵保仁,方国洪,曹德明. 渤海、黄海和东海的潮余流特征及其与近岸环流输送的关系. 海洋科学集刊,1995,36,1–11.
    216.徐兆礼,陈亚瞿. 东海毛颚类优势种及与环境的关系. 中国水产科学,2004,12(1):76–82.
    217.徐兆礼,戴一帆,陈亚瞿. 东海毛颚类种类组成和多样性. 上海水产大学学报,2004,13(3):203–208.
    218.徐兆礼,戴一帆,陈亚瞿. 东海毛颚类数量分布与环境关系. 上海水产大学学报,2004,13(3):203–208.
    219.薛莹,金显仕,张波,梁振林. 黄海中部小黄鱼摄食习性的体长变化与昼夜变化. 中国水产科学,2004,11(5):420–425.
    220.薛莹,金显仕,赵宪勇,梁振林,李显森. 秋季黄海中南部鱼类群落对饵料生物的摄食量. 中国海洋大学学报,2007,37(1):75–82.
    221.戴燕玉,林茂. 南黄海和东海毛颚类生态特征的研究 II. 群落特征. 海洋学报,2007,29(3):90–97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700