电磁锤随焊锤击设备及工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焊接作为制造业的基础工艺与技术,在21世纪为工业经济的发展做出了重要的贡献。然而,焊接是一个局部快速加热和冷却的过程,它所引起的不均匀温度场和应变场,在被焊工件内会产生较大的焊接应力,而焊接应力的存在可以导致产生热裂纹及冷裂纹并且还会影响到焊件加工精度和尺寸稳定性,影响了焊接质量。
     如何降低和消除焊接应力,防止焊接裂纹的产生成为焊接领域广泛关注的一个重要课题。人们提出了热处理法、振动法、机械拉伸法、锤击法等多种消除焊接应力的方法,作为锤击法,随焊锤击是在焊接过程中通过实时锤击焊缝及近缝区金属材料从而消除或减小焊接应力的一种焊接新技术。该方法能有效的改善焊接接头的应力分布状态,降低应力集中现象,防止焊接热裂纹的出现,提高焊件的抗拉强度。与其它消应力的方法相比,随焊锤击具有操作简单,效率高等特点,显示了一定的优越性。
     为了更好的完善随焊锤击工艺,实现随焊锤击装置的自动化。在前期研究的基础之上,本文继续对随焊锤击设备及工艺进行了研究。首先,分析了随焊锤击强化焊缝的原理,对随焊锤击装置进行了简单阐述。对电磁锤进行了改进,减小了其体积,增加了灵活性。其次,通过改进后的电磁锤设计出了三个自由度的夹具,使电磁锤能自由的调整锤头与堆焊焊头的角度(即锤击温度)及锤击距离。用自行设计的夹具带动随焊锤击装置进行随焊锤击试验,通过试验着重分析了不同的锤击力和锤击温度对焊接应力和显微硬度的影响,并对锤击前后试件的显微组织进行了对比分析。最后,利用数值模拟技术对焊接温度场和应力场进行了分析讨论。
     通过随焊锤击试验可以得出如下结论:(1)随焊锤击可以使焊缝及其附近的焊接应力得到不同程度的降低,在焊缝处应力降低的幅值最大,距离焊缝越远,应力降低的幅值越小;(2)从焊缝的金相组织可以看出:随焊锤击处理可以细化晶粒,增加焊缝的强度;(3)基于ANSYS有限元,采用埋弧堆焊技术对焊接温度场和应力场进行了模拟,得出在焊接热影响区和距焊缝中心线不同位置处的热循环曲线变化趋势一致,温度都是先迅速升高再下降,随着时间的推移趋于稳定。纵、横残余应力沿焊缝中心线上变化趋势一致,但纵向应力整体表现为拉应力,总体来说纵向应力比横向应力大的多。
The welding as a basic craft and technique of manufacturing has made important contribution for the development of the industrial economy in the 21st century. However, welding is a process of fast heating and cooling in part, which causes the non-uniform temperature field and strain field that produce big welding stress in the welded workpiece. But the existence of welding stress may produce the heating crack, cooling crack and also affect the processing precision and size stability, and affect the welding quality.
     How to reduce and eliminate welding stress, and avoid welding crack form becomes an important topic in welding field draws much attentions. People proposes many methods of eliminating welding stress, including the heat treatment, the vibration method, the machine stretch method, peening method and so on. As peening method, welding with trailing peening is new technique of reducing or eliminating welding stress through real-time peening the welding joint and the near metal in the welding process. Which can effectively improve the stress distribution condition in the welding joint, reduce the stress concentration phenomenon, prevent the welding heating crack and enhance the anti-tensile strength. Comparing with other reducing stress methods, welding with trailing peening has merit of simple operation, high efficiency, and more advantages are being displayed.
     In order to perfect welding with trailing peening craft, and realize automatization of welding with trailing peening device. The subject is base on predecessor's research foundation go to study equipment and technics of welding with trailing peening. Firstly, analysed the strengthen principle of welding with trailing peening, and simple expound the welding with trailing peening device. Electromagnetic hammer had been improved, reducing its cubage and enhancing its flexibility. Secondly, through improved the electromagnetic hammer designed its fixture have 3 Degree-of-freedom, and free adjust hammer head with surfacing weld's angle (peening temperature) and peening distance. Fixture which independently designs to drive device carry through welding with trailing peening experiment, through the welding with trailing peening experiment emphasize analyzed the influence of peening. Force peening temperature on welding stress and microhardness, the microstructure of peening before and after workpieces were contrasted and analysed. Finally, the paper discussed the welding temperature field and stress field by using numerical simulation technique.
     Drawing the below conclusion through the experiment: (1) The welding stress was reduced in the welding joint and the near area remaining, the peak of reducing value is in the welding seam, more far from welding seam, more small of reducing value of stress. (2) From the welding joint microstmcture: welding with trailing peening can thin crystal grain, increases intensity of the welding joint. (3) Based on ansys finite element, adopted submerged arc surfacing welding techniques to simulate welding temperature and stress field, then concluded that thermal circling curves changed in the trend line at welding heat affected zone and along centerline of the welding joint in different sections. temperature generally increase rapidly and then fell until to become stable; longitudinal, transverse residual stress changed in the trend line along centerline of the welding join, but the whole longitudinal stress represented tension stress, as a whole, longitudinal stress is much bigger than transverse stress.
引文
[1]师昌绪.序言.表面工程与维修[M].北京:机械工业出版社,1996.
    [2]张平昌,曲仕尧,邹增大,等.新型锤击消应力装置的研制[J].设计与制造,2003,(6):43-46.
    [3]田锡唐.焊接结构[M].北京:机械工业出版社,1997.
    [4]Liu W P,Tian X T,Zhang X Z.Preventing weld hot cracking by synchronous rolling during welding[J].Welding Journal,1996,75(9):297-304.
    [5]Yang Yu-ping.A study of preventing welding hot cracking of high strength aluminum alloy sheet with inverse strain method[D].Harbin:Doctoral Dissertation of Institute of Technology,1995.
    [6]Tian Xitang,Guo Shaoqing,Xu Wenli.Influence of trailing intense cooling on welding hot cracking susceptibility of aluminum alloy LY12CZ[J].Space Navigation Material & Technology,1998,28(5):48-52.
    [7]Guo Shaoqing.A study of controlling welding hot cracking and distortion of thin aluminum alloy plate with high susceptibility to hot cracking[D].Harbin:Doctoral Dissertation of Harbin Institute of Technology,1999.
    [8]Lobanov L M.Heat abstracting paste reduces distortions[J].Welding and Metal Fabrication,1982,(3):65-70.
    [9]LE Kopsov.The influence of hammer peening on fatigue in high-strength Steel[J].Welding Journal,1991,13(6):479-482.
    [10]R.BelI,D.V Militaru.Effect of peening and grinding on the fatigue strength of fillet welded joints[J].British WeldingJoumal,1969,3(3):13-21.
    [11]J.W Knight.Improving the fatigue strength of fillet welded joints by grinding and peening[J].Welding Research International,1978,8(6):519-539.
    [12]Garmo E P,Jonassen F,Meriarn J L.The effect of peening upon residual welding stress[J].Welding Journal,1946,25(10):616-623.
    [13]Calaari P L,Crum F J,Place G W.An investigation on peening[J].Welding Journal,1953,32(8):387-402.
    [14]邹增大,王新洪,曲仕尧,等.锤击处理消除白口铸铁焊接残余应力的数值分析[J].山东工业大学学报,1999,29(3):201-205.
    [15]王严岩.锤击处理消除焊接接头残余应力的研究[A].第七届全国焊接学术会议论文集[C].第五册,1993,50-54.
    [16]任登义,魏星.铸铁冷焊锤击力的测定及锤击效果的分析[J].焊接,1998,(1):12-15.
    [17]王新洪.白口铸铁焊补应力场的数值模拟[D].济南:山东工业大学,1997.
    [18]王东坡.改善焊接接头的疲劳强度超声冲击方法的研究[D].天津:天津大学,2001.
    [19]王东坡,霍立兴,张玉凤,等.提高焊接接头疲劳强度的超声波冲击法[J].焊接学报,1999,20(3):158-163.
    [20]霍立兴.焊接结构的断裂行为及评定[M].北京:机械工业出版社,2000.
    [21]苏彦江,林德深,余传禧.锤击处理延长焊接接头疲劳寿命的研究[J].兰州铁道学院学报(自然科学版),2000,19(3):28-30.
    [22]徐文立,黎明,刘雪松,等.动态低应力小变形无热裂随焊锤击焊接技术研究[J].材料科学与工艺,2001,9(1):6-10.
    [23]徐文立.随焊锤击控制铝合金薄板焊接应力变形及接头质量的研究[D],哈尔滨:哈尔滨工业大学,2001.
    [24]徐文立,田锡唐,刘雪松.随焊锤击对LY12CZ焊接接头显微组织的影响[J].哈尔滨工业大学学报,2001,33(4):442-446.
    [25]徐文立,李世萍,郭绍庆,等.动态低应力小变形无热裂焊接方法的研究[J].哈尔滨工业大学学报,2002,34(3):297-301.
    [26]徐文立,代宝昌,方洪渊,等.薄板高强铝合金LY12CZ焊接工艺参数的优化[J].焊接学报,2004,25(2):39-42.
    [27]徐文立,代宝昌,刘雪松,等.随焊锤击对高强铝合金焊接接头应变分布的影响[J].焊接学报,2003,24(2):27-30.
    [28]Xu wenli,Li qingfen,Men qingguo,et al.Micro-mechanical properties of 2219 welded joints with twin wire welding[J].China Welding,2006,15(3):24-28.
    [29]Xu wenli,Tian xitang,Liu xuesong,et al.A new method for welding aluminum alloy LY12CZ sheet with high strength[J].China Welding,2001,10(2):129-134.
    [30]Xu wenli,Fan Chenglei,Fan Hongyuan,et al.New development in welding thin-shin aluminum alloy structures with high strength.[J].China Welding,2004,13(1):27-30.
    [31]方洪渊,董志波,徐文立.随焊锤击防止薄板焊接热裂纹的工艺研究[J].焊接,2002,(3):17-20.
    [32]张伏.随焊锤击设备及工艺研究[D].保定:河北农业大学,2004.
    [33]颜海涛.电磁锤随焊锤击对焊接应力及焊接接头质量的影响[D].保定:河北农业大学,2006.
    [34]赵建国.电磁锤随焊锤击控制系统的研究[D].保定:河北农业大学,2006.
    [35]Prokhorov N N.Problems of the strength of metals in the process of solidification during welding.Welding Production,1956(6):5-11.
    [36]Q.Guan,D.L.Guo,C.Q.Li,et al.Low stress non-distortion welding-a new technique for thin materials[J].Welding in the World,1994,33(3):160-167.
    [37]徐文立,刘雪松,田锡唐,等.随焊锤击对高强铝合金焊接接头应变分布的影响[J].焊接学报,2003,24(2):27-31.
    [38]范成磊,方洪渊,陶军,等.随焊冲击碾压控制焊接应力变形防止热裂纹机理[J].清华大学学报,2005,45(2):159-162.
    [39]范成磊,方洪渊,田应涛,等.随焊冲击碾压对LY12CZ铝合金接头组织和性能的影响[J].材料工程,2004,(10):24-28.
    [40]范成磊,方洪渊,陶军,等.随焊冲击碾压控制平面封闭焊缝残余变形研究[J].哈尔滨工程大学学报,2005,26(2):238-241.
    [41]王者昌.关于焊接残余应力消除原理的探讨[J].焊接学报.2001,21(2):55-58.
    [42]汪建华.焊接数值模拟技术及其应用[M].上海:上海交通大学出版社,2003.
    [43]张建华,郝建军,马跃进.铸铁焊补工艺[J].工程机械与维修,2001,(7):96-97.
    [44]中国机械工程学会焊接学会.焊接手册(第三卷)[M].北京:机械工业出版社,2001.
    [45]杜挺,张洪平.稀土-铁系超磁致伸缩材料的应用研究[J].金属功能材料,1997,(4):173-176.
    [46]朱厚卿.稀土超磁致伸材料的应用[J].应用声学,1998,17(5):310-312.
    [47]李臻,郑修麟.经锤击后的16Mn钢对焊件的疲劳寿命估算[J].焊接学报,1997,18(3):151-158.
    [48]张礼林,胡林峰,冯源.电控共轨燃油系统高速电磁铁的研制[J].现代车用动力,2006,124(4):1-6.
    [49]于凤坤.随焊锤击设备自动控制系统的研究[D].保定:河北农业大学,2007.
    [50]张正原,胡娓.电磁阀设计中电磁力自动计算方法[J].现代机械,2001,(3):20-23.
    [51]刘飞,刘新正,张蕊.Matlab在电磁铁设计计算中的应用[J],2004,(7):8-10.
    [52]刘青,浅谈焊接夹具的特点和结构要求[J],汽车技术,1994,(2):60.
    [53]王政.焊接工装夹具及变位机械[M].北京:机械工业出版社,2001.
    [54]熊健民,周金枝,余天庆.厚板焊接中残余应力的分布规律[J].湖北工学院学报,1997,12(3):5-10.
    [55]陆才善.残余应力测试-小孔释放法[M].西安:西安交通大学出版社,1991.
    [56]朱甫金,陶宝祺.小孔法测量正交各向异性材料残余应力[J].复合材料学报,1998,15(2):93-97.
    [57]裴恰,包业峰,唐慕尧.盲孔法测定时计算公式中A,B值的研究[J].机械强度,1997,19(1):18-21.
    [58]王建花,钱林方,袁人枢.小孔释放法测纤维增强复合材料残余应力的释放系数[J].材料科学与工程学报,2007,25(2):211-213.
    [59]李强.锤击法消除焊接应力的研究[D].济南:山东大学,2001.
    [60]霍立兴.焊接结构工程强度[M].北京:机械工业出版社,1995.
    [61]汪大年.金属塑性成形原理[M].北京:机械工业出版社,1985.
    [62]束德林.金属力学性能[M].北京:机械工业出版社,1994.
    [63]程友胜.焊接应力和焊接变形的论述[J].煤矿机械,2003,(3):59-60.
    [64]李刚.焊接应力与焊接变形控制[J].水利水电技术,2004,35(6):46-47.
    [65]Maddox S J.Fatigue of steel welds hammer peened under load[J].Welding in the World,1998,41(4):243-349.
    [66]陈世昌,周云麟.锤击法消除焊接应力及其应用[J].冶金建筑技术与管理,1990,(4):22-26.
    [67]李炯辉.钢铁材料金相图谱[M].上海:上海科学技术出版社,1981.
    [68]吕德林.焊接金相分析[M].北京:机械工业出版社,1987.
    [69]赵振东.焊后热处理对2.25Cr-1Mo钢堆焊处显微组织及剥离开裂的影响[J].国外金属热处 理,1999,(1):20-24.
    [70]J.Tusek,Z.Kampus,M.Suban.Welding of tailored blanks of different materials[J].Journal of Materials Processing Technology,2001,119(1-3):180-184.
    [71]吴会强,冯吉才,何景山,等.焊接工艺对高铌Ti3Al合金电子束焊接接头显微组织和显微硬度的影响[J].中国有色金属学报,2004,14(8):1313-1317.
    [72]黄开志.显微硬度工作基准装置测量不确定度评定[J].宇航计测技术,2004,4(4):28-32.
    [73]束倩茜,戴嘉维.硬质薄膜显微硬度测量中的载荷选择[J].电子显微学报,2002,21(5):635-636.
    [74]郭士文,D.O.Northwood.纳米级超显微硬度法对镉变形行为的研究[J].东北大学学报,1999,20(2):169-172.
    [75]S.S.Campos,E.V.Moralesl,H.-J.Kestenbach.Detection of interphase precipitation in microalloyed steels by microhardness measurements[J].Materials Characterization,2004,52(4):379-384.
    [76]文静,屈金山,谢君,等.15CrMoR钢材的焊接接头组织及其硬度分析[J].西华大学学报(自然科学版),2006,(7):35-37.
    [77]吴言高,李午申,邹宏军,等.焊接数值模拟技术发展现状[J].焊接学报,2002,23(3):89-92.
    [78]Ushio M,Fan D.A method of estimating the space-charge voltage drop for thermionic arc cathodes[J].J.Phys.D,Appl.Phys,1994,27(3):561-566.
    [79]Ushio M.Proc.metallo-thermo-mechanics application to phase transformation incorporated processes[A].Theoretical prediction in joining and welding[C].Osaka,1996.89-111.
    [80]Yurioka N,Koseki T.Modelling activities in Japan[A].Proc.Theoretical Prediction in Joining and Welding[C].Osaka,Japan,Nov.1996:39-58,
    [81]Nied H A.The finite element modeling of the resistance spot welding process[J].Welding Journal,1984,63(4):123-132.
    [82]刘兴龙.锤击消除焊接应力的数值模拟[D].济南:山东大学,2005.
    [83]金大志,石磊,彭康,等.陶瓷/金属焊接应力的数值计算与分析[J].焊接,2006(9):47-49.
    [84]李栋才.焊接应力[M].西安:陕西科学技术出版社,1999.
    [85]周建新,李栋才,徐宏伟.焊接残余应力数值模拟的研究与发展[J].金属成形工艺,2003(6):62-64.
    [86]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,1999.
    [87]邓德安,梁伟,罗宇,等.采用热弹塑性有限元方法预测低碳钢钢管焊接变形[J].焊接学报,2006,27(1):76-80.
    [88]谭险峰,张华.悍接温度场和应力场的热弹塑性有限元分析[J].塑性工程学报,2004,11(5):71-74.
    [89]陈丙森.计算机辅助焊接技术[M].北京:机械工业出版社.1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700