激光快速成形金属零件力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光快速成形技术是近十年来迅速发展起来的一项先进实体自由成形技术,该技术综合快速原型技术与激光熔覆技术的优点,能够实现高性能致密金属零件的直接近终成形,应用前景十分广阔。目前该技术研究尚处于实验阶段,存在许多基础问题亟待解决,本文从实验角度对激光快速成形金属零件的开裂行为、残余应力分布特性及力学性能进行了研究。
     采用微观测试分析方法对激光快速成形过程熔覆层裂纹的形成机理及影响因素进行研究。研究表明:对镍基自熔合金,熔覆层开裂属于冷裂纹范畴,是熔覆合金低延性及熔覆层内应力双重作用的结果;对316L不锈钢合金,熔覆层开裂属于热裂纹范畴,是熔覆合金在凝固时晶界处的残余液相受熔覆层拉伸应力作用所导致的液膜分离的结果。两种开裂都说明激光快速成形过程受热不均匀所引起的拉伸应力是产生熔覆裂纹的外在原因。
     采用小孔释放法研究激光快速成形薄板的二维残余应力分布。结果发现作用在成形件上的主要残余应力为平行于激光扫描方向的残余应力σ_y,以拉应力为主:而垂直激光扫描方向的残余应力σ_z作用相对较小。具体表现为:
     对Ni20合金,在有限熔覆高度内,随着熔覆层的增加,σ_y开始由靠近基材处的压应力向拉应力转变,并且拉应力数值逐渐增大,表明随激光能量的不断输入,残余应力积累效应增大:σ_z基本表现为拉应力,数值相对较小,随着熔覆层的增加,拉应力数值逐渐减小,有改变为压应力的趋势。
     对316L不锈钢合金,σ_y和σ_z在整个熔覆高度上以拉应力作用为主。开始熔覆阶段,由于残余应力的不断积累,σ_y在靠近基材一侧表现为较大的拉应力,当到达一定的熔覆高度后,随着熔覆层的进一步增加,σ_y开始有所回落,逐渐趋于稳定,保持较低的拉应力状态:σ_z数值在整个熔覆高度上相对较小,随着熔覆层的增加,拉应力数值逐渐减小,有改变为压应力的趋势。
     在裂纹和残余应力分析的基础上,研究激光快速成形件的力学性能。对激光快速成形沉积态试样进行室温拉伸性能测试,结果显示在没有消除残余拉应力的情况下,Ni20和316L不锈钢激光快速成形件的强度与塑性已经接近甚至超过同类合金的传统锻压加工水平。
Laser Rapid Forming (LRF) is a new and advanced Solid Freedom Fabrication technology which has been developed rapidly in the recent ten years. This technology integrates virtues of Rapid Prototyping and Laser Cladding technology, and can attain directly high performance and dense metal part without mould, with wider application foreground. This paper studies mechanical behavior of Laser Rapid Forming metal part by experiment, including cracking behavior, residual stress distribution and mechanical property.
    The forming mechanism and influencing factors of crack in laser rapid forming cladding layers are investigated through micro measurement and analysis methods. For nickel-base self-fused alloys, the cracking of cladding layers belongs to the cold crack domain, Which is the result of collective effect of low ductility of such alloys and residual stress induced in cladding layers. For 316L stainless steel alloy, the cracking of cladding layers belongs to the hot crack domain, Which is mainly caused by the separation of liquid films in the grain boundary under the effect of tensile stress in cladding layers. Two kinds of crackings show that the tensile stress induced for asymmetric temperature distribution during laser rapid forming processing is the external reason which results in cracks.
    The planar residual stresses of Laser Rapid Forming sheet samples are measured by the hole-drilling method. The results show that the residual stress y parallel to laser scanning direction is the major residual stress of samples, which is positive. Comparably, the residual stress z perpendicular to laser scanning direction is smaller.
    For Ni20 alloy, In the limited cladding height, y is negative near substrate and begins to turn to tensile stress as cladding layers increase, the tensile stress numerical value increases gradually, which implies that residual stress accumulates as laser energy inputs continuously. Z is positive in cladding layers, numerical value is small. The tensile stress decreases as cladding layers increase, has a trend to turn to compressive stress.
    For 316L stainless steel alloy, In the whole cladding height, y and z are positive. Because residual stress accumulates gradually, y is larger tensile stress near substrate, above one height, y decreases and goes steady as cladding layers increase more,
    
    
    holding low tensile stress state. In the whole cladding height, z numerical value is small, the tensile stress decreases as cladding layers increase, has a trend to turn to compressive stress.
    Based on the analysis of crack and residual stress, mechanical property of Laser Rapid Forming sample is studied. By measuring the room temperature mechanical property of LRF Ni20 and 316L sample which endure residual tensile stress, the results show the room temperature yield strength and ultimate strength have approach or exceed the traditional forging level for the same alloy.
引文
[1] M. L. Griffith et al. Understanding thermal behavior in the LENS process. Materials and Design 20, 1999: 107-113
    [2] D. M. Keiche et al. Using the Laser Engineered Net Shaping (LENS) Process to Produce Complex Components from a CAD Solid Model. SPIE, 2293: 91-97
    [3] Eric Schlienger et al. Near Net Shape Production of Metal Components Using LENS. Proceedings of the Third Pacific Rim International Conference on Advanced Materials and Processing; Vol Ⅰ, Honolulu, Hawaii, USA, July 12-16, 1998. 1581-1586
    [4] P. C. Collins et al. Fraser. The influence of the enthalpy of mixing during the laser deposition of complex titanium alloys using elemental blends. Scripta Materialia 48. 2003: 1445-1450
    [5] Gary K. Lewisa, Eric Schlienger. Practical considerations and capabilities for laser assisted direct metal deposition, Materials and Design 21. 2000: 417-423
    [6] D. Srivastava et al. The effect of process parameters and heat treatment on the microstructure of direct laser fabricated TiAl alloy samples. Intermetallics 9. 2001: 1003-1013
    [7] X. Wu, J. Mei. Near net shape manufacturing of components using direct laser fabrication technology. Journal of Materials Processing Technology 135. 2003: 266-270
    [8] Katrin Ischwendner et al. Direct laser deposition of alloys from elemental powder blends. Scripta Materialia 48. 2003: 1123-1129
    [9] M. Gaumann et al. Single-crystal laser deposition ofsuperalloys: processing-microstructure maps. Acta mater. 2001: 1051-1062
    [10] Shawn M. Kelly. Characterization and thermal modeling of laser formed Ti-6Al-4V. Thesis. 2002
    [11] M. Gaumann et al. Epitaxial laser metal forming: analysis of microstructure formation. Materials Science & Engineering A; 1999, Vol. A271: 232-241
    [12] Suman Das et al. Processing of titanium net shapes by SLS/HIP. Materials and Design 20. 1999: 115-121
    [13] Suman Das et al. SLS/HIP-A Direct Freeform Fabrication Process for High Performance Metal Components. Proceedings of the Third Pacific Rim International Conference on Advanced Materials and Processing, Vol.Ⅰ, Honolulu, Hawaii, USA, July, 1998: 1587-1594
    [14] Fritz B. Prinz, Lee E. Weiss. Novel applications and implementations of shape deposition manufacturing. Proceedings of the Third Pacific Rim International Conference on Advanced Materials and Processing, Vol.Ⅰ, Honolulu, Hawaii, USA, July, 1998: 1547-1554.
    [15] E. Weiss et al. Shape deposition manufacturing of heterogeneous structures. SME Journal of Manufacturing Systems. 1997, Vol. 16: 239
    [16] David Abbott, Frank Arcella. Laser forming titanium components. Advanced Materials & Processes. May, 1998: 29-30
    [17] F. G. Arcella et al. Titanium Alloy Structures for Airframe Application by the Laser Forming Process. AIAA, Structural Dynamics & Materials Conference. 2000: 1465-1473.
    
    
    [18] B. Snow et al. Rapid solidification processing of superalloy using high power lasers. Superalloys, Proceedings Fourth International Symposium, Alaitors Publishing Div, Baton Rouge, LA, 1980: 189-203
    [19] Simon Pickering, AeroMet implementing novel Ti process. Metal Powder Report, 1998: Vol 53, No 2: 24-26
    [20] J. Mazumder et al. Closed loop direct metal deposition: art to part. Optics and Lasers in Engineering. 2000, 34: 397-414
    [21] Xue Let al. Free-form laser consolidation for producing metallurgicaly sound and functional components. Journal of Laser Application. 2000, 12(4): 160-165
    [22] Griffith ML et al. Multimaterial processing by LENS. Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX: University of Texas at Austin Publishers, August, 1997
    [23] Smugeresky J E et al. Laser engineered net shaping LENS process: optimization of surface finish and microstructural properties. Proceedings of the World Congress on Powder Metallurgy and Particulate Materials, Chicago, IL Princeton, N J: Metal Powder Industries Federation, June, 1997.
    [24] Griffith ML et al. Thermal behavior in the LENS process. Solid Freeform Fabrication Symposium Proceedings. Austin, TX: University of Texas at Austin Publishers, August, 1998
    [25] Stuart F. Brown et al. How hot lasers are taming titanium. Industrial Management & Technology. Vol. 141, No. 4
    [26] F. G. Arcella, F. H. Froes. Producing titanium aerospace components using laser forming. Journal of Metals. 2000, Vol 52, No 5: 28-30
    [27] C. L. Atwood, M. L. Griffith, L. D. Harwell et al. Laser spray fabrication for net-shape rapid product realization LDRD. Sandia Report, 1999
    [28] 黄卫东等.金属材料激光立体成形技术.材料工程.2002,No 3
    [29] 李延民.激光立体成形工艺特性与显微组织研究.西北工业大学博士论文.2001.6
    [30] 冯莉萍等.激光金属成形定向凝固显微组织及成分偏析研究.金属学报.2002,Vol 38,No 5
    [31] 薛春芳等.激光直接烧结成形金属零件试验研究.应用激光.2003,Vol 23,No 3
    [32] 张永忠等.金属零件的激光直接成形研究.稀有金属材料与工程.2001,Vol 25,No 2
    [33] 王华明.金属材料激光表面改性与高性能金属零件激光快速成形技术研究进展.航空学报.2002,Vol 23,No 5
    [34] 钟敏霖等.激光快速柔性制造金属零件基本研究.应用激光.2001,21(2)
    [35] 冯莉萍.激光金属定向凝固研究.西北工大学博士论文.2002.8
    [36] 郭伟.激光熔覆的研究发展状况.宇航材料工艺.1998,No 1
    [37] 张魁武.国外激光熔覆材料、工艺和组织性能的研究.金属热处理.2002,Vol 27,No 6
    [38] 刘永长等.激光熔覆技术的研究现状.粉末冶金技术.1998,Vol 16,No 3
    [39] Y. P. Kathuria. Some aspects of laser surface cladding in the turbine industry, Surface and Coatings Technology 132; 2000: 262-269
    [40] J. M Yellup. Laser cladding using the powder blowing technique. Surface and Coatings Technology 71. 1995: 121-128
    [41] 李文.激光熔覆技术及其界面问题发展评述.金属热处理学报.1997,Vol 18,No 2
    
    
    [42] 刘江龙等.高能束热处理.机械工业出版社,1997
    [43] 张庆茂.送粉激光熔覆层质量与工艺参数之间的关系.焊接学报.2001:Vol 22,No 4
    [44] 刘喜明.激光熔覆工艺参数和熔覆层参数间的关系.金属热处理学报.1998,Vol 19,No 1
    [45] 刘喜明.送粉式激光熔覆获得最佳熔覆层的必要条件极其影响因素.中国激光.1999:Vol A 26.No 5
    [46] 刘喜明.激光熔覆工艺参数对熔覆层组织性能的影响.金属热处理学报.1999:Vol 20,No 1
    [47] Jehnming Lin et al. Concentration mode of the powder stream in coaxial laser cladding Optics & Laser Technology 31. 1999: 251-257
    [48] Jehnming Lin et al. Clad profiles in edge welding using a coaxial powder filler nozzle Optics & Laser Technology 33. 2001: 267-275
    [49] Jehnming Lin Coaxial laser cladding on an inclined substrate. Optics & Laser Technology 31. 1999: 571-578
    [50] M. Qian. Parametric studies of laser cladding processing. Journal of Materials Processing Technology 63. 1997: 590-593
    [51] 姚宁娟.大面积激光熔覆的工艺研究.中国表面工程.2002,Vol 1,No 2
    [52] L. Sexton. Laser cladding of aerospace materials. Journal of Materials Processing Technology 122. 2002: 63-68
    [53] Gnanavuthu et al. Laser surface treatment. Optical Engineering. 1980, No19
    [54] 宋武林.真空激光熔覆的研究.激光技术.1999,Vol 21,No 4
    [55] 祝柏林等.激光熔覆层开裂问题的研究现状.金属热处理.2000,No 7:25-30
    [56] 郭伟等.激光熔覆技术的应用及其存在的主要问题.航天工艺.1997,Nol:25-28
    [57] 宋武林等.激光熔覆层结晶方向对覆层裂纹方向和开裂敏感性的影响.中国激光.1995,Vol 22.No 4
    [58] 宋武林等.激光熔覆层热膨胀系数对其开裂敏感性的影响.激光技术.1998,Vol 22,No 1
    [59] 钟敏霖.45kW高功率CO_2激光熔覆过程中裂纹行为的实验研究.应用激光.1999,Vol 19,No 5
    [60] 钟敏霖.NiCrSiB合金高功率激光送粉熔覆裂纹形成的敏感因素.应用激光.2000,VolA 20.No 5
    [61] 刘其斌等.高温合金激光熔覆涂层中裂纹防治方法的研究.贵州工业大学学报.2000,Vol 29.No 5
    [62] 奕景飞等.激光熔覆参数对灰铸铁激光熔覆层裂纹的影响.应用激光.2002,Vol 20,No 2
    [63] 傅戈雁等.激光熔覆层开裂行为的影响因素及控制方法.光学技术.2000,Vol 26,No 1
    [64] J. Hernandez et al. Laser surface cladding and residual stress [C]. Proc. 3rd International Conference on laser in Manufacturing 3-5 June. 1986, Paris France
    [65] A. Frenk et al. Influence of an intermediate layer on the residual stress field in a laser clad. Surface and Coatings Technology. 1991, Vol. 45: 435-441
    [66] M. Pilloz et al. Residual stress induced by laser coating: phenomenological analysis and predictions. Mater Sci.1992, 27: 1240-1244
    [67] 刘其斌等.后续热处理对激光熔铸层残余应力的影响.贵州工业大学学报.1996,Vol 25,
    
    NO 4
    [68] 邓琦林.激光熔覆成形金属零件中微裂纹的减少和消除.机械工程学报.2002,Vol 38,增刊
    [69] P. J. Maziasz et al. Residual stress and microstructure of H13 steel formed by combining two different direct fabrication methods. Residual stress. 1998, Vol 39, No 10
    [70] K. Dai et al. Thermal and stresses modeling of multi-material laser processing. Acta mater. 49. 2001: 4171-4181
    [71] N. W. Klingbeila. Residual stress-induced warping in direct metal solid freeform fabrication, International Journal of Mechanical Sciences 44. 2002: 57-77
    [72] A. H. Nickel, D. M. Barnett, F. B. Prinz. Thermal stresses and deposition patterns in layered manufacturing. Materials Science and Engineering A317. 2001: 59-64
    [73] J. Mazumder et al. The direct metal deposition of H13 tool steel for 3-D components. JOM. 1997, Vol 49, No 5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700