异厚度铝合金激光拼焊数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焊接是一个涉及电弧物理、传热、冶金和力学的复杂过程。焊接现象包括焊接时的电磁、传热过程、金属的熔化和凝固、冷却时的相变、焊接应力和变形等。一旦能够实现对各种焊接现象的计算机模拟,我们就可以通过计算机系统来确定焊接各种结构和材料的最佳设计、最佳工艺方法和焊接参数。
     利用ANSYS软件对异厚度铝合金激光拼焊的温度场进行三维瞬态有限元分析。为了提高计算精度和效率,采用过渡网格划分形式划分网格以保证焊缝处网格足够细小。选取高斯函数分布的热源模型,利用ANSYS软件的APDL语言编写程序实现移动热源的加载。在模拟中既考虑一般激光焊接中材料热物理性能参数的温度相关性、熔化潜热、边界条件、等离子体、熔池对流、保护气体等对温度场的影响,又考虑异厚度铝合金激光拼焊的特性。利用高温热电偶检测异厚度铝合金激光拼焊过程中的温度场,将模拟值与实测值进行对比分析,结果表明模拟值与实测值吻合良好。
     采用间接法模拟应力应变场。定义弹性模量E,热膨胀系数α,泊松比μ等随温度变化的材料力学参数值。指定塑性分析选项为经典的双线性随动强化(BKIN)。边界条件约束焊件的自由度,以模拟夹具的作用。模拟结果显示,由于厚度不同,薄厚两板应力应变场存在差异,薄板焊缝附近的应力场范围较大,变形比厚板复杂且比厚板大。利用小孔释放法检测异厚度铝合金激光拼焊板的残余应力,将模拟值与实测值进行对比分析,结果显示模拟值与实测值吻合良好。
     对异厚度铝合金激光拼焊的熔化过程进行分析。选用三种不同的热源模型:高斯面热源、体热源、组合热源,利用ANSYS软件对异厚度铝合金激光拼焊的温度场进行三维瞬态有限元分析,观察三种热源模型形成的熔池形状(即焊缝形状)。结果表明:采用组合热源模型模拟的焊缝形状与实际拼焊的焊缝形状最为接近,证明分析的合理性。
     利用异厚度铝合金激光拼焊间隙填充模型,建立偏移量与间隙、工件厚度比、激光光束半径的定量关系式,关系式中偏移量与间隙、激光光束半径成正比,与工件厚度比成反比。在异厚度铝合金激光拼焊工艺实验中,选取不同的工件厚度比进行偏移定量关系式的验证实验。实验结果表明:理论计算值与工艺实验值基本吻合。理论计算值可以
    作为异厚度铝合金激光拼焊工艺实验的定量参考值。
Welding is a complicated physicochemical process which involves in electromagnetism, heat transferring, metal melting and freezing, phase-change welding stress and deformation and so on. In order to get high quality welding structure, these factors have to be controlled. If welding process can be simulated with computer, the best design, procedure method and optimum welding parameter can be obtained.
    By using ANSYS soft, a 3D temperature field of aluminum alloy for different thickness with laser welding was simulated, In order to improve solution accuracy and efficiency, the transition mesh was used. Gauss function heat source model was chose. ANSYS' APDL to compile program to apply load of moving heat source was used. The effects of temperature-dependence material parameters and potential heat, boundary conditions, plasma, melting pool convection and characteristics of different thickness are considered in the model. By using high-temperature thermocouple, the temperature was measured. It is shown that the simulation results are in accordance with the experimental results.
    The effects of temperature-dependence material parameters were considered in the model. The BKIN was established. Some proper restrictions of displacement were applied for simulating effect of clamps. The result of simulation indicates that, the stress-strain field in the thinner plate is larger than thicker one. Using hole-drilling technique, the residual-stress was measured. It is shown that the simulation results are in accordance with the experimental results.
    Melting characteristics of aluminum alloy for different thickness with laser welding were analyzed. In order to compare to welding line in different welding modes, Gauss function heat source model, body heat source model, and combination heat source model were chose, which stand for the three different welding modes in laser welding respectively. By using ANSYS soft, the 3D temperature field and shape of welding line of aluminum alloy of different thickness on laser welding are simulated. It is shown that the simulation results are in accordance with the combination heat source model.
    The model of gap-filling of different thickness tailored blanks in laser welding was
    introduced. The connection with offset and gap, thickness of work-piece, radial beam of laser was established. The different thickness of work-pieces which were used in laser welding of different thickness tailored blanks. It is shown that the calculative results are in accordance with the experimental results. The calculative results as reference would use in laser welding of different thickness tailored blanks.
引文
[1] M Kotsuna, Qu Yan. Study on porosity formation in laser welds in aluminum alloys(Reportl):effects of hydrogen and alloying elements[J].Welding International,1998,12(12).
    [2] 石崇刚,王雷,朱达仁,等.铝锂合金氩弧焊与激光焊研究[J].南京航空航天大学学报,1996,4:205-207.
    [3] 贺岩松.汽车铝合金零部件的焊接[J].汽车工艺与材料,1994,5:1-3.
    [4] 王家金.激光焊接技术[M].北京:中国计量出版社,1992.
    [5] 焊接手册.焊接方法与设备[M].北京:中国机械工程学会焊接学会,1996.
    [6] 阎禾,钟敏霖.高功率激光加工及应用[M].天津:天津科学技术出版社,1995.
    [7] 王续跃.先进激光加工技术[M].北京:机械工业出版社,1995:12-13.
    [8] 邓树林.汽车制造业的一门高新技术—激光加工[J].激光集锦,1997,5:3-6.
    [9] 李志远.先进连接方法[M].北京:机械工业出版社,2000.
    [10] Akira Matsunawa, Jong-Do KIM. Reduction of porosity and hot cracking by pulse shaping in laser spot welding of aluminum alloys[J].IlW Doc-681-97.
    [11] S. Ramasamy and C.E.Albright.CO2 and Nd:YAG laser welding of 6111-T4 aluminum alloy for automotive applications[J]. Journal Of Laser Applications,2000,12(3):101-115
    [12] 余淑荣,樊丁,陈剑虹,等.铝合金激光剪裁拼焊板技术[J].2003汽车焊接国际论坛论文集,2003:199-303.
    [13] 陈剑虹.汽车连接新工艺—54届国际焊接学会年会综述(1)[J].焊接,2002,(3):5-9.
    [14] Sujit Das. Aluminum Tailor Welded Blanks[J]. Advanced materials and Processes, 2000,157(3).
    [15] H. Zhao and T.Debroy. Weld Metal Composition Change during Conduction Mode Laser Welding of Aluminum Alloys 5182[J].Metallurgical And Materials Transactions A,2001,32B: 163-172
    [16] Spalding, I.L Laser Systems Development[J]. Physics Bulletin,July 1971,402.
    [17] F I Sunders, R H Wagoner. Forming of Tailor-Welded Blanks[J]. Metal Lurgical and Materials Transactions A,1996,(9):2605~2616.
    [18] 陈炳森.计算机辅助焊接技术[M].北京:机械工业出版社,1999,107-168.
    [19] 薛忠明,顾兰,张彦华.激光焊接温度场数值模拟[J].焊接学报,2003,24(2):79-80.
    [20] L. Kampmann and P. Furrer. Aluminum Tailored Blanks-Alloys and Welding Processes[J]. In:Trend in Welding of lightweight automotive and railroad vehicles.IIW Seminar, Wels,Austria,1997:127-133.
    [21] S.Venkat,C.E.Albright,S.Ramasamy, J.EHurley.CO_2 Laser Beam Welding of Aluminum 5754-0 and 6111-T4 Alloys[J].Welding Research Supplement,1997,7:45-53.
    [22] Tomas Forsman. Laser Welding of Tailored Blanks[J]. International Congress on Applications of lasers & Electro-Optics (ICALEO 2002),Scottsdale, Arizona, USA, 2002.
    [23] S.M.Chan. Tailor-welded Blanks of Different Thickness Ratios Effects on Forming Limit Diagrams[J].Journal of Materials Processing Technology,2003:95-101.
    [24] 郭立伟,孙大勇,谷丰,等。不等厚板的两种焊接工艺及接头塑性变形性能[J].哈尔滨理工大学学报,2003,8(2):12-15.
    [25] 梁雪平,苏世怀.汽车拼板的激光焊接[J].钢铁钒钛,1996,17(4):63-69.
    [26] 刘建华,胡伦骥,熊建钢,等.汽车用薄钢板的激光拼焊[J].中国机械工程,1996,7(4):96-98.
    [27] 王炳德,刘莹.拼焊板焊接法及其试验研究[J].机械设计与制造,2002,(2):105-106.
    [28] 郑启光,秦应雄,朱蕴策,等.汽车剪裁板的激光高速拼焊试验研究[J].光学技术,2002,28(5):422-426.
    [29] 瞿丰,邓正才,姚舜,等.汽车拼板的激光焊接的研究.焊接技术,2003,32(5):27-28.
    [30] 余震,曾晓雁.薄板激光拼焊间隙CCD检测系统研究.电焊机,2003,33(4):24-27
    [31] Swift-Hook. Penetration welding with laser[J].Welding Journal,1973,52(11):492-498
    [32] Chande T, Mazumder. Estimating effects of processing conditions and variable properties upon pool shape, cooling rate and absorption coefficient in laser welding[J].Applied Physics, 1984,56(7): 1981-1986
    [33] Goldak A.A new finite element model for welding heat source, Trans. ASME, Metallurgical Transaction,1984,15B(6):229-236.
    [34] Steen W, Dowen J.A point and little source model of laser keyhole welding[J].Applied physics, 1988,21(9): 1255-1260.
    [35] A khter. A method for calculating the fused zone profile of laser keyhole welds[J].physics D:Applied physics,1989,21(1):23-28.
    [36] BasuB,DateAW. Numerical study of steady state and transient laser melting problems-:Characteristics of flow field and heat transfer[J].Heat Mass Transfer, 1990,33 (6): 1149-1163.
    [37] SontiN, Amateau MF. Numerical heat trans-fer[M].Part A,1989,16(3):351-370.
    [38] Bonollo F. Model for CO2 laser welding of stainless steel,Ti and Ni:parametric study [J].Materials Science and Technology, 1993,9(2): 1137-1145.
    [39] Weips, Shian, etal. Three-di-mensional analytical temperature field and its application to solidification characteristics in high-of Low-power-density-beam welding.[J].Heat Mass Transfer,1997,4 0(10):2283-2292.
    [40] Lampa C, KaplanA. An analytical thermodynamic model of laser welding[J].physics D:Applied physics,1997,30(9): 1293-1299.
    [41] Sudnik W, Radaj D. Numerical simulation of weld pool geometry in laser beam welding[J].physics D:Applied physics,2000,33(6):662-671.
    [42] Jeng JY, MauTF. Predication of laser butt joint welding parameters using back propagation and learning vector quantization networks[J] .Materials Science and,2000,99(1):207-218.
    [43] 徐九华,罗玉梅,张靖周.高能束流小孔焊接模式传热过程的数值模拟[J].中国激光,2000,27(2):174-176.
    [44] 郑启光,辜建辉,王涛,等.激光深熔焊接的熔池行为与焊接缺陷的研究[J].激光技术,2000,24(2):90-94.
    [45] 邹德宁,雷永平,黄延禄,等.移动热源条件下熔池内流体流动和传热问题的数值研究[J].金属学报,2000,36(4):387-390.
    [46] 刘顺洪,万鹏腾,胡良果,等.薄板激光焊接温度场的数值研究[J].电焊机,2001(8):16-19
    [47] 蔡志鹏,赵海燕,鹿安理,等.焊接数值模拟中分段移动热源模型的建立及应用[J].机械工程学报,2002,13(3):208-210.
    [48] 薛忠明,顾兰,张彦华.激光焊接温度场数值模拟[J].焊接学报,2003,24(2):79-82.
    [49] 顾兰,薛忠明,张彦华.激光深熔温度场数值模拟热源模型分析[J] 电焊机,2004(9):4-7.
    [50] 何小东,张建勋,裴怡,等.钛合金薄板激光焊接和TIG焊接残余应力数值模拟[J].机械工程材料,2005,29(3):25-28.
    [51] K.Masubuchi. Prediction and control of residual stresses and distortion in welded structures[J].Proc. Theoretical prediction in Joining and Welding,1996,71-88.
    [52] 李景涌.有限元法[M].北京:北京邮电大学出版社,1999,3-6
    [53] 孔祥谦.热应力有限元分析[M].上海.上海交通大学出版社,1999,1-221.
    [54] 颜云辉,谢里阳,韩法凯.结构分析中的有限单元法及其应用[M].沈阳.东北大学出版社,2000,45-50.
    [55] 谭建国.使用ANSYS6.0进行有限元分析[M].北京:北京大学出版社,2002,1-13
    [56] 王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,2000,1-3.
    [57] ANSYS. inc. ANSYS thermal analysis guide[M]. ANSYS. Inc,2001.
    [58] ANSYS. inc. ANSYS nonlinear analysis guide[M]. ANSYS. Inc,2001.
    [59] 龚曙光.ANSYS工程应用实例解析[M].北京:机械工业出版社,2003,312-327
    [60] 张文钺.焊接传热学[M].北京:机械工业出版社,1989,1-142.
    [61] 莫春立.焊接热源计算模式的研究进展[M].焊接学报,2001,22(3):93-96.
    [62] 刘高腆.温度场的数值模拟[M].重庆:重庆大学出版社,1990,1.
    [63] 田荣璋.王祝堂.铝合金及其加工手册[M].中南大学出版社,2000,248-249.
    [64] 陈健华.实验应力分析[M].中国铁道出版社,1984.
    [65] 吉林工业大学农机系一机部农业科学研究院.应变片电测技术[M].机械工业出社,1978.
    [66] 唐慕尧,黄蓝林.焊接对接接头残留应力的盲孔法测定——焊接残余应力测定[M].北京:机械工业出版,1981.
    [67] 陆才善.钻孔法的原理介绍[C].全国残余应力测试技术座谈会论文,1983.
    [68] 唐慕尧,黄蓝林,孟繁森,等.焊接残余应力测定(Ⅰ)——盲孔法的基本原理、方法[C].焊接协会第三届全国年会A类论文,西安交通大学《科学技术报告》,79—81.
    [69] 上海交通大学焊接教研室.测定焊接残余应力的中心钻孔法——基本原理及测试技术[C] 焊接协会第三届全国年会A类论文,1978.
    [70] 陈彦宾,现代激光焊接技术[M].科学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700