基于新型耦合器复介电常数测试系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代电子信息技术飞速发展,新型材料的不断涌现对材料介电特性的研究提出了愈来愈迫切的需求。电介质材料特性的研究和测量是现代基础科学研究中的重要组成部分,也广泛应用在电子、通信、生物、医疗、能源等各个工程领域。研究设计制造介质介电常数测试系统是材料介电特性研究中的关键一环。本文就基于新型耦合器的宽频多点复介电常数测试系统的设计和实现以及氧化石墨烯材料的介电特性测试进行了研究探讨,主要完成了以下几点理论与实验技术上的工作与创新:
     1)在测试原理研究上,从电磁场场理论出发,依据谐振腔微扰法复介电常数测试理论,系统地推导了介质含有损耗情形下的复介电常数微扰法理论计算公式,并将其具体应用在本文采用TE011模式圆柱谐振腔中;从微波网络模型出发,根据谐振腔二端口网络等效电路模型,将其推广至单端口谐振腔体系,系统地推导基于|S11|谐振曲线的半功率点分贝值的精确公式,进而获取单端口反射式谐振系统的品质因数。利用CST仿真软件,对单端口谐振系统进行三维电磁模拟,通过模拟的|S11|参数信息和场分布信息对公式进行验证。
     2)根据谐振腔系统耦合理论,通过矢量网络分析仪获取S11的相位信息,研发了判断谐振系统耦合状态的算法,在基于矢量网络分析仪的谐振系统测试中可以迅速、便捷的判断耦合状态,得到谐振系统的耦合系数,进而可以获取复介电常数测试所需要的谐振腔本征品质因数。
     3)针对谐振腔微扰法复介电常数测试系统中的模式干扰问题,设计研制新型结构的耦合器。新型耦合器结构简单,成本低廉,调谐便捷。在无需外加模式抑制辅助结构情形下,实现了圆柱腔谐振系统在宽频多点上电磁信号有效耦合,同时干扰模式得到有效抑制,在测试频点附近的有效带宽内保证纯净单一的TE011模式。另一方面运用CST三维电磁仿真软件,对谐振腔及其耦合器设计进行模拟验证,观察在测量频点附近有效测试带宽内的模式分布及谐振曲线。
     4)将基于新型耦合器的复介电常数测试系统的三维电磁设计,谐振腔体、耦合器以及升降系统的机械结构设计,实验测试数据传输和计算三部分集成在以Visual2005编制的界面框架内,完成了从最初电磁设计到机械加工,再到实验测试的整个系统流程。
     5)根据理论模型设计加工了基于新型耦合器的TE011圆柱谐振腔微扰法复介电常数测试系统,将谐振腔、耦合器、矢量网络分析仪、机械升降系统连接构建了复介电常数测量系统,制定合理的测试流程,制备了聚乙烯、尼龙6、有机玻璃、聚四氟乙烯等标准测试样品,判读谐振系统的振荡模式,测量谐振系统的特性参数,分析影响测试精度的主要因素。
     6)采用改进的Hummers法制备了氧化石墨烯测试样品,运用本文基于新型耦合器的复介电常数测试系统对其进行了宽频多点的复介电常数测试。
With the rapid developing of the modern electronic information technology, theresearch and measurement of dielectric material plays an important role in the researchof basic science, and is also widely applied in the electronics, communications,biotechnology, medical treatment and energy engineering. The design and analysis ofdielectric permittivity test system is the key role in the research of the material dielectricproperties. In this paper, based on the new coupler the design of broadband multi-pointcomplex permittivity test system has been researched and dielectric properties of thegraphene oxide have been measured. The following several theoretical and experimentalresults which bring forth new ideas and innovation have been completed:
     1) From the theory of the electromagnetic field, the formula of the dielectric losscase complex permittivity perturbation method based on cavity perturbation theory hasbeen derived, and applied in the TE011mode cylindrical cavity. From the network modelof two-port network equivalent circuit model, we extend it to the single-port resonatorsystem, and systematically derive the precise formulas based on S11half-power pointvalue. Then we can obtain the quality factor of the resonant system. Throughthree-dimensional electromagnetic simulation using CST software, the formula isverified by the simulated S parameter and field distribution.
     2) According to the couple theory of the cavity system, the algorithm to judge thecouple state of the resonant system has been proposed by S11phase information. Thecouple state of the system can be quickly, conveniently judged based on the networkanalyzer, and get the coupling coefficient of the system. Then the intrinsic quality factorof the system can be got.
     3) For the resonant cavity mode interference problems, the design and developmentof the novel coupler has been proposed. The novel coupler has simple stucture and islow cost and convenient tuning. In the case of no external structure, the effectivecoupling of the electromagnetic signal of a high-speed multi-point in the resonancesystem can be achieved, at the same time interference mode can be effectivelysuppressed in the test frequency. The cavity coupler have been simulated and validated through CST software in the broadband multi-point frequencies.
     4)3D electromagnetic design, mechanical structure design, experimental test, datatransmission and computing interface have been integrated within the framework of theVisual2005, which include the cavity, couplers and lift system. The soft can completethe entire system flow from the initial electromagnetic design to the mechanicalprocessing, and experimental testing.
     5) Based on the theoretical model we have constructed the TE011cylindrical cavitycomplex permittivity test system by the perturbation method, which include the cavity,coupler, vector network analyzer, mechanical lifting system. We have developed areasonable test process, and build standard test samples. The main factors whichpossibly affect the test system accuracy have been analyzed.
     6) The graphene oxide test samples have been prepared by the way of the improvedHummer method, the complex permittivity of graphene oxide has been measured inbroadband multi-point frequencies.
引文
[1] K. Chang. Encyclopedia of RF and microwave engineering[M]. Hoboken, N J,2005,3948-3964
    [2] W. Yang, K. R. Ratinac, S. P. Ringer, et al. Carbon nanomaterials in biosensors: Should you usenanotubes or graphene?[J]. Angew. Chem. Int. Ed.2010(49):2114-2138
    [3] A.K. Geim, K S Novoselov. The rise of graphene[J]. Nat Mat,2007(6):183-191
    [4] G. Brumfiel. Graphene gets ready for the big time[J]. Nature,2009(458):390-391
    [5] G. Deligeorgis, M. Dragoman, D. Neculoiu, et al. Microwave switching of graphene field effecttransistor at and far from the Dirac point[J]. Applied physics letters,2010(96),103105:1-3
    [6] M. Dragoman, D. Dragoman, F. Coccetti, et al. Microwave switches based on graphene[J].Journal of applied physics,2009,105,054309:1-3
    [7] A. K. Geim, et al. Graphene: status and prospects[J]. Science,20093,24:1530
    [8] S. Stankovieh, D. A. Dikin, G. H. B. Dommett, et al.[J]. Nature,2006,442:282-286
    [9] K. S. Novoselov, A. K. Geim, S. V. Morozov, et al. Electric field effect in atomically thin carbonfilms[J]. Science,2004,306:666-669
    [10] V. Meera, G. S. Setlur. Conductivity tensor of graphene through reflection of microwavemeasurements[J]. J. Phys. D: Appl. Phys,2009,42,055403:1-10
    [11] F. T. Vasko, I. V. Zozoulenko. Conductivity of a graphene strip: width and gate-voltagedependencies[J]. Applied physics letters,2010,97,092115:1-3
    [12] Seon-Myeong Choi, Seung-Hoon Jhia. Electronic property of Na-doped epitaxial graphenes onSiC[J]. Applied physics letters,2009,94,153108:1-3
    [13] V. P. Gusynin, S. G. Sharapov, J. P. Carbotte. Unusual microwave response of diracquasiparticles in graphene[J]. PRL,2006,96,256802:1-4
    [14] C. Wang, X. Han, P. Xu, et al. The electromagnetic property of chemically reduced grapheneoxide and its application as microwave absorbing material[J]. Applied physics letters,2011,98,072906:1-3
    [15] J. Krupka, W. Strupinski. Measurements of the sheet resistance and conductivity of thinepitaxial graphene and SiC films[J]. Applied physics letters2010,96:1-3
    [16] G. Deligeorgis, M. Dragoman, D. Neculoiu, et al. Microwave propagation in graphene[J].Applied physics letters2009,95,073107:1-3
    [17]李翰如.电介质物理导论[M].成都:成都科技大学出版社,1990,40-69
    [18]张兆镗,钟若青.微波加热技术基础[M].北京:电子工业出版社,1988,6-8
    [19]张克潜,李德杰.微波与光电子学中的电磁理论[M].北京:电子工业出版社,2001,13-15
    [20] S. B. Cohn, K. C. Kelly. Microwave measurement of high dielectric constant materials[J]. IEEETransactions on microwave theory and techniques,1995,14(9):406-410
    [21] M. Oh, Y. Kim, J. Park. Factors affecting the complex permittivity spectrum of soil at a lowfrequency range of1kHz-10MHz[J]. Environ Geol,2007,51(5):821-833
    [22] Y. Zhou, E. Li, G. Guo, et al. Broadband complex permittivity measurement of low lossmaterials over large temperature ranges by stripline resonator cavity using segmentationcalculation method[J]. Progress in electromagnetics research,2011,113:143-160
    [23] J. Sheen, C.Y. Li, S.W. Lin. Measurements of microwave dielectric properties of(1-x)TiO2-xCaTiO3and (1-x)TiO2-xSrTiO3thin films by the cavity perturbation method[J].Progress in electromagnetics research,2011,25:1886-1894
    [24] S. Xu, L. Yang, L. Huang, H. S. Chen. Experimental measurement method to determine thepermittivity of extra thin materials using resonant metamaterials[J]. Progress inelectromagnetics research,2011,120:327-337
    [25] A. W. Kraszewski, S. O. Nelson. Observation on resonant cavity perturbation by dielectricobjects [J]. IEEE Transactions on microwave theory and techniques,1992,40(1):151-155
    [26] M. Santra, K. U. Limaye. Estimation of complex permittivity of arbitrary shape and sizedielectric samples using cavity measurement technique at microwave frequencies [J]. IEEETransactions on microwave theory and techniques,1990,53(2):718-721
    [27] H. A. Bethe, J. Schwinger. Pertubation theory of reasont cavities[M]. NY: NDRC,1943,D1-1:17
    [28] B. George, F. Jacques. Measurement of the dielectric constant and loss of solids and liquids by acavity perturbation method[J].Journal of applied physics,1949,20(8):817-818
    [29] E. G. Spenger, R. C. Lecraw, and F. Reggia. Measurement of microwave dielectric constantsand tensor permeabilities of ferrite spheres[J]. Proceedings of the IRE,1956:790-800
    [30] R. A. Waldron. Perturbation theory of resonant cavities[J]. The Institution of electrical engineers,Monograph,1960,373E:272-274
    [31] S. H. Chao. Measurements of microwave conductivity and dielectric constant by the cavityperturbation method and their errors[J]. IEEE Transactions on microwave theory and techniques,1985,33(6):519-526
    [32]水启刚.微波与光导波技术[M].杭州:浙江大学出版社,1996,336-344
    [33]徐汝军,李恩,周杨,等.TM0n0圆柱腔测量介质复介电常数[J].宇航材料工艺,2010,5:84-86
    [34]中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会.GB/T5597-1999.固体电介质微波复介电常数的测试方法[S].北京:中国标准出版社,1991年11月
    [35]张其劭,李恩,郭高凤.低损耗电介质复介电常数宽频带测试技术[C].全国电子测量及仪器学术研讨会论文集,2002,30-36
    [36]吴超.透波材料高Q腔法复介电常数变温测试技术的研究[D].成都:电子科技大学,2009
    [37] E. Li, Z. P. Nie, G. Guo, Q. Zhang, et al. Broadband measurements of dielectric properties oflow-loss materials at high temperatures using circular cavity method[J]. Progress inelectromagnetics research,2009,92:103-120
    [38] R. C. Taber.A parallel plate resonator technique for microwave loss measrements onsuperconductors[J]. Rev. Sci. Instrum,1990,61(8):2200-2206
    [39] J. Krupka, M. Klinger, M. Kuhn, et al. Surface resistance measurements of HTS films by meansof sapphire dielectric resonators[J]. IEEE Transactions on applied superconductivity,1993,3(3):3043-3047
    [40] A. M. Nicolson, G. F. Ross. Measurement of intrinsic properties of materials by time-domaintechniques[J]. IEEE Transactions on instrumentation and measurement,1970,19(4):377-382
    [41] W. B. Weir. Automatic measurement of complex dielectric constant and permeability atmicrowave frequencies[C]. Proceedings of the IEEE,1974,62(1):36-38
    [42] U. C. Hasar. Microwave method for thickness-independent permittivity extraction of low-lossdielectric materials from transmission measurements[J]. Progress in electromagnetics research,2010,110:453-467
    [43] U. C. Hasar. Procedure for accurate and stable constitutive parameters extraction of materials atmicrowave frequencies[J]. Progress in electromagnetics research,2010,109:107-121
    [44] U. C. Hasar. Uique permittivity determination of low-loss dielectric materials from transmissionmeasurements at microwave frequencies[J]. Progress in electromagnetics research,2010,107:31-46
    [45] U. C. Hasar, E. A. Oral. A metric for fast and accurate permittivity determination oflow-to-high loss materials from reflection measurements[J]. Progress in electromagneticsresearch,2010,107:397-412
    [46] U. C. Hasar, Y. Kaya. Reference-independent microwave method for constitutive parametersdetermination of liquid materials from measured scattering parameters[J]. Journalelectromagnetic wave and applications,2011,25:1708-1717
    [47] E. Fratticcioli, M. Dionigi, R. Sorrentino. A simple and low-cost measurement system for thecomplex permittivity characterization of materials[J]. IEEE Transactions on instrumentationand measurement,2004,53(4):1071-1077
    [48] H. S. Skulason, H. V. Nguyen, A. Guermoune, et al.110GHz measurement of large-areagraphene integrated in low-loss microwave structures[J]. Applied physics letters,2011,99,153504:1-3
    [49] V. V. Varadan, R. D. Hollinger, D. K. Ghodgaonkar, et al. Free-Space broadbandmeasurements of high-temperature complex dielectric properties at microwave frequencies[J].IEEE Transactions on instrumentation and measurement,1991,40(5):842-846
    [50] D. K. Ghodgaonkar, V. V. Varadan, V. K. Varadan, et al. Free-Space measurement of complexpermittivity and complex permeability of magnetic materials at microwave frequencies [J].IEEE Transactions on instrumentation and measurement,1990,39(2):387-399
    [51] W. G. Kim, N. W. Moon, J. M. Kang, et al. Loss measuring of large aperture quasi optics forW-band imaging radiometer system[J]. Progress in electromagnetics research,2012,125:295-309
    [52] U. C. Hasar, I. Y. Ozbek. Complex permittivity determination of lossy materials at millimeterand terahertz frequencies using free-space amplitude measurements[J]. Journal electromagneticwave and applications,2011,25:2100-2109
    [53] A. L. Cullen. A new free-wave method for ferrites measurement at millimeter wavelengths[J].Radio Science,1987,22(7):1168-1170
    [54] M. H. Umari, D. K. Ghodgaonkar, V. V. Varadan, et al. A free-space bistatic calibrationtechnique for the measurement of parallel and perpendicular reflection coefficients of planarsamples[J]. IEEE Transaction on instrumentation and measurement,1991,40(1):19-24
    [55] D. K. Ghodgaonkar, V. V. Varadan, V. K. Varadan. Free-Space measurement of complexpermittivity at microwave frequencies and complex permeability of magnetic materials[J].IEEE Transactions on instrumentation and measurement,1990,39(2):387-393
    [56] M. H. Umari, D. K. Ghodgaonkar, V. V. Varadan, et al. A free-space bistatic calibration for themeasurement of parallel and perpendicular reflection coefficients of planar samples [J]. IEEETransactions on instrumentation and measurement1991,40(1):19-24
    [57]苏勇,钮茂德,徐得名.用开口波导法无损测量材料电磁特性的新技术[J].电子测量与仪器学报,1998,12(1):53-58
    [58] F. N. Dalton, M. T. Van Genuchten. The time-domain reflectometry method for measuring soilwater content and salinity[J]. Geoderma,1986,38(1-4):237-250
    [59] M. D. Deshpande, C. J. Reddy, P. I. Tiemsin, et al. A new approach to estimate complexpermittivity of dielectric materials at microwave frequencies using waveguide measurements[J].IEEE Transactions on microwave theory and techniques,1997(45):359-366
    [60] K. Chang. Encyclopedia of RF and microwave engineering[M]. Hoboken, N J,2005,916-937
    [61] D. C. Marcano, D. V. Kosynkin, J. M. Berlin, et al. Improved synthesis of graphene oxide[J].ACS Nano,2010(4):4806–4814
    [62]马文石,周俊文,程顺喜.石墨烯的制备与表征[J].高校化学工程学报,2010,8,719-722
    [63] R. G. Carter. Accuracy of microwave cavity perturbation measurements[J]. IEEE Transactionson microwave theory and techniques,2001(49):918-923
    [64] R. F. Harrington. Time-Harmonic electromagnetic fields[M]. New York, Toronto, London:McGRAW-HILL book company, Inc,1961,317-334
    [65] D. M. Pozar. Microwave engineer[M]. Addission-Wesley publishing company, Lic,2006:230,291-302
    [66] R. E. Collin. Foundations for microwave engineer[M]. New York, McGRAW-HILL bookcompany, Inc,1992:523-525
    [67]王文祥.微波工程技术[M].北京:国防工业出版,2009,256-257
    [68]董树义.微波测量技术[M].北京:北京理工大学出版社,1990,98-101
    [69] H. M. Altschuler. Handbook of microwave measurement[M]. New York: Brooklyn polytcchnicpress,1963,102-105
    [70] A. F. Harvey. Microwave engineering[M]. London, New York:Academic press,1963,198-206
    [71] E. L. Ginzton. Microwave measurements[M]. New York, Toronto, London: McGRAW-HILLbook company, Inc,1957,404-424
    [72] D. M. Pozar. Microwave engineer[M]. Addission-Wesley publishing company, Lic,2006:230,117-126
    [73] R. E. Collin. Foundations for microwave engineer[M]. New York, McGRAW-HILL bookcompany, Inc,1992:507
    [74] E. U. Condon. Forced oscillations in cavity resonators[J]. Journal of applied physics,1941(12):129-132
    [75] S. A.谢昆诺夫.电磁波[M].(廖世静)北京:人民邮电出版社,1959,99-101
    [76]林为干.微波理论与技术[M].北京:科学出版社,1979,484-486
    [77] R. E. Collin. Field theory of guided waves[M]. Second edition, New York, The institute ofelectrical and electronics engineers, Inc,1991,483-499
    [78] W. C. Jakes. Analysis of coupling loops in waveguide and application to the design of a diodeswitch[J]. IEEE Transactions on microwave theory and techniques,1996(14):189-200
    [79] Z. Galani, M. J. Bianchini, R. C. Waterman, et al. Analysis and design of a single resonatorGaAs FET oscillator with noise generation[J]. IEEE Transactions on microwave theory andtechniques,1984(32):1556-1565,
    [80] D. H. Han, Y. S. Kim, M. Kwon. Two port cavity Q measurement using scattering parameters[J].Rev. Sci. Instrum,1996(67):2179-2181,
    [81]高源慈.电介质光学系统的实现及生物电磁学中的相关研究[D].成都:电子科技大学,2005,29-30
    [82] X. Fang, D. Linton, C. Walker, et al. A tunable split resonator method for nondestructivepermittivity characterization[J]. IEEE Transactions on instrumentation and measurement,2004(53):1473-1478
    [83] J. Krupka, R. G. Geyer, J. Baker-Jarvis, et al. Measurement of the compex permittivity ofmicrowave circuit board substrates using split dielectric resonator and reentrant cavitytechniques[C]. Seventh international conference on dielectric materials measurements&applications,1996
    [84] E. Li, G. Guo, Q. Zhang. Broadband complex permittivity measurement of low loss dielectricdisks by cylindrical cavity[C]. APMC2005Proceedings,2005
    [85] C. P. Aron, J. Watkins. Measurement of dielectric properties of low-loss ceramics at microwavefrequencies[J]. PROC. IEE,1965,112:1252-1256
    [86] A. Kumar, D. G. Smith. Microwave properties of yarns and textiles using a resonant microwavecavity[J]. IEEE Transactions on instrumentation and measurement,1977,26,2:95-98
    [87] E. Li, G. Guo, Q. Zhang. Multi-Mode purification method of TE0mncylindrical cavity formeasuring complex permittivity[C]. ISTM/2005:6th International symposium on test andmeasurement,2005(2),7096-7099
    [88] T. Shimizu, M. A. Zhewang, K. Yoshio. Design of a grooved circular cavity for dielectricsubstrate measurements in millimeter wave region[J]. IEICE Transactions on electronics,2003:1715-1720
    [89] T. Shimizu, M. A. Zhewang, K. Yoshio. Design of a grooved circular cavity for seperatingdegernate TE and TM dodes in dielectric substrate measurements[C].2002Asia-Pacficmicrowave conference,2002,1,19,1022
    [90]李恩.透波材料介电性能高温宽频测试技术研究[D].成都:电子科技大学,2009,36-41
    [91] J. L. Farrands. Deltectric measurements with horn resonant cavities having appreciableloading[J]. Radio section,1954:404-406
    [92]顾继慧.微波技术[M].北京:科学出版社.2008,214-216
    [93]何光渝.Visucal C++常用数值算法集[M].北京:科学出版社.2002,167-172
    [94]吕晨光.微波炉介质盘复介电常数的测量研究[D].成都:电子科技大学,2011,34-38
    [95] H. Zhang, B. Q. Zeng, L. Ao, et al. A novel dual-loop coupler for one-port cylindrical cavitypermittivity measurement[J]. Progress in electromagnetics research,2012(127):537-552
    [96] H. Zhang, B. Q. Zeng, L. Ao, et al. Printed four arcs coupler in cylindrical cavity forpermittivity measurement[J]. Electronics letters,2012,48,23:1460-1462
    [97]钱知勉.塑料性能应用手册[M].上海:上海科学技术文献出版社,1980,120
    [98] J. A. Dean. Lange's handbook of chemistry[M]. New York, St. Louis, San Francisco, et al,1998,10,54
    [99] K. S. Novoselov, D. Jiang, F. Schedin, et al. Two-dimensional atomic crystals[J]. Proc NatlAcad Sci USA,2005,102:10451-10453
    [100]傅强,包信和.石墨烯的化学研究进展.科学通报[J].2009,54(18):2657-2666
    [101] T. Ramanathan, A. A. Abdala, S. Stankovieh, et al. Functionalized graphene sheets forpolymer nanocomposites [J]. Nature Nanotechnology,2008,3:327-331
    [102] K. S. Novoselov, A. K. Geim, S. V. Morozov, et al. Two-dimensional gas of massless Diracfermions in graphene[J]. Nature,2005,438:197-200
    [103] D. Li, M. B. Muller, S. Gilje, et al. Processable aqueous dispersions of graphene nanosheets[J].Nature Nanotechnology,2008,3:101-105
    [104]杨勇辉,孙红娟,彭同江,等.石墨烯薄膜的制备和结构表征[J].物理化学学报,2011,27(3):736-742

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700