高功率脉冲在光纤中的传输与放大研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文工作是在国家自然科学基金《高功率啁啾脉冲在单模光纤中的非线性传输特性研究》项目的支持下完成。
     激光约束惯性核聚变是高功率激光技术的重要应用领域之一,其高功率激光驱动器利用种子源加功率放大的结构来获取高能量输出。现已建成的驱动器装置多采用全光纤化前端系统提供种子光源,用氙灯泵浦块状钕玻璃实现后续多级放大。然而,固体激光器较低的能量转换效率以及较高的热效应,限制了该系统的性能进一步提升。最近,研究人员提出了一种基于光纤放大网络的全光纤激光驱动器设想。由于高功率激光光纤系统的能量转化效率高、结构紧凑、易于维护、热效应低、光束质量好且可高重频工作等优点,该驱动器非常适合于未来的聚变能源应用。在高功率光纤系统中,一个需要研究的基本问题是高功率脉冲在光纤中的传输与放大特性。本文分别就啁啾堆积脉冲的非线性传输、高功率脉冲的受激布里渊散射效应抑制以及高功率光纤放大器中的信噪比提高等问题进行了系统研究,取得了一些重要成果。
     本文研究内容及主要成果:
     1.针对高功率激光驱动器前端系统中的啁啾脉冲堆积整形方案,研究啁啾堆积脉冲在光纤中的非线性传输特性。分析堆积脉冲的啁啾堆积特性,以及脉冲堆积后时域及频域出现周期起伏的原因;通过与线性啁啾脉冲的非线性传输特性的对比,指出啁啾堆积脉冲光谱展宽相对剧烈,其原因是脉冲内不同频率成分间发生的四波混频效应;研究各参数对于四波混频相位失配的影响,从而得到在不同参数下堆积脉冲时域和频域的演化规律。
     2.分析高功率脉冲在光纤中的受激布里渊散射特性,提出利用入射脉冲的线性啁啾特性来抑制受激布里渊散射。研究入射光的瞬时频率变化对于受激布里渊散射过程的影响,证明线性啁啾可以有效抑制受激布里渊散射,且阈值功率随线性啁啾系数的增加而线性增长;分析了入射光脉宽以及光纤长度对于受激布里渊散射的影响,指出入射脉冲越窄,啁啾变化对于阈值功率的影响越大,且对于固定的入射脉冲,存在抑制受激布里渊散射的最佳光纤长度。
     3.分析高功率脉冲光纤放大器的特性,提出利用高峰值功率脉冲泵浦来有效提高其输出信噪比。研究光纤放大器的瞬态特性随泵浦峰值功率的变化,当泵浦峰值功率越高、建立同等储能所需时间越少、而对放大自发辐射的抑制效果越好;通过与低峰值功率脉冲泵浦以及连续泵浦的对比,证明了高峰值功率脉冲泵浦方式可以有效提高光纤放大器的输出信噪比、放大效率,并且可以减少输出信号的形变;分析泵浦脉冲各参数变化对放大结果的影响,在不影响放大器增益的前提下,存在最优泵浦脉冲参数可以获得最佳信噪比输出。
     本文的主要创新点:
     1.利用时间分辨光谱研究啁啾堆积脉冲的啁啾特性以及非线性传输演化特性。结果证明:堆积脉冲由于其啁啾堆积特性而在时域以及频域上出现周期性起伏;啁啾堆积脉冲在光纤中传输时,脉冲内部发生四波混频使得光谱在传输初期迅速展宽而后减缓展宽速率。
     2.提出了利用线性啁啾特性来抑制高功率脉冲的受激布里渊散射的方法。结果证明:当入射脉冲存在线性啁啾时,其在光纤传输中的受激布里渊散射效应可以被有效抑制,阈值功率随线性啁啾系数的增加而线性增长;入射光越窄,线性啁啾系数变化对阈值功率的影响越大;当入射脉冲固定时,存在抑制受激布里渊散射的最佳光纤长度。
     3.提出了利用高峰值功率脉冲泵浦来提升高功率光纤放大器的输出性能的方法。结果证明:高峰值功率脉冲泵浦下,光纤放大器具有高放大效率、高输出信噪比以及低信号形变等优势;且存在最优泵浦脉冲参数可以在不影响放大器增益的前提下获得最佳信噪比输出。
Laser driven inertial combinement fusion is the most important application of the high power laser system, which usually adopts master-oscillator power amplifiers to achieve the extremely high power output. The laser drivers which have been built almost all use an all fiber frontier system to apply the seed pulse, and the flash lamp pumped neodymium glass to offer the multi-stage amplification. But the low amplification efficiency and the intense thermal effect limits the system to improve further. Recently, an all-fiber laser driver based on the amplification network of high power fiber lasers is proposed. Because of the advantages of high energy conversion efficiency, compactness, easy-maintenance, low thermal effects, low insertion loss and good beam quality, this all-fiber laser driver is suitable for the fusion energy application. It is necessary to analyze the propagation and amplification process of a high power pulse in optical fibers. In this dissertation, we study the nonlinear propagation of the stacking chirped pulse, the suppression of stimulated Brillouin scattering in a optical fiber seeded with a linearly chirped pulse and effective improvement of the signal-to-noise ratio in a high power pulsed pumping fiber amplifier respectively, and obtain some significant results.
     The major research works and results are as followings:
     1. We presents a systematic analysis on the nonlinear propagation of the high power stacking chirped pulse in optical fibers. Using spectrogram, we analysis the stacking chirp characters of the stacking pulse, and explain the reason of the fluctuation structure in time domain and frequency domain; Compared with the propagation results of a linearly chirped pulse, the effect of stacking chirp characters on the propagation is revealed. We point out that the four-wave mixing effect within the stacking pulse would induce strongly spectrum broadening.
     2. We propose that the linear chirp character of the input pulse can suppress the Stimulated Brillouin Scattering (SBS) process in the high power fiber system. Using the transient coupled complex amplitude equations, we study the effect of the chirp characters of the input pulse on the SBS process. The results shows that the threshold power of SBS would increase linearly with the linear chirp value of the input pulse; the effect of the pulse width of input pulse and the fiber length on the SBS process is also discussed. For a fixed injected pulse, there is a optimal fiber length for the best SBS suppression.
     3. We propose a high power pulsed pump method to efficiently improve the output signal-to-noise ratio (SNR) of a high power fiber amplifier. Using the transient rate equations, the transient process of a fiber amplifier under different pump power is discussed. The high pump power is approved to be more effective on suppressing the amplified stimulated emission; Compared with a low power pulsed pump and a continue wave (CW) pump, the high power pulsed pump method has the advantages of improved amplification efficiency, increased output SNR and weaken pulse distortion. Without the sacrifice of the signal gain of fiber amplifier, the pump parameters can be optimized to obtain the optimal SNR output.
     Highlights of the dissertation are as followings:
     1. The spectrogram method is used to analysis the stacking chirp characters and nonlinear propagation of a stacking chirped pulse. The stacking chirp character of a stacking pulse induce the fluctuation structure appearing in time domain and frequency domain. And the four-wave mixing effect within a stacking pulse makes the spectrum strongly broadening.
     2. The linear chirped pulse is suggested to suppress the SBS effect in the high power fiber system. The threshold power of SBS is demonstrated to be increased linearly with the linear chirp value of the input pulse. For a fixed injected pulses, there is a optimal fiber length for the best SBS suppression.
     3. A high peak power pulsed pump method is proposed to effectively improve the output SNR of a high power fiber amplifier. This pump method is approved to be effective on improving the amplification efficiency and the SNR of the output signal, as well as decreasing the distortion of the output signal. Without the sacrifice of signal gain, the pump parameters can be optimized to obtain the best SNR output.
引文
1. 郭星渠,核能:20世纪后的主要能源.北京,原子能出版社,1987.
    2. 刘锡三,强流离子束及其应用.北京,国防工业出版社,2007.
    3. Post, R.F., Controlled Fusion Research-An Application of the Physics of High Temperature Plasmas. Proceedings of the IRE,1957.45(2):p.134-160.
    4. Lawson, J.D., Some criteria for a power producing thermonuclear reactor. Proceedings of the Physical Society. Section B,1957.70(1):p.6.
    5. Stolen, R. and C. Lin, Self-phase-modulation in silica optical fibers. Physical Review A, 1978.17(4):p.1448.
    6. 王淦昌,王淦昌全集第四卷:惯性约束核聚变.石家庄,河北教育出版社,2004.
    7. Kemp, A., M. Basko, and J. Meyer-ter-Vehn, Heavy Ion Beam Driver.
    8. Spielman, R., et al. Pulsed power performance of PBFA Z. in Pulsed Power Conference,1997. Digest of Technical Papers.1997 11th IEEE International.1997. IEEE.
    9. Murakami, M. and H. Nagatomo, A new twist for inertial fusion energy:Impact ignition. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2005.544(1-2):p.67-75.
    10. M., D.J., On the Production of Plasma by Giant Pulse Lasers. Phys. Fluids,164.7(7):p.981-987.
    11.王淦昌,量大功率的光激射器产生中子的建议.中国激光,1987.14(11):p.641-645.
    12. Agrawal, G.P., Nonlinear fiber optics.2000:Springer.
    13. An assessment of the Prospects for inertial Fusion Energy.2013.
    14. Skupsky, S., et al., Polar direct drive on the National Ignition Facility. Physics of Plasmas, 2004.11:p.2763.
    15. Garrett, C. and D. McCumber, Propagation of a Gaussian light pulse through an anomalous dispersion medium. Physical Review A,1970.1(2):p.305.
    16. Unger, H.-G., Optical pulse distortion in glass fibres at the wavelength of minimum dispersion. Archiv Elektronik und Uebertragungstechnik,1977.31:p.518.
    17. Miyagi, M. and S. Nishida, An approximate formula for describing dispersion properties of optical dielectric slab and fiber waveguides. JOSA,1979.69(2):p.291-293.
    18. Betti, R., et al., Shock Ignition of Thermonuclear Fuel with High Areal Density. Physical Review Letters,2007.98(15):p.155001.
    19. Nakai, S. and K. Mima, Laser driven inertial fusion energy:present and prospective. Reports on Progress in Physics,2004.67(3):p.321.
    20. Marcuse, D., Pulse distortion in single-mode fibers. Applied Optics,1980.19(10):p. 1653-1660.
    21.范滇元and张小民,激光核聚变与高功率激光:历史与进展.物理,2010.39(9):p.589-596.
    22. Speck, D.R., et al., Performance of Shiva as a laser fusion irradiation facility.1979. Medium: ED; Size:Pages:31.
    23. Hunt, J.T. and D.R. Speck, Present And Future Performance Of The Nova Laser System. Optical Engineering,1989.28(4):p.284461-284461.
    24. Boehly, T.R., et al., Initial performance results of the OMEGA laser system. Optics Communications,1997.133(1-6):p.495-506.
    25. Mima, K., et al., Recent progress of implosion experiments with uniformity-improved GEKKO XII laser facility at the Institute of Laser Engineering, Osaka University. Physics of Plasmas,1996.3(5):p.2077-2083.
    26. Matsuoka, S., et al. Flexible pulse shaping of partially coherent light on GEKKO XII.1995. Monterey, CA, USA:SPIE.
    27. Xiao, G., et al., SG-Ⅱ solid state laser ICF system.1999:p.890-895.
    28. Haynam, C.A., et al., National Ignition Facility laser performance status. Appl. Opt.,2007. 46(16):p.3276-3303.
    29. Andre, M.L., The French Megajoule Laser Project (LMJ). Fusion Engineering and Design, 1999.44(1-4):p.43-49.
    30. X Zhang, W.Z., X Wei, F Jing, Z Sui, K Zheng, Q Xu, X Yuan, X Jiang, L Yang, P Ma, M Li, J Wang, D Hu, S He, F Li, Z Peng, B Feng, H Zhou, L Guo, X Li, X Zhang, J Su, Q Zhu, H Yu, R Zhao, C Ma, H He, D Fan and W Zhang, The TIL commissioning and performance. Journal of Physics:Conference Series,2008.112(3).
    31. Dunne, M., A high-power laser fusion facility for Europe. Nat Phys,2006.2(1):p.2-5.
    32. Caird, J.A., et al., ND:GLASS LASER DESIGN FOR LASER ICF FISSION ENERGY (LIFE).2008. Medium:ED; Size:PDF-file:13 pages; size:3.5 Mbytes.
    33. Mourou, G.A., D. Hulin, and A. Galvanauskas. The Road to High Peak Power and High Average Power Lasers:Coherent-Amplification-Network (CAN), in AIP Conference Proceedings.2006.
    34. Labaune, C., et al., On the feasibility of a fiber-based inertial fusion laser driver. Optics Communications,2008.281(15):p.4075-4080.
    35. Mourou, G., et al. New amplifying laser concept for inertial fusion driver, in Journal of Physics:Conference Series.2008. IOP Publishing.
    36. Gustafson, T., et al., Self-modulation, self-steepening, and spectral development of light in small-scale trapped filaments. Physical Review,1969.177(1):p.306.
    37. Lin, C. and T. Gustafson, Optical pulsewidth measurement using self-phase modulation. Quantum Electronics, IEEE Journal of,1972.8(4):p.429-430.
    38. Shen, Y. and M.M. Loy, Theoretical interpretation of small-scale filaments of light originating from moving focal spots. Physical Review A,1971.3(6):p.2099.
    39. Shimizu, F., Frequency broadening in liquids by a short light pulse. Physical Review Letters, 1967.19(19):p.1097.
    40. Wisoff, P.J., et al., NIF injection laser system.2004:p.146-155.
    41. Erbert, G.V., et al. An all fiber front-end system for the National Ignition Facility.2004. Optical Society of America.
    42. Alfano, R. and S. Shapiro, Emission in the region 4000 to 7000 A via four-photon coupling in glass. Physical Review Letters,1970.24:p.584-587.
    43. Cubeddu, R., et al., Self-phase modulation and" rocking" of molecules in trapped filaments of light with picosecond pulses. Physical Review A,1970.2(5):p.1955.
    44. Brunton, G., et al., The shaping of a national ignition campaign pulsed waveform. Fusion Engineering and Design,2012.87(12):p.1940-1944.
    45. Dangpeng, X., et al., Weak etalon effect in wave plates can introduce significant FM-to-AM modulations in complex laser systems. Opt. Express,2010.18(7):p.6621-6627.
    46. Penninckx, D., et al., Signal Propagation Over Polarization-Maintaining Fibers:Problem and Solutions. J. Lightwave Technol.,2006.24(11):p.4197-4207.
    47. Kong, Y., et al.,64-Channel Optical Pulse Stacker. Journal of Lightwave Technology,2009. 27(15):p.3017-3020.
    48. Wang, J.J., et al., Temporal pulse shaping by chirped pulse stacking in fiber time delay lines in Optical Technologies for Arming, Safing, Fuzing, and Firing II, W.J. Thomes and F.M. Dickey, Editors.2006. p. G2870-G2870.
    49. Zhan, S. and et al., A Compact Nanosecond-Pulse Shaping System Based on Pulse Stacking in Fibres. Chinese Physics Letters,2006.23(8):p.2074.
    50.林宏奂,et al.,啁啾脉冲堆积用于光脉冲整形.光学学报,2007(03):p.466-470.
    51. Ippen, E., C. Shank, and T. Gustafson, Self-phase modulation of picosecond pulses in optical fibers. Applied Physics Letters,1974.24(4):p.190-192.
    52. Fisher, R.A. and W.K. Bischel, Numerical studies of the interplay between self-phase modulation and dispersion for intense plane-wave laser pulses. Journal of Applied Physics, 1975.46(11):p.4921-4934.
    53. Johnson, A.M. and W. Simpson, Tunable femtosecond dye laser synchronously pumped by the compressed second harmonic of Nd:YAG. JOSA B,1985.2(4):p.619-625.
    54. Tomlinson, W., R.H. Stolen, and A.M. Johnson, Optical wave breaking of pulses in nonlinear optical fibers. Optics letters,1985.10(9):p.457-459.
    55. Maiman, T.H., Stimulated Optical Radiation in Ruby. Nature,1960.187(4736):p.493-494.
    56. Celebrating the laser. Nature Photonics,2010.
    57. Snitzer, E., Proposed Fiber Cavities for Optical Masers. Journal of Applied Physics,1961. 32(1):p.36-39.
    58. Koester, C.J. and E. Snitzer, Amplification in a Fiber Laser. Appl. Opt.,1964.3(10):p. 1182-1186.
    59. C. Deneka, A.D., J. Lemoine, and D. Taylor Corning Scientific Center in St. Petersburg, Russia:history, current status, future perspectives. J. Opt. Technol.,2001.68(7):p.535-539.
    60. Deneka, C., et al., Corning Scientific Center in St. Petersburg, Russia:history, current status, future perspectives. J. Opt. Technol.,2001.68(7):p.535.
    61. Miya, T., et al., Ultimate low-loss single-mode fibre at 1.55μm. Electronics Letters,1979. 15(4):p.106-108.
    62. Kimura, Y., K. Suzuki, and M. Nakazawa,46.5 dB gain in Er 3+-doped fibre amplifier pumped by 1.48 μm GalnAsP laser diodes. Electronics Letters,1989.25(24):p.1656-1657.
    63.非线性光学.2003:西安电子科技大学出版社.
    64.非线性光学:原理与进展.2001:复旦大学出版社.
    65. Blow, K.J. and D. Wood, Theoretical description of transient stimulated Raman scattering in optical fibers. Quantum Electronics, IEEE Journal of,1989.25(12):p.2665-2673.
    66. Liu, X., Adaptive higher-order split-step Fourier algorithm for simulating lightwave propagation in optical fiber. Optics Communications,2009.282(7):p.1435-1439.
    67. Tsang, M., D. Psaltis, and F.G. Omenetto, Reverse propagation of femtosecond pulses in optical fibers. Optics letters,2003.28(20):p.1873-1875.
    68. Taha, T.R. and M.I. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. Ⅲ. Numerical, Korteweg-de Vries equation. Journal of Computational Physics, 1984.55(2):p.231-253.
    69. Lubich, C., On splitting methods for Schrodinger-Poisson and cubic nonlinear Schrrodinger equations. Mathematics of computation,2008.77(264):p.2141-2153.
    70. Sanz-Serna, J. and V. Manoranjan, A method for the integration in time of certain partial differential equations. Journal of Computational Physics,1983.52(2):p.273-289.
    71. Armstrong, J.A., et al., Interactions between Light Waves in a Nonlinear Dielectric. Physical Review,1962.127(6):p.1918-1939.
    72. Simos, T., A four-step method for the numerical solution of the Schrodinger equation. Journal of computational and applied mathematics,1990.30(3):p.251-255.
    73. Richardson, D.J., J. Nilsson, and W.A. Clarkson, High power fiber lasers:current status and future perspectives J. Opt. Soc. Am. B,2010.27(11):p. B63-B92.
    74. Sinkin, O.V., et al., Optimization of the split-step Fourier method in modeling optical-fiber communications systems. Journal of lightwave technology,2003.21(1):p.61.
    75. Meirelles, T., A. Rieznik, and H. Fragnito. Study on a new split-step Fourier algorithm for optical fiber transmission systems simulations, in Microwave and Optoelectronics,2005 SBMO/IEEE MTT-S International Conference on.2005. IEEE.
    76. Diament, P., Wave transmission and fiber optics. Vol.74.1990:Macmillan.
    77. Fleck Jr, J., J. Morris, and M. Feit, Time-dependent propagation of high energy laser beams through the atmosphere. Applied Physics,1976.10(2):p.129-160.
    78. Injeyan H, G.G.D., High-Power Laser Handbook.1 st ed. New York:McGraw-Hill,,2011.
    79. Anderson, D., et al., Wave-breaking-free pulses in nonlinear-optical fibers. JOSA B,1993. 10(7):p.1185-1190.
    80. Shabat, A. and V. Zakharov, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Soviet Physics JETP,1972.34: p.62-69.
    81. Lax, M., J. Batteh, and G. Agrawal, Channeling of intense electromagnetic beams. Journal of Applied Physics,1981.52(1):p.109-125.
    82. Trebino, R., et al., Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Review of Scientific Instruments,1997.68(9):p. 3277-3295.
    83. Ozgoren, K., et al.,83 W,3.1 MHz, square-shaped,1 ns-pulsed all-fiber-integrated laser for micromachining. Opt. Express,2011.18:p.17647-17652.
    84. Kelleher, E., et al., Generation and direct measurement of giant chirp in a passively mode-locked laser. Optics letters,2009.34(22):p.3526-3528.
    85. Strickland, D. and G. Mourou, Compression of amplified chirped optical pulses. Optics Communications,1985.55(6):p.447-449.
    86. Yu, T.J., et al., Generation of high-contrast,30 fs,1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser. Optics Express,2012.20(10):p.10807-10815.
    87. Hadrich, S., et al., High-repetition-rate sub-5-fs pulses with 12 GW peak power from fiber-amplifier-pumped optical parametric chirped-pulse amplification. Opt. Lett.,2011. 36(3):p.313-315.
    88. Caucheteur, C., et al., Experimental demonstration of optical parametric chirped pulse amplification in optical fiber. Opt. Lett.,2010.35(11):p.1786-1788.
    89. Thai, A., et al., Simulations of petawatt-class few-cycle optical-parametric chirped-pulse amplification, including nonlinear refractive index effects. Opt. Lett.,2010.35(20):p. 3471_3473.
    90. Kiriyama, H., et al., High temporal and spatial quality petawatt-class Ti:sapphire chirped-pulse amplification laser system. Opt. Lett.,2010.35(10):p.1497-1499.
    91. Gaul, E.W., et al., Demonstration of a l.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd:glass amplifier. Appl. Opt.,2010.49(9):p.1676-1681.
    92. V V Lozhkarev, G.I.F., V N Ginzburg, E V Katin, E A Khazanov, A V Kirsanov, G A Luchinin, A N Mal'shakov, M A Martyanov, O V Palashov, A K Poteomkin, A M Sergeev, A A Shaykin and I V Yakovlev, Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals. Laser Phys. Lett.,2007.4(21):p. 421-427.
    93. Mourou, G.A., et al., Exawatt-Zettawatt pulse generation and applications. Optics Communications,2012.285(5):p.720-724.
    94. Ping Y, G.I., Suckewer S., Raman backscattering and amplification in a gas jet plasma. Phys. Rev. E,,2003.67(1):p.016401.
    95. Fan, T., Laser beam combining for high-power, high-radiance sources. Selected Topics in Quantum Electronics, IEEE Journal of,2005.11(3):p.567-577.
    96. Michaille, L., et al., Phase locking and supermode selection in multicore photonic crystal fiber lasers with a large doped area. Optics letters,2005.30(13):p.1668-1670.
    97. Bruesselbach, H., et al., Self-organized coherence in fiber laser arrays. Optics letters,2005. 30(11):p.1339-1341.
    98. Wang, X., et al.,1.8-kW simultaneous spectral and coherent combining of three-tone nine-channel all-fiber amplifier array. Applied Physics B,2012.107(3):p.785-790.
    99. Redmond, S.M., et al., Diffractive coherent combining of a 2.5kW fiber laser array into a 1.9kW Gaussian beam. Opt. Lett.,2012.37(14):p.2832-2834.
    100. Wirth, C., et al., High average power spectral beam combining of four fiber amplifiers to 8.2kW. Opt. Lett.,2011.36(16):p.3118-3120.
    101. Paboeuf D, D., et al., Coherent beam superposition of ten diode lasers with a Dammann grating. Opt. Lett.,2010.35(10):p.1515-1517.
    102. Fang, X.-H., et al., Generation of 150-MW,110-fs pulses by phase-locked amplification in multicore photonic crystal fiber. Opt. Lett.,2010.35(14); p.2326-2328.
    103. Su, R., et al., Active coherent beam combining of a five-element,800W nanosecond fiber amplifier array. Opt. Lett.,2012.37(19):p.3978-3980.
    104. Bourderionnet, J., et al., Collective coherent phase combining of 64 fibers. Opt. Express, 2011.19(18):p.17053-17058.
    105. Zaouter, Y., et al., Passive coherent combination of two ultrafast rod type fiber chirped pulse amplifiers. Opt. Lett.,2012.37(9):p.1460-1462.
    106. Fermann M E, H.I., Marcinkevicius A, et al., High Power Parallel Fiber Arrays. US Patent 8199398,2012.
    107. Wirth, C., et al., High average power spectral beam combining of four fiber amplifiers to 8.2?kW. Opt. Lett.,2011.36(16):p.3118-3120.
    108. Huo, Y. and Peter K. Cheo, Analysis of transverse mode competition and selection in multicore fiber lasers. J. Opt. Soc. Am. B,2005.22(11):p.2345-2349.
    109. Kurkov, A.S., et al., New mechanism of the mode coupling in multi-core fiber lasers.2008:p. 68731Q-68731Q.
    110. Cheung, E.C., M. Weber, and R.R. Rice. Phase Locking of a Pulsed Fiber Amplifier.2008. Optical Society of America.
    111. Schmidt, O., et al.,187 W,3.7 mJ from spectrally combined pulsed 2 ns fiber amplifiers. Opt. Lett.,2009.34(3):p.226-228.
    112. opticsorg, US Navy details $110M laser weapon call[EB/OL]. http://optics.org/news/3/9/1., (2012-09-04)[2013-04-02]..
    113.赵鸿,et al.,输出功率超过1.2 kW的大功率光纤激光器.红外与激光工程,2007.36(1):p.81.
    114. Brooks, C. and F. Di Teodoro,1-mJ energy,1-MW peak-power,10-W average-power, spectrally narrow, diffraction-limited pulses from a photonic-crystal fiber amplifier. Opt. Express,2005.13(22):p.8999-9002.
    115. Di Teodoro, F. and C.D. Brooks, Multistage Yb-doped fiber amplifier generating megawatt peak-power, subnanosecond pulses. Opt. Lett.,2005.30(24):p.3299-3301.
    116. Maryashin, S., A. Unt, and V.P. Gapontsev,10-mJ pulse energy and 200 W average power Yb-doped fiber laser.2006:p.610200-610200.
    117. Zheng, C., et al., All-fiber 30-μm core diameter Yb-doped pulse-pumped amplifier cascade generating 10 nm-bandwidth 545 kW peak power pulses. Laser Physics Letters,2012.9(6):p. 451.
    118. Zheng, C., et al., Low repetition rate broadband high energy and peak power nanosecond pulsed Yb-doped fiber amplifier. Optics & Laser Technology,2013.49(0):p.284-287.
    119. Schmidt, O., et al., Millijoule pulse energy Q-switched short-length fiber laser. Optics letters, 2007.32(11):p.1551-1553.
    120.王建军,许.,林宏奂,基于时分复用技术的甚多束光脉冲产生系统.物理学报,2010.59(12):p.8725-8732.
    121. Jolly, A., et al., Fiber lasers integration for LMJ. Comptes Rendus Physique,2006.7(2):p. 198-212.
    122. Hardy, A. and R. Oron, Signal amplification in strongly pumped fiber amplifiers. Quantum Electronics, IEEE Journal of,1997.33(3):p.307-313.
    123. Zawischa, I., et al., All-solid-state neodymium-based single-frequency master-oscillator fiber power-amplifier system emitting 5.5 W of radiation at 1064 nm. Optics letters,1999.24(7):p. 469-471.
    124.楼祺洪,et al.,高功率脉冲双包层光纤激光器的新进展.量子电子学报,2005.22(4):p.510-515.
    125. Cheng, W., et al., A 12 mJ 11 ns spectrally narrow fiber amplifier with a pulsed pump. Journal of Optics,2011.13(8).
    126. Kalaycioglu, H., K. Eken, and F.O. Ilday, Fiber amplification of pulse bursts up to 20 mu J pulse energy at 1 kHz repetition rate. Optics Letters,2011.36(17):p.3383-3385.
    127. Mermelstein, M.D. Gain-Switching, ASE Suppression and Efficiency Enhancement in a Low Repetition Rate Pulsed Yb-Doped Fiber Amplifier, in Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications,OSA.2006. Canada:Optical Society of America.
    128. Wan, P., et al., Low repetition rate high energy 1.5μm fiber laser. Opt. Express,2011.19(19): p.18067-18071.
    129. Kong, Y, et al., Pulsed pumped Yb3+-doped double-cladding fiber amplifier. Journal of Modern Optics,2009.56(5):p.597-600.
    130. Ye, C., et al., Pulsed pumped Yb-doped fiber amplifier at low repetition rate. Chin. Opt. Lett., 2005.3(5):p.249-250.
    131. Huang, X.J., et al., Pulsed-pumped optical fiber amplifier. Chinese Optics Letters,2009.7(8): p.712-714.
    132. Bohling, C., et al. Synchronised Pulsed Pumped Fiber Amplifiers.2007. Optical Society of America.
    1. Agrawal, G.P., Nonlinear fiber optics.2000:Springer.
    2. Diament, P., Wave transmission and fiber optics. Vol.74.1990:Macmillan.
    3. Armstrong, J.A., et al., Interactions between Light Waves in a Nonlinear Dielectric. Physical Review,1962.127(6):p.1918-1939.
    4. Blow, K.J. and D. Wood, Theoretical description of transient stimulated Raman scattering in optical fibers. Quantum Electronics, IEEE Journal of,1989.25(12):p.2665-2673.
    5. Shabat, A. and V. Zakharov, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Soviet Physics JETP,1972.34: p.62-69.
    6. Lubich, G., On splitting methods for Schrodinger-Poisson and cubic nonlinear Schrodinger equations. Mathematics of computation,2008.77(264):p.2141-2153.
    7. Sanz-Serna, J. and V. Manoranjan, A method for the integration in time of certain partial differential equations. Journal of Computational Physics,1983.52(2):p.273-289.
    8. Simos, T., A four-step method for the numerical solution of the Schrodinger equation. Journal of computational and applied mathematics,1990.30(3):p.251-255.
    9. Liu, X., Adaptive higher-order split-step Fourier algorithm for simulating lightwave propagation in optical fiber. Optics Communications,2009.282(7):p.1435-1439.
    10. Tsang, M., D. Psaltis, and F.G. Omenetto, Reverse propagation of femtosecond pulses in optical fibers. Optics letters,2003.28(20):p.1873-1875.
    11. Sinkin, O.V., et al., Optimization of the split-step Fourier method in modeling optical-fiber communications systems. Journal of lightwave technology,2003.21(1):p.61.
    12. Meirelles, T., A. Rieznik, and H. Fragnito. Study on a new split-step Fourier algorithm for optical fiber transmission systems simulations, in Microwave and Optoelectronics,2005 SBMO/IEEE MTT-S International Conference on.2005. IEEE.
    13. Taha, T.R. and M.I. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. III. Numerical, Korteweg-de Vries equation. Journal of Computational Physics, 1984.55(2):p.231-253.
    14. Fleck Jr, J., J. Morris, and M. Feit, Time-dependent propagation of high energy laser beams through the atmosphere. Applied Physics,1976.10(2):p.129-160.
    15. Cooley, J.W. and J.W. Tukey, An algorithm for the machine calculation of complex Fourier series. Mathematics of computation,1965.19(90):p.297-301.
    16. Lax, M., J. Batteh, and G. Agrawal, Channeling of intense electromagnetic beams. Journal of Applied Physics,1981.52(1):p.109-125.
    17. Trebino, R., et al., Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Review of Scientific Instruments,1997.68(9):p. 3277-3295.
    18. Ozgoren, K., et al.,83 W,3.1 MHz, square-shaped,1 ns-pulsed all-fiber-integrated laser for micromachining. Opt. Express,2011.18:p.17647-17652.
    19. Kelleher, E., et al., Generation and direct measurement of giant chirp in a passively mode-locked laser. Optics letters,2009.34(22):p.3526-3528.
    20. Marcuse, D., Pulse distortion in single-mode fibers. Applied Optics,1980.19(10):p. 1653-1660.
    21. Gloge, D., Effect of chromatic dispersion on pulses of arbitrary coherence. Electronics Letters,1979.15(21):p.686-687.
    22. Stolen, R. and C. Lin, Self-phase-modulation in silica optical fibers. Physical Review A, 1978.17(4):p.1448.
    23. Fisher, R.A. and W.K. Bischel, Numerical studies of the interplay between self-phase modulation and dispersion for intense plane-wave laser pulses. Journal of Applied Physics, 1975.46(11):p.4921-4934.
    24. Ippen, E., C. Shank, and T. Gustafson, Self-phase modulation of picosecond pulses in optical fibers. Applied Physics Letters,1974.24(4):p.190-192.
    25. Lin, C. and T. Gustafson, Optical pulsewidth measurement using self-phase modulation. Quantum Electronics, IEEE Journal of,1972.8(4):p.429-430.
    26. Shen, Y. and M.M. Loy, Theoretical interpretation of small-scale filaments of light originating from moving focal spots. Physical Review A,1971.3(6):p.2099.
    27. Alfano, R. and S. Shapiro, Emission in the region 4000 to 7000 A via four-photon coupling in glass. Physical Review Letters,1970.24:p.584-587.
    28. Gustafson, T., et al., Self-modulation, self-steepening, and spectral development of light in small-scale trapped filaments. Physical Review,1969.177(1):p.306.
    29. Shimizu, F., Frequency broadening in liquids by a short light pulse. Physical Review Letters, 1967.19(19):p.1097.
    30. Anderson, D., et al., Wave-breaking-free pulses in nonlinear-optical fibers. JOSA B,1993. 10(7):p.1185-1190.
    31. Anderson, D., et al., Wave breaking in nonlinear-optical fibers. JOSA B,1992.9(8):p. 1358-1361.
    32. Rothenberg, J.E., Femtosecond optical shocks and wave breaking in fiber propagation. JOSA B,1989.6(12):p.2392-2401.
    33. Hamaide, J.-P. and P. Emplit, Direct observation of optical wave breaking of picosecond pulses in nonlinear single-mode optical fibres. Electronics letters,1988.24(13):p.818-819.
    34. Lassen, H., et al., Evolution of chirped pulses in nonlinear single-mode fibers. Optics letters, 1985.10(1):p.34-36.
    35. Johnson, A.M. and W. Simpson, Tunable femtosecond dye laser synchronously pumped by the compressed second harmonic of Nd:YAG. JOSA B,1985.2(4):p.619-625.
    36. Tomlinson, W., R.H. Stolen, and A.M. Johnson, Optical wave breaking of pulses in nonlinear optical fibers. Optics letters,1985.10(9):p.457-459.
    1. Haan, S.W., et al., Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Physics of Plasmas,2011.18(5).
    2. Haynam, C.A., et al., National Ignition Facility laser performance status. Appl. Opt.,2007. 46(16):p.3276-3303.
    3. Jolly, A., et al., Fiber lasers integration for LMJ. Comptes Rendus Physique,2006.7(2):p. 198-212.
    4. Mima, K., et al., Recent progress of implosion experiments with uniformity-improved GEKKO XII laser facility at the Institute of Laser Engineering, Osaka University. Physics of Plasmas,1996.3(5):p.2077-2083.
    5. Matsuoka, S., et al. Flexible pulse shaping of partially coherent light on GEKKO Ⅻ.1995. Monterey, CA, USA:SPIE.
    6. Zhan, S. and et al., A Compact Nanosecond-Pulse Shaping System Based on Pulse Stacking in Fibres. Chinese Physics Letters,2006.23(8):p.2074.
    7. Wisoff, P.J., et al., NIF injection laser system.2004:p.146-155.
    8. Khurgin, J.B., J.U. Kang, and YJ. Ding, Ultrabroad-bandwidth electro-optic modulator based on a cascaded Bragg grating. Opt. Lett.,2000.25(1):p.70-72.
    9. Hughes, J.L. and P.J. Donohue, PULSE TAILORING SYSTEM FOR LASER FUSION. Optics Communications,1974.12(3):p.302-303.
    10. Soures, J., S. Kumpan, and J. Hoose, High Power Nd:Glass Laser for Fusion Applications. Appl. Opt.,1974.13(9):p.2081-2094.
    11. Tabak, M., et al., IGNITION AND HIGH-GAIN WITH ULTRAPOWERFUL LASERS. Physics of Plasmas,1994.1(5):p.1626-1634.
    12. Thomas, C.E. and L.D. Siebert, Pulse shape generator for laser fusion. Appl. Opt.,1976. 15(2):p.462-465.
    13. Martin, W.E. and D. Milam, Interpulse interference and passive laser pulse shapers. Appl. Opt.,1976.15(12):p.3054-3061.
    14. Bates, H.E. and B.J. Henderson, Theoretical maximum efficiencies for passive optical pulse shaping systems. J. Opt. Soc. Am.,1978.68(7):p.919-924.
    15. Kanabe, T., et al., Coherent stacking of frequency-chirped pulses for stable generation of controlled pulse shapes. Optics Communications,1986.58(3):p.206-210.
    16.林宏奂,et al.,啁啾脉冲堆积用于光脉冲整形.光学学报,2007(03):p.466-470.
    17. Wang, J.J., et al., Temporal pulse shaping by chirped pulse stacking in fiber time delay lines in Optical Technologies for Arming, Safing, Fuzing, and Firing Ⅱ, W.J. Thomes and F.M. Dickey, Editors.2006. p. G2870-G2870.
    18. Kong, Y., et al.,64-Channel Optical Pulse Stacker. Journal of Lightwave Technology,2009. 27(15):p.3017-3020.
    19. Feng, L., et al., Shaping ability of all fiber coherent pulse stacker. Optics & Laser Technology, 2007.39(6):p.1120-1124.
    20.曾曙光and张彬,脉冲堆积方式产生整形脉冲的逆问题.光学学报,2008(12):p.2272-2276.
    21.纪帆,et al.,时域延时多脉冲叠加平滑过程的分析.强激光与粒子束,2006(03):p.401-404.
    22.胡正良,et al.,光纤脉冲堆积器的模拟分析.光子学报,2006(07):p.966-69.
    23.郑欢,et al.,线性啁啾高斯脉冲堆积中的强度起伏频率.强激光与粒子束,2010(09):p.2013-2018.
    24.王友文,et al.,啁啾脉冲堆积宽带激光的时间与频谱特性分析.光子学报,2010(06):p.1070-1077.
    25. Huan, Z. and et al., Spectral Analysis using Linearly Chirped Gaussian Pulse Stacking. Chinese Physics Letters,2009.26(7):p.074207.
    26. Zheng, H., et al., Stability analysis of linearly chirped Gaussian pulse stacking in laser plasma reaction. Chinese Optics Letters,2010.8(2):p.248-252.
    27.张锐,et al.,采用啁啾脉冲堆积的时间束平滑技术.光学学报,2006(10 {Pages}:1512-1516).
    28.张锐,et al.,基于线性调频脉冲的光谱色散平滑技术实验研究.物理学报,2010(02):p.1088-1094.
    29.钟哲强and张彬,不同宽带脉冲在钕玻璃放大器中的幅频效应.强激光与粒子束,2012(12):p.2811-2816.
    30.曾曙光,李琨,and张彬,啁啾脉冲堆积宽带激光的三次谐波产生.强激光与粒子束,2008(02):p.207-211.
    31.夏彦文,et al.,啁啾堆积脉冲在线性介质中传输特性研究.光学学报,2009(12):p.3286-3290.
    32.车雅良,et al.,群速度色散对高功率激光系统前端整形脉冲的影响.光学与光电技术,2008(01{Pages}:18-21).
    33.王友文,et al.,啁啾脉冲堆积宽带激光非线性传输时域调制特性.强激光与粒子束,2010(08):p.1823-1828.
    34.刘兰琴,堆积啁啾脉冲时间调制及强度演化规律.光学学报,2009.29(5)
    35.黄小东,et al.,啁啾脉冲堆积及其放大特性.强激光与粒子束,2009(01 {Pages):71-75).
    36.周晓军,堆积啁啾脉冲在单模光纤中的非线性传输特性,in 2008'激光技术论坛论文集2008.
    37.刘兰琴,et al.,小宽带堆积啁啾脉冲传输放大特性.强激光与粒子束,2008(12):p.2006-2010.
    38.张颖,et al.,啁啾堆积脉冲传输过程中的小尺度自聚焦效应.强激光与粒子束,2011(01):p.45-48.
    39.王友文,et al.,啁啾脉冲堆积宽带激光非线性传输空间调制特性.强激光与粒子束,201 1(05):p.1220-1224.
    40.郑欢,高功率激光器前端系统啁啾脉冲堆积技术的研究,2009,中国科学技术大学.
    1. Brillouin, L., Diffusion de la lumiere et des rayons par un corps transparent homogene. Ann. Phys.,1922.17(88).
    2. Boyd, R. W., Nonlinear optics.1992.
    3. Chiao, R., C. Townes, and B. Stoicheff, Stimulated Brillouin scattering and coherent generation of intense hypersonic waves. Physical Review Letters,1964.12(21):p.592-595.
    4. Ippen, E. and R. Stolen, Stimulated Brillouin scattering in optical fibers. Applied Physics Letters,1972.21(11):p.539-541.
    5. Kobyakov, A., M. Sauer, and D. Chowdhury, Stimulated Brillouin scattering in optical fibers. Adv. Opt. Photon.,2010.2(1):p.1-59.
    6. 赵军发,光纤中受激布里渊散射效应及其应用研究,2010,南开大学.
    7. Agrawal, G.P., Nonlinear fiber optics.2000:Springer.
    8. R., B., Meaurement methods for stimulated Raman and Brillouin scattering in optical fibers. UK:Natinal Physical Laboratory,1999.
    9. Imai, Y. and N. Shimada, Dependence of stimulated Brillouin scattering on temperature distribution in polarization-maintaining fibers. Photonics Technology Letters, IEEE,1993. 5(11):p.1335-1337.
    10. Yoshizawa, N. and T. Imai, Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling. Lightwave Technology, Journal of,1993.11(10):p. 1518-1522.
    11. Shiraki, K., M. Ohashi, and M. Tateda, SUPPRESSION OF STIMULATED BRILLOUIN-SCATTERING IN A FIBER BY CHANGING THE CORE RADIUS. Electronics Letters,1995.31(8):p.668-669.
    12. Shiraki, K., M. Ohashi, and M. Tateda, SBS threshold of a fiber with a Brillouin frequency shift distribution. Lightwave Technology, Journal of,1996.14(1):p.50-57.
    13. Kobyakov, A., et al., Design concept for optical fibers with enhanced SBS threshold. Opt. Express,2005.13(14):p.5338-5346.
    14. De Oliveira, C., et al., Stimulated Brillouin scattering in cascaded fibers of different Brillouin frequency shifts. JOSAB ,1993.10(6):p.969-972.
    15. Mao, X., et al., Stimulated Brillouin threshold dependence on fiber type and uniformity. Photonics Technology Letters, IEEE,1992.4(1):p.66-69.
    16. Lee, H. and G. Agrawal, Suppression of stimulated Brillouin scattering in optical fibers using fiber Bragg gratings. Opt. Express,2003.11(25):p.3467-3472.
    17. Zeringue, C., et al., A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light. Optics Express,2012.20(19):p.21196-21213.
    18. Zeringue, C.M., I. Dajani, and G.T. Moore, Suppression of stimulated Brillouin scattering in optical fibers through phase-modulation:a time dependent model, in Fiber Lasers Viii: Technology, Systems, and Applications, J.W. Dawson and E.C. Honea, Editors.2011.
    19. Du, W., et al., Suppression of stimulated brillouin scattering in high power narrow-linewidth fiber amplifier with phase-modulation. Chinese Journal of Lasers,2011.38(11):p.1105009 (6 pp.)-1105009(6 pp.).
    20. Mussot, A., M. Le Parquier, and P. Szriftgiser, Thermal noise for SBS suppression in fiber optical parametric amplifiers. Optics Communications,2010.283(12):p.2607-2610.
    21. Tsubokawa, M., et al., SUPPRESSION OF STIMULATED BRILLOUIN-SCATTERING IN A SINGLE-MODE FIBER BY AN ACOUSTOOPTIC MODULATOR. Electronics Letters, 1986.22(9):p.473-475.
    22. White, J.O., et al., Suppression of stimulated Brillouin scattering in optical fibers using a linearly chirped diode laser. Opt. Express,2012.20(14):p.15872-15881.
    23. Mungan, C.E., et al., Time-Dependent Modeling of Brillouin Scattering in Optical Fibers Excited by a Chirped Diode Laser. Quantum Electronics, IEEE Journal of,2012.48(12):p. 1542-1546.
    24. Boyd, R.W., K. Rzaewski, and P. Narum, Noise initiation of stimulated Brillouin scattering. Physical Review A,1990.42(9):p.5514-5521.
    25. Pilipetskii, N.F. and V.V. Shkunov, Principles of Phase Conjugation.1985:Springer-Verlag.
    26. Smith, R.G., Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering. Applied Optics,1972.11(11):p.2489-2494.
    27. Shi, J., et al., Theoretical investigation on the threshold value of stimulated Brillouin scattering in terms of laser intensity. Applied Physics B,2009.95(4):p.657-660.
    28. Kelleher, E.J.R., et al., Generation and direct measurement of giant chirp in a passively mode-locked laser. Opt. Lett.,2009.34(22):p.3526-3528.
    29. Renninger, W.H., A. Chong, and F.W. Wise, Pulse Shaping and Evolution in Normal-Dispersion Mode-Locked Fiber Lasers. Selected Topics in Quantum Electronics, IEEE Journal of,2012.18(1):p.389-398.
    1. Li, J., et al., Theoretical and optimized design of low-repetition-rate high-energy pulse amplification in multi-stage MOPA systems. Journal of Optics,2010.12(11).
    2. Lago, L., et al., Single-mode narrow-bandwidth temporally shaped nanosecond-pulse ytterbium-doped fiber MOPA for a large-scale laser facility front-end. Journal of the Optical Society of America B,2010.27(11):p.2231.
    3. Richardson, D.J., J. Nilsson, and W.A. Clarkson, High power fiber lasers:current status and future perspectives J. Opt. Soc. Am. B,2010.27(11):p. B63-B92.
    4. Brooks, C. and F. Di Teodoro,1-mJ energy,1-MW peak-power,10-W average-power, spectrally narrow, diffraction-limited pulses from a photonic-crystal fiber amplifier. Optics Express,2005.13(22):p.8999-9002.
    5. Farrow, R.L., et al. High-peak-power (> 1.2 MW) pulsed fiber amplifier, in Lasers and Applications in Science and Engineering.2006. International Society for Optics and Photonics.
    6. Torruellas, W., et al. High peak power ytterbium-doped fiber amplifiers, in Lasers and Applications in Science and Engineering.2006. International Society for Optics and Photonics.
    7. Di Teodoro, F. and C.D. Brooks, Multistage Yb-doped fiber amplifier generating megawatt peak-power, subnanosecond pulses. Optics letters,2005.30(24):p.3299-3301.
    8. Ye, C., et al., Pulsed pumped Yb-doped fiber amplifier at low repetition rate. Chin. Opt. Lett., 2005.3(5):p.249-250.
    9. Huang, X.J., et al., Pulsed-pumped optical fiber amplifier. Chinese Optics Letters,2009.7(8): p.712-714.
    10. Kong, Y, et al., Pulsed pumped Yb3+-doped double-cladding fiber amplifier. Journal of Modern Optics,2009.56(5):p.597-600.
    11. Cheng, W., et al., A 12 mJ 11 ns spectrally narrow fiber amplifier with a pulsed pump. Journal of Optics,2011.13(8).
    12. Zheng, C., et al., All-fiber 30-μm core diameter Yb-doped pulse-pumped amplifier cascade generating 10 nm-bandwidth 545 kW peak power pulses. Laser Physics Letters,2012.9(6):p. 451.
    13. Zheng, C., et al., Low repetition rate broadband high energy and peak power nanosecond pulsed Yb-doped fiber amplifier. Optics & Laser Technology,2013.49(0):p.284-287.
    14. Wei, T., J. Li, and J. Zhu, Theoretical and experimental study of transient response of the Yb-doped fiber amplifier. Chinese Optics Letters,2012.10(4).
    15. Zhang, W.Y., J.P. Ning, and B. Chen, Suppression of ASE by Using Pulsed-Pumped Technique in Fiber Amplifier. Advanced Materials Research,2012.403:p.2508-2512.
    16.脉冲泵浦的掺镱光纤放大器中放大自发辐射动态变化模拟.光子学报,2011.
    17. Schreiber, T., et al., High-Power Fiber Lasers and Amplifiers:Fundamentals and Enabling Technologies to Enter the Upper Limits, in Fiber Lasers.2012, Wiley-VCH Verlag GmbH& Co.KGaA.p.7-61.
    18.刘庆,高功率大模场掺镱光纤放大器脉冲泵浦的研究,2011,中国科学技术大学.
    19. Paschotta, R., et al., Ytterbium-doped fiber amplifiers. Quantum Electronics, IEEE Journal of, 1997.33(7):p.1049-1056.
    20. Yong, W. and P. Hong, Dynamic characteristics of double-clad fiber amplifiers for high-power pulse amplification. Lightwave Technology, Journal of,2003.21(10):p. 2262-2270.
    21. LeVeque, R., Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-dependent Problems.2007:Society for Industrial and Applied Mathematics.
    22. Svelto, O., Principles of lasers.2009:Springer.
    23. Du, S., et al. Millijoule-class Pulse Energy, High Peak Power Q-switching Large-Mode-Area Photonic Crystal Fiber Laser at 978nm.2012. Optical Society of America.
    24. Boullet, J., et al., Millijoule-class Yb-doped pulsed fiber laser operating at 977?nm. Opt. Lett., 2010.35(10):p.1650-1652.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700