激光带宽抑制光束自聚焦效应的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自聚焦是非线性光学中最常见最基本的物理问题之一,从上世纪六十年代起,自聚焦就一直是非线性光学领域热门的研究课题。
     从实践的角度来看,自聚焦效应限制了允许通过介质的光功率,因为自聚焦通常会导致光学介质的损伤。在高功率固体激光装置中,自聚焦特别是小尺度自聚焦一直是设计高功率激光系统的限制因素。用于惯性约束核聚变(Inertial Confinement Fusion,简称ICF)的激光驱动器,是高功率固体激光装置最典型的应用,而惯性约束聚变点火工程是《国家中长期科学和技术发展规划》的十六项重大专项之一。对用于ICF驱动的高功率固体激光系统而言,高能量、高效率和高光束质量的输出是实现靶丸快点火必需的要求和目标,而小尺度自聚焦引发的高功率激光多路成丝效应是限制固体玻璃激光器提高能量的主要因素。例如,美国劳仑斯·利弗莫尔国家实验室(LLNL)就在其激光运行报告中指出,小尺度自聚焦一直是用于ICF的激光驱动器总体设计、工程研制和安全运行的重大科学问题。
     从上世纪七十年代起,大量的研究人员对由小尺度自聚焦所导致的光束分裂成丝产生了浓厚的兴趣。因为,高能量、高效率和高光束质量的输出,是用于ICF驱动器的高功率固体激光系统的要求和目标,而小尺度自聚焦是限制固体玻璃激光器提高能量的主要因素。
     为突破自聚焦效应对高功率固体激光系统输出能力的限制,寻找和提出有效的抑制方法,一直以来都是高功率激光技术领域的重要研究方向。从某种意义上说高功率固体激光系统的发展过程,主要是解决自聚焦特别是小尺度自聚焦问题的过程。小尺度自聚焦的根源是激光束振幅和相位的不规则分布,所以提高光束质量改善光束空间分布的均匀性一直是抑制小尺度自聚焦的主要方法和措施。包括空间滤波器、软边光阑、以及提高光学元件的制备精度等方法都是改善光束质量抑制小尺度自聚焦的常用方法。近年来,人们又陆续提出了一些新的抑制小尺度白聚焦的方法,包括利用发散光束、部分相干光和宽带激光等。
     宽带激光被认为是用于突破由小尺度自聚焦效应引起的高功率固体激光系统的功率输出瓶颈的可能的技术路线。与单纵模的窄带激光相比,带宽的引入为激光的传输和控制提供了额外的自由度,这意味着随带宽引入的色散效应打破原本以衍射效应和非线性效应竞争的传输状态,使得色散与衍射一起与以小尺度自聚焦为主导的非线性效应形成竞争。因而,带宽的引入为抑制小尺度自聚焦提高光束近场均匀性提供了新的手段和可能性。因此,宽带激光有利于防止光束近场分布的均匀性因严重的小尺度自聚焦效应而出现明显的下降,从而能够保证最终产生高能量、高质量和高均匀性的三倍频聚焦光斑,提高靶面辐照的均匀性和靶丸的内爆效应。
     本论文基于高功率固体激光驱动系统中高负载能量和高光束质量的需求,研究了小尺度自聚焦的形成机制和功率条件,探讨了不同类型的宽带激光在传输过程中的对小尺度自聚焦效应的作用规律,以及宽带激光自身的各个参量对小尺度自聚焦效应的抑制条件和抑制规律,获得的主要成果如下:
     第一、研究了高斯光束发生小尺度自聚焦效应的功率条件。研究发现,高斯光束发生小尺度自聚焦效应所需的功率值与初始调制幅度有关,初始调制幅度越大,则高斯光束因小尺度自聚焦而分裂成丝所需的功率越小;反之,初始调制幅度越小则所需的功率越大。
     第二、研究了由谱色散匀滑(Smoothing by Spectral Dispersion,简称SSD)装置产生的具有相位调制和光谱色散特性的小宽带脉冲激光(简称谱色散光束)的菲涅耳衍射,以及以衍射场为输入的小尺度自聚焦现象。研究发现,谱色散光束可以用来改善光束的近场均匀性。选择合适的SSD装置的元件参数可以提高光束质量,从而实现对小尺度自聚焦的抑制作用。
     第三、研究了在宽带啁啾脉冲激光的小尺度自聚焦过程中,利用带宽抑制光束小尺度自聚焦效应的条件。研究发现,对于宽带啁啾脉冲激光而言,带宽可以在特定条件下用来抑制高功率激光系统中的小尺度自聚焦效应。当脉冲宽度一定时,带宽越大对空间小尺度自聚焦的抑制作用越明显,而当带宽一定时,脉宽越大带宽对小尺度自聚焦的抑制作用越有限;在不同脉宽条件下,对小尺度自聚焦实现相同程度的抑制作用,光束必须具有相同的带宽脉宽比,并且带宽脉宽比反映了带宽对小尺度自聚焦效应的抑制程度,比值越大则抑制作用越明显。
     第四、实验研究了宽带啁啾脉冲激光的小尺度自聚焦效应,验证了利用带宽抑制小尺度自聚焦的相关特性。通过控制调制场的空间频率,利用宽带啁啾脉冲激光正弦调制的增长实验,证明了与单色平面波条件下的B-T理论相比,宽带啁啾脉冲激光的增益谱曲线,整体向高频方向移动。另外,针对宽带啁啾脉冲激光B积分增长曲线的实验研究,其结果表明,与准单色激光的B积分增长曲线相比,宽带啁啾脉冲激光的B积分增长曲线,其峰均比对比度迅速增长的B积分拐点后移,初始噪声缓慢增长的平坦区更长。
     本文以提高高功率激光系统中激光光束控制能力和高能负载为目标,从不同角度针对不同类型的宽带脉冲激光,讨论带宽和其它相关光束参量在其线性和非线性传输过程中的影响规律,得到了一些新的认识,并提出了一些新的观点。
Self-focusing is an intriguing optical phenomenon, when the High-power laser transmission in the Kerr nonlinear medium. Unlike the common lens focusing, self-focusing is a kind of beam "self-acting" effect, which is closely related with the transverse spatial intensity distribution of the beam itself, for example, Gaussian beam tend to collapse into a point due to the whole self-focusing, while the super-Gaussian beams, characterized by a flat-top, it is more likely to collapse into a ring-shaped profile. So we can see that self-focusing can occur only if the power carried by the beam is exceed to the critical power for self-focusing, and the focused beam profile is determined by the spatial distribution of the beam itself. The self-focusing effect can usually be divided into the whole beam self-focusing (also known as the total beam collapse) and small-scale self-focusing (SSSF). Whole beam self-focusing means the beam as a whole collapse into a focus with a very high strength; while SSSF is refers to the high power laser spontaneous split to form many filaments in the self-focusing medium, and the beam profile is also rely on the local intensity or phase modulation distribution.
     For high-power solid-state laser systems, SSSF is the more common phenomenon. Because, in high-power solid-state lasers, the peak power of the beam is much greater than the self-focusing critical power, and thus lead to a beam collapse into a focus point, before the beam split to numerous filaments. Since the1970s, a large number of researchers became interested in SSSF. Because, the laser output with high-energy, high-efficiency and high beam quality is necessary for the inertial confinement fusion (ICF) high power solid-state laser driver. But, SSSF often leads to damage in optical materials, and is the major limiting factor in the design of high-power laser systems. Therefore, in a sense, the process of the development of high-power laser systems, which is the process to solve the self-focusing, especially SSSF.
     To break the restrictions of the load capacity and the output power of the high-power solid-state laser system due to the serious SSSF, investigation on find and propose effective suppression method has been one of the focuses in high-power laser technology fields. Owing to the source of SSSF is the non-uniform distribution of the amplitude or the phase, so improve the near-field beam quality, enhance the uniformity of the beam has been the major method to suppress SSSF. Common techniques include:spatial filter, soft-edged apertures, improves the preparation precision of the optical elements.
     This dissertation focuses on the SSSF formation mechanism and power conditions. On that basis, propose new scheme to improve the beam uniformity and suppress SSSF in the high power solid-state laser system. We obtained the following results:
     Firstly, we investigated theoretically and numerically to find the critical power of SSSF for the Gaussian beam. We found that the critical power for SSSF decrease with increasing the modulation amplitude, it means that the critical power for Gaussian beam switch from whole beam self-focusing to SSSF, which is relevant to the initial modulation amplitude.
     Secondly, we investigated theoretically and numerically the Fresnel diffraction of a phase modulated and spectrally dispersed (PM-SD) beam after passing a hard-edged aperture and SSSF. The theoretical analysis shows that, in comparison with the monochromatic SG beam, the diffraction field of the PM-SD beam is more uniform in the Fresnel domain. The results suggested that the PM-SD beam can smooth out the diffraction intensity spikes. The numerical simulation results demonstrated that the PM-SD beam has a slower nonlinear growth than that of the monochromatic SG beam.
     Thirdly, we investigated the condition for suppression of SSSF of high-power laser beams by spectral bandwidth. And we found that broadband laser can be used to relax the restriction of nonlinear effect and obviously improve the output power of the high-power solid laser systems, because of the spectral bandwidth of such kind of broadband laser can delay the onset of SSSF. We proved that the degree of self-focusing suppression is closely related to the ratio of the bandwidth and pulse duration, in the same pulse width the big bandwidth the more obvious restrain effect, and in the same bandwidth the restrain effect of bandwidth will become weaker with increasing the pulse duration.
     Lastly, the growth of interference fringes and random noise caused by nonlinear propagation instabilities, which has been experimentally investigated by using a femtosecond pulsed laser. The results of experiment have proved that broadband laser can be used to relax the restriction of nonlinear effect, the whole gain curve moved to the direction of higher frequency, and relative to the narrow-band laser, the growth curve of the time-integrated spatial contrast with B-integral has a longer flat region of slow growth in the broad band condition, and cause the fast growth turning point of the curves significant moving to large B-integral.
引文
[1]Garmire E, Chiao R Y, Townes C H. Dynamics and characteristics of the self-trapping of intense light beams. Phys Rev Lett,1966,16(9):347-349
    [2]Kelley P L. Self-focusing of optical beams. Phys Rev Lett.1965, 15(26):1005-1008
    [3]Lallemand P, Bloembergen N. Self-focusing of laser beams and stimulated Raman gain in liquids. Phys Rev Lett,1965,15(26):1010-1012
    [4]Talanov V I. Self-focusing of wave beams in nonlinear media. JETP Lett,1965, 2(5):138-141
    [5]Marburger J H. Self-focusing:Theory. Progress in Quantum Electronics,1975, 4, Part 1(0):35-110
    [6]Shen Y R. Self-focusing:Experimental. Progress in Quantum Electronics,1975, 4, Part 1(0):1-34
    [7]Fibich G, Eisenmann S, Ilan B, et al. Self-focusing distance of very high power laser pulses. Opt. Express,2005,13(15):5897-5903
    [8]Grow T D. Ishaaya A A, Vuong L T, et al. Collapse dynamics of super-Gaussian beams. Opt. Express,2006,14(12):5468-5475
    [9]Berge L, Gouedard C, Schjodt-Eriksen J, et al. Filamentation patterns in Kerr media vs. beam shape robustness, nonlinear saturation and polarization states. Physica D,2003,176(3):181-211
    [10]Brown D C. High-Peak-Power lasers. New York:Springer-Verlag,1981
    [11]Mak A A, Soms L N, Fromzel V A, et al. Nd-glass lasers. Moscow:Izdatel'stvo Nauka,1990
    [12]Suydam B. Self-focusing of very powerful laser beams Ⅱ. IEEE Journal of Quantum Electronics,1974,10(11):837-843
    [13]Simmons W, Hunt J, Warren W. Light propagation through large laser systems. IEEE Journal of Quantum Electronics,1981,17(9):1727-1744
    [14]Sacks R A, Henesian M A, Haney S W, et al. The PROP 92 Fourier beam propagation code. LLNL Laser Program Quarterly Report,1996, UCRL-LR-105821(96-4):207-213
    [15]Williams W, Trenholme J, Orth C, et al. NIF design optimization. LLNL Laser Program Quarterly Report,1996, UCRL-LR-105821(96-4):181-191
    [16]Williams W H, Renard P A, Manes K R, et al. Modeling of self-focusing experiments by beam propagation codes. LLNL Laser Program Quarterly Report,1996, UCRL-LR-105821(96-1):1-8
    [17]Murray J, Sacks R A. Auerbach J. et al. Laser requirements and performance. LLNL Laser Program Quarterly Report 1997, UCRL-LR-105821(97-3):99-105
    [18]Gaeta A L. Collapsing light really shines. Science,2003,301 (5629):54-55
    [19]Kasparian J, Rodriguez M, Mejean G, et al. White-light filaments for atmospheric analysis. Science.2003,301(5629):61-64
    [20]Campillo A J, Shapiro S L, Suydam B R. Periodic breakup of optical beams due to self-focusing. Applied Physics Letters,1973,23(11):628-630
    [21]Bliss E S, Speck D R, Holzrichter J F. et al. Propagation of a high-intensity laser pulse with small-scale intensity modulation. Applied Physics Letters, 1974,25(8):448-450
    [22]Campillo A J, Shapiro S L, Suydam B R. Relationship of self-focusing to spatial instability modes. Applied Physics Letters.1974,24(4):178-180
    [23]Fleck J, Morris J, Bliss E. Small-scale self-focusing effects in a high power glass laser amplifier. Quantum Electronics. IEEE Journal of,1978, 14(5):353-363
    [24]Baranova N B, Bykovskii N E, Senat-skii Y V, et al. Nonlinear processes in the optical medium of a high-power neodymium laser. Journal of Russian Laser Research,1980, 1(1):62-88
    [25]Wen S C, Fan D Y. Theory of small-scale self-focusing of intense laser beams in media with gain and loss. Acta Physica Sinica,2000,49(7):1282-1286
    [26]Alexandrova I, Basov N, Danilov A, et al. The effect of small-scale perturbations on the brightness of laser radiation in laser fusion experiments. Laser and Particle Beams,1983,1 (pt 3):241-250
    [27]Cao X D, Agrawal G P, McKinstrie C J. Self-focusing of chirped optical pulses in nonlinear dispersive media. Physical Review A,1994,49(5):4085-4092
    [28]Berge L, Rasmussen J J, Kuznetsov E A, et al. Self-focusing of chirped optical pulses in media with normal dispersion. JOSA B.1996,13(9):1879-1891
    [29]Ranka J K, Schirmer R W. Gaeta A L. Observation of pulse splitting in nonlinear dispersive media. Phys. Rev. Lett.,1996.77(18):3783-3786
    [30]McCrory R L, Bahr R E. Betti R, et al. OMEGA ICF experiments and preparation for direct drive ignition on NIF. Nuclear Fusion.2001.41(10):1413
    [31]Siegman A E. Small-scale self-focusing effects in tapered optical beams. www.stanford.edu/-siegman/self_focusing_memo.pdf,2002
    [32]Centurion M, Pu Y, Tsang M, et al. Dynamics of filament formation in a Kerr medium. Physical Review A,2005,71(6):063811
    [33]Simmons W W, Murray J E. Rainer F, et al. Design, theory, and performance of a high-intensity spatial filter. LLNL Laser Program,1975, Annual Report UCRL-50021(74):169-174
    [34]Simmons W W, Hagen W F, Hunt J T, et al. Performance improvements through image relaying. LLNL Laser Program Annual Report,1976, UCRL-50021(76):219-228
    [35]Hunt J T, Glaze J A, Simmons W W, et al. Suppression of self-focusing through low-pass spatial filtering and relay imaging. Appl. Opt.,1978, 17(13):2053-2057
    [36]Abbi S C, Kothari N C. Theory of Filament Formation in Self-Focusing Media. Phys. Rev. Lett.,1979,43(26):1929-1932
    [37]Hadley G. Diffraction by apodized apertures. IEEE Journal of Quantum Electronics,1974,10(8):603-608
    [38]Kryzhanovskil V I, Sedov B M, Serebryakov V A, et al. Formation of the spatial structure of radiation in solid-state laser systems by apodizing and hard apertures. Soviet Journal of Quantum Electronics,1983,13(2):194-198
    [39]Auerbach J M, Karpenko V P. Serrated-aperture apodizers for high-energy laser systems. Applied Optics,1994,33(15):3179-3183
    [40]Van Wonterghem B M, Murray J R, Campbell J H, et al. Performance of a prototype for a large-aperture multipass Nd:glass laser for inertial confinement fusion. Applied Optics,1997,36(21):4932-4953
    [41]Senatskii Y V. Active elements for high-power neodymium lasers. Soviet Journal of Quantum Electronics,1972,1(5):521-523
    [42]Vanyukov M P, Kryzhanovskii V I, Serebryakov V A, et al. Laser systems for the generation of picosecond high-irradiance light pulses. Soviet Journal of Quantum Electronics,1972,1 (5):483-488
    [43]Kryukov P, Matveets Y A, Senatskii Y V, et al. Mechanisms of radiation energy and power limitation in the amplification of ultrashort pulses in neodymium glass lasers. Soviet Journal of Quantum Electronics,1973,3(2):161-162
    [44]Baranova N B, Bykovskii N E, Boris Ya Z d, et al. Diffraction and self-focusing during amplification of high-power light pulses. I. Development of diffraction and self-focusing in an amplifier. Soviet Journal of Quantum Electronics,1975, 4(11):1354-1361
    [45]Baranova N B, Bykovskii N E, Zel'dovich B Y, et al. Diffraction and self-focusing during amplification of high-power light pulses. Ⅱ. Suppression of harmful influence of diffraction and self-focusing on a laser beam. Soviet Journal of Quantum Electronics,1975,4(11):1362-1366
    [46]Trenholme J B. Theory of Irregularity Growth on Laser Beams. LLNL Laser Program Annual Report,1975, UCRL-50021(75):237-242
    [47]Centurion M, Porter M A, Kevrekidis P G, et al. Nonlinearity Management in Optics:Experiment, Theory, and Simulation. Phys. Rev. Lett.,2006, 97(3):033903
    [48]Lehmberg R H, Obenschain S P. Use of induced spatial incoherence for uniform illumination of laser fusion targets. Optics Communications,1983,46(1):27-31
    [49]Lehmberg R H, Schmitt A J, Bodner S E. Theory of induced spatial incoherence. Journal of Applied Physics,1987,62(7):2680-2701
    [50]Skupsky S, Short R W, Kessler T, et al. Improved laser beam uniformity using the angular dispersion of frequency-modulated light. Journal of Applied Physics, 1989,66(8):3456-3462
    [51]Silberberg Y, Smith P W, Eilenberger D J, et al. Passive mode locking of a semiconductor diode laser. Opt. Lett.,1984,9(11):507-509
    [52]Luther G G, Moloney J V, Newell A C, et al. Self-focusing threshold in normally dispersive media. Opt Lett,1994,19(12):862-864
    [53]McKenty P, Skupsky S, Kelly J, et al. Numerical investigation of the self-focusing of broad-bandwidth laser light with applied angular dispersion. Journal of Applied Physics,1994,76(4):2027-2035
    [54]Strickland D, Corkum P B. Resistance of short pulses to self-focusing. J. Opt. Soc. Am. B,1994,11(3):492-497
    [55]Feit M, Fleck Jr J. Self-focusing of broadband laser pulses in dispersive media. LLNL Annual Report,1992, UCRL-ID-112523:1-17
    [56]Wegner P J, Feit M D, Fleck J J A, et al. Measurement of the Bespalov-Talanov gain spectrum in a dispersive medium with large n2. In:Proc. SPIE. Monterey:SPIE 1995,661-667
    [57]Kuizenga D, Phillion D, Lund T, et al. Simultaneous Q-switching and mode-locking in the cw Nd:YAG laser. Optics Communications.1973. 9(3):221-226
    [58]Kuizenga D J. Generation of short pulses for laser fusion in an actively mode-locked Nd:YAG laser. Optics Communications,1977,22(2):156-160
    [59]Arecchi F, Meucci R, Puccioni G, et al. Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a Q-switched gas laser. Phys. Rev. Lett.,1982,49(17):1217-1220
    [60]Mears R, Reekie L, Poole S, et al. Low-threshold tunable CW and Q-switched fibre laser operating at 1.55 μm. Electronics letters,1986,22(3):159-160
    [61]Blow K J, Nelson B P. Improved mode locking of an F-center laser with a nonlinear nonsoliton external cavity. Opt. Lett.,1988,13(11):1026-1028
    [62]Kean P N, Zhu X, Crust D W, et al. Enhanced mode locking of color-center lasers. Opt. Lett.,1989,14(1):39-41
    [63]Malcolm G P A, Curley P F, Ferguson A I. Additive-pulse mode locking of a diode-pumped Nd:YLF laser. Opt. Lett.,1990,15(22):1303-1305
    [64]Bespalov V I, Talanov V I. Filamentary Structure of Light Beams in Nonlinear Liquids. Journal of Experimental and Theoretical Physics Letters,1966,3(11): 307-310
    [65]Chilingarian Y S. Self-focusing of inhomogeneous laser beams and its effect on stimulated scattering. Sov. Phys. JETP,1968,28:832-835
    [66]Abbi S C, Mahr H. Correlation of filaments in nitrobenzene with laser spikes. Phys. Rev. Lett.,1971.26(11):604-606
    [67]Hunt J, Manes K, Renard P. Hot images from obscurations. Applied Optics, 1993,32(30):5973-5982
    [68]Wang Y, Wen S, You K, et al. Multiple hot images from an obscuration in an intense laser beam through cascaded Kerr medium disks. Appl. Opt.,2008, 47(30):5668-5681
    [69]Hu Y, Wang Y, Wen S, et al. Hot images from phase defects in high-power broadband laser beams. Optics and Lasers in Engineering,2009,47(1):194-198
    [70]王友文,邓剑钦,文双春等.宽频带光束非线性热像效应的实验研究.物理学报,2009, 58(03):1738-1744
    [71]Chiao R Y, Kelley P L, Garmire E. Stimulated Four-Photon Interaction and Its Influence on Stimulated Rayleigh-Wing Scattering. Phys. Rev. Lett.,1966, 17(22):1158-1161
    [72]Carman R L, Chiao R Y, Kelley P L. Observation of Degenerate Stimulated Four-Photon Interaction and Four-Wave Parametric Amplification. Phys. Rev. Lett.,1966,17(26):1281-1283
    [73]Campillo A, Pearson J, Shapiro S, et al. Fresnel diffraction effects in the design of high-power laser systems. Applied Physics Letters,1973,23(2):85-87
    [74]Kimiaki K, Hiromitsu S. Self-Focussing of Laser Beam in Nonlinear Media. Physica Scripta,1979,20(3-4):382
    [75]Feit M D, Fleck J J A. Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams. J. Opt. Soc. Am. B,1988, 5(3):633-640
    [76]Soto-Crespo J M, Heatley D R, Wright E M, et al. Stability of the higher-bound states in a saturable self-focusing medium. Physical Review A.1991, 44(1):636-644
    [77]Soto-Crespo J M, Wright E M, Akhmediev N N. Recurrence and azimuthal-symmetry breaking of a cylindrical Gaussian beam in a saturable self-focusing medium. Physical Review A,1992,45(5):3168-3175
    [78]Kelley P. The nonlinear index of refraction and self-action effects in optical propagation. IEEE Journal of Selected Topics in Quantum Electronics,2000, 6(6):1259-1264
    [79]Fibich G. Ilan B. Deterministic vectorial effects lead to multiple filamentation. Opt. Lett.,2001,26(11):840-842
    [80]Fibich G, Ilan B. Vectorial and random effects in self-focusing and in multiple filamentation. Physica D:Nonlinear Phenomena,2001,157(1-2):112-146
    [81]Fibich G, Eisenmann S, Ilan B, et al. Control of multiple filamentation in air. Opt. Lett.,2004,29(15):1772-1774
    [82]Grow T, Gaeta A. Dependence of multiple filamentation on beam ellipticity. Optics Express,2005,13(12):4594-4599
    [83]Fibich G, Sivan Y, Ehrlich Y, et al. Control of the collapse distance in atmospheric propagation. Opt. Express,2006,14(12):4946-4957
    [84]Garnier J. Statistical analysis of noise-induced multiple filamentation. Physical Review E,2006,73(4):046611
    [85]Moll K, Gaeta A L, Fibich G. Self-similar optical wave collapse:observation of the Townes profile. Phys Rev Lett,2003,90(20):203902
    [86]Gaeta A L. Catastrophic collapse of ultrashort pulses. Phys Rev Lett,2000, 84(16):3582-3585
    [87]Schwarz J, Rambo P, Diels J C, et al. Ultraviolet filamentation in air. Optics Communications.2000,180(4-6):383-390
    [88]Couairon A. Berge L. Light filaments in air for ultraviolet and infrared wavelengths. Phys. Rev. Lett.,2002.88(13):135003
    [89]Rodriguez M, Sauerbrey R, Wille H, et al. Triggering and guiding megavolt discharges by use of laser-induced ionized filaments. Opt. Lett.,2002, 27(9):772-774
    [90]Kovalenko S, Dobryakov A. Ruthmann J, et al. Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing. Physical Review A, 1999,59(3):2369-2384
    [91]Birks T A, Wadsworth W J, Russell P S J. Supercontinuum generation in tapered fibers. Opt. Lett.,2000,25(19):1415-1417
    [92]Kasparian J, Sauerbrey R. Mondelain D. et al. Infrared extension of the super continuum generated by femtosecond terawatt laser pulses propagating in the atmosphere. Opt. Lett.,2000,25(18):1397-1399
    [93]Husakou A, Herrmann J. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys. Rev. Lett.,2001,87(20):203901
    [94]Herrmann J, Griebner U, Zhavoronkov N, et al. Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers. Phys. Rev. Lett.,2002,88(17):173901-173904
    [95]Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber. Reviews of modern physics,2006,78(4):1135-1184
    [96]Neshev D N, Dreischuh A. Maleshkov G, et al. Supercontinuum generation with optical vortices. Opt. Express,2010,18(17):18368-18373
    [97]Wabnitz S, Kozlov V V. Harmonic and supercontinuum generation in quadratic and cubic nonlinear optical media. J. Opt. Soc. Am. B,2010,27(9):1707-1711
    [98]Ensley T R, Fishman D A, Webster S, et al. Energy and spectral enhancement of femtosecond supercontinuum in a noble gas using a weak seed. Optics Express, 2011,19(2):757-763
    [99]Liu X-L, Lu X, Liu X, et al. Broadband supercontinuum generation in air using tightly focused femtosecond laser pulses. Opt. Lett.,2011,36(19):3900-3902
    [100]Romero C, Borrego-Varillas R, Camino A, et al. Diffractive optics for spectral control of the supercontinuum generated in sapphire with femtosecond pulses. Opt. Express,2011,19(6):4977-4984
    [101]Powers M A. Three-dimensional material identification and hazard detection with shortwave infrared supercontinuum based spectral ladar. In:Pro. SPIE. Baltimore. Maryland:SPIE.2012,83570R
    [102]Arieli Y. A continuous phase plate for non-uniform illumination beam shaping using the inverse phase contrast method. Optics Communications,2000, 180(4-6):239-245
    [103]Wen S, Fan D. Spatiotemporal instabilities in nonlinear Kerr media in the presence of arbitrary higher-order dispersions. J. Opt. Soc. Am. B.2002. 19(7):1653-1659
    [104]Wen S, Fan D. Spatiotemporal instability in nonlinear dispersive media in the presence of space-time focusing effect. Science in China Series A:Mathematics, 2002,45(9):1192-1201
    [105]Zhang L, Wen S, Fu X, et al. Spatiotemporal instability in dispersive nonlinear Kerr medium with a finite response time. Optics Communications,2010, 283(10):2251-2257
    [106]Lifu Z, Xiquan F, Jianqin D, et al. Role of chirp in spatiotemporal modulation instability of broadband pulsed laser. Journal of Optics,2011,13(1):015203
    [107]Hesketh G D, Poletti F, Horak P. Spatio-Temporal Self-Focusing in Femtosecond Pulse Transmission Through Multimode Optical Fibers. Journal of Lightwave Technology,2012,30(17):2764-2769
    [108]Smetanina E. Dormidonov A, Kandidov V. Spatio-temporal evolution scenarios of femtosecond laser pulse filamentation in fused silica. Laser Physics,2012, 22(7):1-10
    [109]Aitchison J, Weiner A, Silberberg Y, et al. Observation of spatial optical solitons in a nonlinear glass waveguide. Opt. Lett.,1990,15(9):471-473
    [110]Shi T T, Chi S. Nonlinear photonic switching by using the spatial soliton collision. Opt Lett,1990,15(20):1123-1125
    [111]De La Fuente R, Barthelemy A, Froehly C. Spatial-soliton-induced guided waves in a homogeneous nonlinear Kerr medium. Opt. Lett.,1991, 16(11):793-795
    [112]Segev M, Crosignani B, Yariv A, et al. Spatial solitons in photorefractive media. Phys. Rev. Lett.,1992,68(7):923-926
    [113]Christodoulides D N, Carvalho M. Bright, dark, and gray spatial soliton states in photorefractive media. JOSA B,1995,12(9):1628-1633
    [114]Tikhonenko V, Christou J, Luther-Davies B. Three dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium. Phys. Rev. Lett., 1996,76(15):2698-2701
    [115]Kivshar Y S. Pelinovsky D E. Self-focusing and transverse instabilities of solitary waves. Physics Reports,2000.331 (4):117-195
    [116]Stegeman G I A. Christodoulides D N, Segev M. Optical spatial solitons: historical perspectives. IEEE Journal of Selected Topics in Quantum Electronics,2000,6(6):1419-1427
    [117]Peccianti M, Brzdkiewicz K A, Assanto G. Nonlocal spatial soliton interactions in nematic liquid crystals. Opt. Lett.; 2002,27(16):1460-1462
    [118]Ferrando A, Zacares M, de Cordoba P F, et al. Spatial soliton formation in photonic crystal fibers. Opt. Express,2003,11(5):452-459
    [119]Zhang S, Xia T C. A further improved extended Fan sub-equation method and its application to the (3+1)-dimensional Kadomstev-Petviashvili equation. Physics Letters A,2006,356(2):119-123
    [120]Basov N G, Zaritskii A R, Zakharov S D, et al. Generation of High-Power Light Pulses at Wavelengths 1.06 and 0.53 μm and Their Application in Plasma Heating. Ⅱ. Neodymium-Glass Laser with a Second-Harmonic Converter. Soviet Journal of Quantum Electronics,1973,2(6):533-535
    [121]Fleck J, Layne C. Study of self-focusing damage in a high-power Nd: glass-rod amplifier. Applied Physics Letters,1973,22(9):467-469
    [122]Baranova N B, Bykovskii N E, Boris Ya Z d, et al. Diffraction and self-focusing during amplification of high-power light pulses. Ⅱ. Suppression of harmful influence of diffraction and self-focusing on a laser beam. Soviet Journal of Quantum Electronics,1975,4(11):1362-1366
    [123]Vlasov S N. Kryzhanovskii V I, Yashin V E. Use of circularly polarized optical beams to suppress self-focusing instability in a nonlinear cubic medium with repeaters. Soviet Journal of Quantum Electronics,1982,12(1):7-10
    [124]Seka W, Soures J, Lewis O, et al. High-power phosphate-glass laser system: design and performance characteristics. Appl. Opt.,1980,19(3):409-419
    [125]Seka W, Soures J, Jacobs S, et al. GDL:a high-power 0.35 μm laser irradiation facility. Quantum Electronics, IEEE Journal of,1981,17(9):1689-1693
    [126]Alexandrova I V, Basov N G, Danilov A E, et al. The effect of small-scale perturbations on the brightness of laser radiation in laser fusion experiments. Laser and Particle Beams,1983,1 (03):241-250
    [127]Marklund M, Shukla P K. Filamentational instability of partially coherent femtosecond optical pulses in air. Opt Lett,2006.31(12):1884-1886
    [128]Veron D, Thiell G, Gouedard C. Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique. Optics Communications,1993,97(3):259-271
    [129]Donnat P, Gouedard C, Veron D, et al. Induced spatial incoherence and nonlinear effects in Nd:glass amplifiers. Opt. Lett.,1992,17(5):331-333
    [130]Garnier J, Videau L, Gouedard C, et al. Propagation and amplification of incoherent pulses in dispersive and nonlinear media. JOSA B.1998, 15(11):2773-2781
    [131]Osipov M V, Fedotov S I, Starodub A N. High power laser systems:new concept. In:Proc. SPIE. Prague:International Society for Optics and Photonics, 2005,816-819
    [132]Feit M D, Musher S L, Rubenchik A M, et al. Increased Damage Thresholds due to Laser Pulse Modulation. In:Proc. SPIE. Bellingham:SPIE.1995.700-708
    [133]邓锡铭,余文炎,陈时胜等.用增加频带宽度的方法提高钕玻璃高功率激光器输出功率.光学学报.1983,3(2):97-101
    [134]Chernev P, Petrov V. Self-focusing of light pulses in the presence of normal group-velocity dispersion. Opt. Lett.,1992,17(3):172-174
    [135]Luther G, Moloney J. Newell A, et al. Self-focusing threshold in normally dispersive media. Opt. Lett.,1994.19(12):862-864
    [136]Strickland D, Corkum P B. Resistance of short pulses to self-focusing. JOSA B. 1994, 11(3):492-497
    [137]Shen Y R. The Principles of Nonlinear Optics. New York:John Wiley & Sons, 1984
    [138]Diament P. Wave transmission and fiber optics. New York:Macmillan,1990
    [139]Khalil H K, Grizzle J. Nonlinear systems. New York:Macmillan Publishing Company New York,1992
    [140]Zakharov V E, Shabat A B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Soviet Physics JETP,1972,34:62-69
    [141]Zakharov V E, Manakov S V, Novikov S P, et al. Soliton theory:inverse scattering method. Moscow:Nauka press,1980
    [142]Greig I S, Morris J L. A Hopscotch method for the Korteweg-de-Vries equation. Journal of Computational Physics,1976,20(1):64-80
    [143]Fornberg B, Whitham G. A numerical and theoretical study of certain nonlinear wave phenomena. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.1978.289(1361):373-404
    [144]Delfour M. Fortin M, Payr G. Finite-difference solutions of a non-linear Schrodinger equation. Journal of Computational Physics.1981.44(2):277-288
    [145]Taha T R, Ablowitz M I. Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrodinger equation. Journal of Computational Physics,1984,55(2):203-230
    [146]Pathria D, Morris J L. Pseudo-spectral solution of nonlinear Schrodinger equations. Journal of Computational Physics,1990,87(1):108-125
    [147]Watkins L R, Zhou Y R. Modeling propagation in optical fibers using wavelets. Journal of Lightwave Technology,1994,12(9):1536-1542
    [148]Peddanarappagari K V, Brandt-Pearce M. Volterra series transfer function of single-mode fibers. Journal of Lightwave Technology,1997,15(12):2232-2241
    [149]Chang Q, Jia E, Sun W. Difference Schemes for Solving the Generalized Nonlinear Schrodinger Equation. Journal of Computational Physics,1999, 148(2):397-415
    [150]Iyengar S R K, Jayaraman G, Balasubramanian V. Variable mesh difference schemes for solving a nonlinear Schrodinger equation with a linear damping term. Computers & Mathematics with Applications.2000,40(12):1375-1385
    [151]Sheng Q, Khaliq A Q M, Al-Said E A. Solving the Generalized Nonlinear Schrodinger Equation via Quartic Spline Approximation. Journal of Computational Physics,2001,166(2):400-417
    [152]Ang W-T, Ang K-C. A dual-reciprocity boundary element solution of a generalized nonlinear Schrodinger equation. Numerical Methods for Partial Differential Equations,2004,20(6):843-854
    [153]Twizell E H, Bratsos A G, Newby J C. A finite-difference method for solving the cubic Schrodinger equation. Mathematics and Computers in Simulation, 1997,43(1):67-75
    [154]Zeng W. A leap frog finite difference scheme for a class of nonlinear Schrodinger equations of high order. J. Comput. Math,1999,17(2):133-138
    [155]Fisher R A, Bischel W. The role of linear dispersion in plane-wave self-phase modulation. Applied Physics Letters,1973,23(12):661-663
    [156]Hardin R, Tappert F. Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations. Siam. Rev.,1973.15:423
    [157]Weiss G H, Maradudin A A. The Baker-Hausdorff Formula and a Problem in Crystal Physics. Journal of Mathematical Physics,1962,3:771
    [158]Fleck J, Morris J, Feit M. Time-dependent propagation of high energy laser beams through the atmosphere. Applied Physics A:Materials Science & Processing,1976,10(2):129-160
    [159]Boyd R W, Lukishova S G, Shen Y. Self-focusing:Past and Present. New York:Springer,2009
    [160]Boyd R W. Nonlinear Optics. New York:Academic Press,2007
    [161]Brueckner K A, Jorna S. Laser-driven fusion. Reviews of modern physics.1974. 46(2):325-367
    [162]Skupsky S, Lee K. Uniformity of energy deposition for laser driven fusion. Journal of Applied Physics.1983,54(7):3662-3671
    [163]Hee E W S. Fabrication of apodized apertures for laser beam attenuation. Optics & Laser Technology,1975,7(2):75-79
    [164]Lin Y, Kessler T J, Lawrence G N. Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance. Opt Lett,1996,21(20):1703-1705
    [165]Kessler T J, Lin Y, Armstrong J J, et al. Phase conversion of lasers with low-loss distributed phase plates. In:Proc. SPIE. Los Angeles:SPIE,1993. 95-104
    [166]Lin Y, Kessler T J, Lawrence G N. Distributed phase plates for super-Gaussian focal-plane irradiance profiles. Opt. Lett.,1995.20(7):764-766
    [167]Deng X, Liang X. Chen Z, et al. Uniform illumination of large targets using a lens array. Appl. Opt.,1986,25(3):377-381
    [168]周申蕾,林尊琪.谱色散平滑与透镜列阵联用实现均匀照明.光学学报,2007,27(02):275-279
    [169]Rothenberg J E. Comparison of beam-smoothing methods for direct-drive inertial confinement fusion. J. Opt. Soc. Am. B,1997,14(7):1664-1671
    [170]Bodner S E, Colombant D G, Gardner J H, et al. Direct-drive laser fusion: Status and prospects. Physics of Plasmas,1998,5(5):1901-1918
    [171]Lehmberg R H, Rothenberg J E. Comparison of optical beam smoothing techniques for inertial confinement fusion and improvement of smoothing by the use of zero-correlation masks. Journal of Applied Physics,2000, 87(3):1012-1022
    [172]Regan S P, Marozas J A, Kelly J H. et al. Experimental investigation of smoothing by spectral dispersion. J. Opt. Soc. Am. B.2000,17(9):1483-1489
    [173]江秀娟,周申蕾,林尊琪等.光谱色散后的相位调制光束衍射特性研究.物理学报,2006,55(09):4595-4600
    [174]程文雍,张小民,粟敬钦等.利用运动光束抑制高功率激光小尺度自聚焦物理学报, 2009,58(10):7012-7016
    [175]Zhang Y, Fu X, Deng Y, et al. The spatiotemporal evolution of sinusoidal phase modulated laser and its competitions with noise perturbed laser during small-scale self-focusing. Optics & Laser Technology.2012,44(8):2377-2383
    [176]Peng R, Ye Y, Tang Z, et al. Transverse intensity distributions of a broadband laser modulated by a hard-edged aperture. J. Opt. Soc. Am. A,2005, 22(9):1903-1908
    [177]付福兴,张彬.激光束畸变波前高频相位的恢复.中国激光,2011,38(04):44-49
    [178]曹国威.石鹏,张晓波等.光谱色散和分布式相位板联用对靶面辐照均匀性的改善.中国激光,2011,38(10):29-34
    [179]卢兴华,王江峰,姜有恩等.宽带光再生放大幅度调制效应的研究.中国激光,2011,38(05):70-74
    [180]潘雪,李学春,王江峰等.利用光参量啁啾脉冲放大进行任意光谱整形方案的稳定性分析.中国激光,2011,38(01):18-23
    [181]赵东峰,王利,林尊琪等.在神光1l装置第九路系统开展351nm波长激光高通量传输的实验研究.中国激光,2011,38(07):1-8
    [182]Jiang X, Zhou S, Lin Z. Improved uniformity of target illumination by combining a lens array and the technique of spectral dispersion. Journal of Applied Physics,2007,101 (2):023109
    [183]Herrmann J, Griebner U, Zhavoronkov N, et al. Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. Phys. Rev. Lett.,2002,88(17):173901
    [184]Wadsworth W J, Ortigosa-Blanch A, Knight J C, et al. Supercontinuum generation in photonic crystal fibers and optical fiber tapers:a novel light source. J. Opt. Soc. Am. B,2002,19(9):2148-2155
    [185]Zhang L, Fu X, Deng J, et al. Evolution of spatial modulation of broadband laser pulses with different pulse durations in medium with non-instantaneous Kerr nonlinearity. Optics Communications,2011,284(8):2210-2214
    [186]傅喜泉.宽带激光的传输和放大研究:[复旦大学博士学位论文].上海:复旦大学,2005
    [187]文双春.强激光非线性自聚焦效应研究:[中国科学院上海光学精密机械研究所博士论文].上海:中国科学院上海光学精密机械研究,2001
    [188]张小民.宽带高功率激光系统总体与关键技术研究:[复旦大学博士学位论文].上海:复旦大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700